CN111146274B - 一种碳化硅沟槽igbt结构及其制造方法 - Google Patents

一种碳化硅沟槽igbt结构及其制造方法 Download PDF

Info

Publication number
CN111146274B
CN111146274B CN202010002975.3A CN202010002975A CN111146274B CN 111146274 B CN111146274 B CN 111146274B CN 202010002975 A CN202010002975 A CN 202010002975A CN 111146274 B CN111146274 B CN 111146274B
Authority
CN
China
Prior art keywords
region
trench
collector
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010002975.3A
Other languages
English (en)
Other versions
CN111146274A (zh
Inventor
王颖
苏芳文
包梦恬
于成浩
曹菲
李兴冀
杨剑群
吕钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Lucky Microelectronics Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010002975.3A priority Critical patent/CN111146274B/zh
Publication of CN111146274A publication Critical patent/CN111146274A/zh
Application granted granted Critical
Publication of CN111146274B publication Critical patent/CN111146274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开一种碳化硅沟槽IGBT结构,包括N‑漂移区、N‑型缓冲层、P型阱区、P+欧姆接触区、N+发射区、P+沟槽集电极区、沟槽集电极、P+集电极区、N+衬底层以及沟槽栅极、栅氧介质层;本发明相对于传统结构,主要提出了在集电极增加沟槽集电极,并且在沟槽集电极上方加入P+沟槽集电极,由于新器件P+沟槽集电极区上方没有N+缓冲层,增强了正向导通时的空穴注入效率,使得新器件开启电压降低;新器件关断时,沟槽集电极提供了低电阻通道,加快了电子的抽取,进一步降低了关断损耗。

Description

一种碳化硅沟槽IGBT结构及其制造方法
技术领域
本发明涉及绝缘栅双极型晶体管器件技术领域,特别是涉及一种电压大于15kV的高压一种碳化硅沟槽IGBT结构及其制造方法。
背景技术
IGBTs是由MOSFET和BJT组成的复合管,它融合了MOSFET和BJT这两种器件的优点,是一种理想的开关器件。而SiC优异的材料特性,例如3倍宽的禁带宽度,10倍高的临界场强,3倍大的热导率以及2倍高的载流子饱和速度,使得SiC基的半导体器件被广泛的应用到高温、高压、大功率等应用中。此外,由于单极器件的特征导通电阻与其击穿电压的2.5次方成正比,SiC MOSFETs器件不适合应用在击穿电压>10kV的领域。由于电导调制效应的存在,SiC IGBTs的特征导通电阻不再随击穿电压的增加而变化明显。与相同耐压的SiC MOSFETs器件相比,具有较低的特征导通电阻,适合应用于耐压>10kV的领域,例如智能电网,高压直流输电***等电力电子***。
然而,由于正向导通时电导调制效应的存在,尽管能降低器件的通态压降,但是同时又在漂移区中存储了大量的电子空穴对。关断时,这些存储在漂移区内的过量载流子需要一定的时间才能完全抽取和复合,会使得器件出现较长的电流拖尾,导致器件的关断损耗增加。正向导通时的电导调制效应越强,器件的通态压降越小,相应地关断损耗也越大。因此如何改善SiC IGBTs器件的导通压降与关断损耗之间的折衷关系是目前急需解决的一个问题。
发明内容
本发明的目的是提供一种碳化硅沟槽IGBT及其制造方法,改善SiC IGBTs器件的导通压降与关断损耗,以解决上述现有技术存在的问题。
为实现上述目的,本发明提供了如下方案:本发明提供一种碳化硅沟槽IGBT结构,包括N-型电压阻挡层、沟槽结构、沟槽集电极金属电极,所述N-型电压阻挡层的上方由下到上依次层叠设有N型电流增强层、P型沟道区、P+欧姆接触区、N+发射区,所述P+欧姆接触区和N+发射区为同层并列设置,所述P+欧姆接触区和N+发射区的上方层叠设有发射极电极,所述沟槽结构下方设有P+电场屏蔽区,所述P+电场屏蔽区内部设有发射极电极;所述沟槽结构包括栅氧介质层、多晶硅栅电极,所述多晶硅栅电极通过栅氧介质层与所述N+发射区、P型沟道区、N型电流增强层、N-型电压阻挡层相隔离,所述N-型电压阻挡层下方由上到下依次层叠设有N型缓冲层、P+集电区、集电极金属电极,所述沟槽集电极金属电极通过栅氧介质层、P+沟槽集电区与N型缓冲层、P+集电区、N-型电压阻挡层相隔离。
优选地,所述N-型电压阻挡层的掺杂浓度为1014数量级,厚度大于100μm。
优选地,所述P+沟槽集电区的掺杂浓度在1017-1019cm-3数量级之间,厚度在0.1μm至5μm之间。
优选地,所述N型缓冲的掺杂浓度要比N-型电压阻挡层的掺杂浓度高,所述N型缓冲的掺杂浓度的范围为1016-1017cm-3数量级,厚度为0.1μm至5μm之间。
优选地,所述N型电流增强层的掺杂浓度要比所述N-型电压阻挡层的高,所述N型电流增强层的掺杂浓度的范围为1015-1016cm-3数量级,厚度为0.1μm至5μm之间。
优选地,所述P型沟道区的掺杂浓度范围为1017-1018cm-3数量级,厚度为0.1μm至5μm之间。
优选地,所述多个不相邻沟槽集电极金属电极14深入到N-型电压阻挡层内部,深度为0.1μm至5μm之间,宽度为0.1μm至2μm之间。
一种碳化硅沟槽IGBT的制造方法,包括如下步骤:步骤1:在N型衬底层15上依次外延和离子注入形成P+集电区、N型缓冲层和N-型电压阻挡层;
步骤2:晶片翻转,将N型衬底层完全移除;
步骤3:在P+集电区一侧刻蚀形成多个沟槽区域,在沟槽区域进行离子注入形成P+沟槽集电区;
步骤4:在沟槽内壁形成栅氧介质层,并刻蚀掉沟槽底部的栅氧介质层,之后填充金属形成沟槽集电极金属电极;
步骤5:再次翻转晶片,在N-型电压阻挡层的正面,利用已经成熟的SiC UMOSFET制造工艺形成SiC IGBTs结构的正面结构;
步骤6:通过淀积金属形成发射极金属和集电极金属后,得到4H-SiC沟槽绝缘栅双极型晶体管。
本发明公开了以下技术效果:本发明利用深入漂移区内部的沟槽集电极,为漂移区内的过量的电子提供了低电阻抽取通道,减小器件的关断时间,从而加快电子的抽取速度进而减小器件的关断损耗;利用沟槽集电极上方未被N型缓冲层覆盖的P+沟槽集电区增强空穴注入效率,增强电导调制效应,进一步的降低器件导通电阻。进而同时改善改善器件的导通压降与关断损耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有的碳化硅沟槽IGBT的结构示意图;
图2是本发明提出的碳化硅沟槽IGBT的结构示意图。
图3是本发明提出的碳化硅沟槽IGBT的制造过程示意图;
图4是现有碳化硅沟槽IGBT与本发明的碳化硅沟槽IGBT关断曲线对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1-4,本申请提供了一种碳化硅沟槽IGBT结构,包括N-型电压阻挡层6、沟槽结构、沟槽集电极金属电极14,所述N-型电压阻挡层6的上方由下到上依次层叠设有N型电流增强层9、P型沟道区10、P+欧姆接触区11、N+发射区12,所述P+欧姆接触区11和N+发射区12为同层并列设置,所述P+欧姆接触区11和N+发射区12的上方层叠设有发射极电极8,所述沟槽结构下方设有P+电场屏蔽区7,所述P+电场屏蔽区7内部设有发射极电极8;所述沟槽结构包括栅氧介质层4、多晶硅栅电极13,所述多晶硅栅电极13通过栅氧介质层4与所述N+发射区12、P型沟道区10、N型电流增强层9、N-型电压阻挡层6相隔离,所述N-型电压阻挡层6下方由上到下依次层叠设有N型缓冲层3、P+集电区2、集电极金属电极1,所述沟槽集电极金属电极14通过栅氧介质层4、P+沟槽集电区5与N型缓冲层3、P+集电区2、N-型电压阻挡层6相隔离。
所述沟槽集电极金属电极在器件关断时为电子提供了低电阻通道,相比于传统器件加快了电子的抽取速度,缩短了电子的抽取时间,因此可以降低器件的关断能量损耗。
进一步地,所述N-型电压阻挡层6的掺杂浓度为1014-1016cm-3数量级,厚度大于100μm。
进一步地,所述P+沟槽集电区5的掺杂浓度在1017-1019cm-3数量级之间,厚度为0.1μm至5μm之间。
进一步地,所述N型缓冲层3的掺杂浓度要比N-型电压阻挡层6的掺杂浓度高,所述N型缓冲层3的掺杂浓度的范围为1016-1017cm-3数量级,厚度为0.1μm至5μm之间。
进一步地,所述N型电流增强层9的掺杂浓度要比所述N-型电压阻挡层6的高,所述N型电流增强层9的掺杂浓度的范围为1015-1016cm-3数量级,厚度为0.1μm至5μm之间。
进一步地,所述P型沟道区10的掺杂浓度范围为1017-1018cm-3数量级,厚度为0.1μm至5μm之间。
进一步地,所述多个不相邻沟槽集电极金属电极14深入到N-电压阻挡层内部,深度为0.1μm至5μm之间,宽度为0.1μm至2μm之间。
本发明还提供了一种碳化硅沟槽IGBT的制造方法,包括如下步骤:
参照图3,步骤1:在N型衬底层15上依次外延和离子注入形成P+集电区2、N型缓冲层3和N-型电压阻挡层6;
步骤2:晶片翻转,将N型衬底层15完全移除;
步骤3:在P+集电区2一侧刻蚀形成多个沟槽区域,在沟槽区域进行离子注入形成P+沟槽集电区5;
步骤4:在沟槽内壁形成栅氧介质层4,并刻蚀掉沟槽底部的栅氧介质层4,之后填充金属形成沟槽集电极金属电极14;
步骤5:再次翻转晶片,在N-型电压阻挡层6的正面,利用已经成熟的SiC UMOSFET制造工艺形成SiC IGBTs结构的正面结构;
步骤6:通过淀积金属形成发射极金属8和集电极金属电极1,形成如图2所示的4H-SiC沟槽绝缘栅双极型晶体管。
,在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

1.一种碳化硅沟槽IGBT结构,特征在于:包括N-型电压阻挡层(6)、沟槽结构、沟槽集电极金属电极(14),所述N-型电压阻挡层(6)的上方由下到上依次层叠设有N型电流增强层(9)、P型沟道区(10)、P+欧姆接触区(11)、N+发射区(12),所述P+欧姆接触区(11)和N+发射区(12)为同层并列设置,所述P+欧姆接触区(11)和N+发射区(12)的上方层叠设有发射极电极(8),所述沟槽结构下方设有P+电场屏蔽区(7),所述P+电场屏蔽区(7)内部设有发射极电极(8);所述沟槽结构包括栅氧介质层(4)、多晶硅栅电极(13),所述多晶硅栅电极(13)通过栅氧介质层(4)与所述N+发射区(12)、P型沟道区(10)、N型电流增强层(9)、N-型电压阻挡层(6)相隔离,所述N-型电压阻挡层(6)下方由上到下依次层叠设有N型缓冲层(3)、P+集电区(2)、集电极金属电极(1),所述沟槽集电极金属电极(14)通过栅氧介质层(4)、P+沟槽集电区(5)与N型缓冲层(3)、P+集电区(2)、N-型电压阻挡层(6)相隔离;
所述P+沟槽集电区(5)的掺杂浓度在1017-1019cm-3数量级之间,厚度在0.1μm至5μm之间;
多个不相邻所述 沟槽集电极金属电极(14)深入到N-型电压阻挡层(6)内部,深度为0.1μm至5μm之间,宽度为0.1μm至2μm之间。
2.根据权利要求1所述的碳化硅沟槽IGBT结构,其特征在于:所述N-型电压阻挡层(6)的掺杂浓度为1014-1016cm-3数量级,厚度大于100μm。
3.根据权利要求1所述的碳化硅沟槽IGBT结构,其特征在于:所述N型缓冲层(3)的掺杂浓度要比N-型电压阻挡层(6)的掺杂浓度高,所述N型缓冲层(3)的掺杂浓度的范围为1016-1017cm-3数量级,厚度为0.1μm至5μm之间。
4.根据权利要求1所述的碳化硅沟槽IGBT结构,其特征在于:所述N型电流增强层(9)的掺杂浓度要比所述N-型电压阻挡层(6)的高,所述N型电流增强层(9)的掺杂浓度的范围为1015~1016数量级,厚度为0.1μm至5μm之间。
5.根据权利要求1所述的碳化硅沟槽IGBT结构,其特征在于:所述P型沟道区(10)的掺杂浓度范围为1017-1018cm-3数量级,厚度为0.1μm至5μm之间。
6.一种碳化硅沟槽IGBT的制造方法,其特征在于,包括如下步骤:
步骤1:在N型衬底层(15)上依次外延和离子注入形成P+集电区(2)、N型缓冲层(3)和N-型电压阻挡层(6);
步骤2:晶片翻转,将N型衬底层(15)完全移除;
步骤3:在P+集电区(2)一侧刻蚀形成多个沟槽区域,在沟槽区域进行离子注入形成P+沟槽集电区(5);
步骤4:在沟槽内壁形成栅氧介质层(4),并刻蚀掉沟槽底部的栅氧介质层(4),之后填充金属形成沟槽集电极金属电极(14);
步骤5:再次翻转晶片,在N-型电压阻挡层(6)的正面,利用已经成熟的SiC UMOSFET制造工艺形成SiC IGBTs结构的正面结构;
步骤6:通过淀积金属形成发射极金属(8)和集电极金属电极(1)后,得到4H-SiC沟槽绝缘栅双极型晶体管。
CN202010002975.3A 2020-01-02 2020-01-02 一种碳化硅沟槽igbt结构及其制造方法 Active CN111146274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010002975.3A CN111146274B (zh) 2020-01-02 2020-01-02 一种碳化硅沟槽igbt结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010002975.3A CN111146274B (zh) 2020-01-02 2020-01-02 一种碳化硅沟槽igbt结构及其制造方法

Publications (2)

Publication Number Publication Date
CN111146274A CN111146274A (zh) 2020-05-12
CN111146274B true CN111146274B (zh) 2022-06-03

Family

ID=70523342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010002975.3A Active CN111146274B (zh) 2020-01-02 2020-01-02 一种碳化硅沟槽igbt结构及其制造方法

Country Status (1)

Country Link
CN (1) CN111146274B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510086B (zh) * 2020-11-27 2022-12-20 广东美的白色家电技术创新中心有限公司 一种igbt器件及智能功率模块
CN112951907A (zh) * 2021-01-26 2021-06-11 陕西半导体先导技术中心有限公司 一种降低导通电阻的功率半导体器件结构及其制备方法
CN113764511B (zh) * 2021-07-30 2023-10-27 广州华浦电子科技有限公司 具有动态载流子通道的低损耗超结igbt器件及其制造方法
CN114203810A (zh) * 2021-12-10 2022-03-18 电子科技大学 一种增加背面栅降低关断损耗的超高压igbt结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681817A (zh) * 2012-09-10 2014-03-26 中国科学院微电子研究所 Igbt器件及其制作方法
CN105895682A (zh) * 2016-07-11 2016-08-24 刘佩斯 逆导绝缘栅双极型晶体管结构及其对应的制造方法
CN107799588A (zh) * 2017-10-20 2018-03-13 电子科技大学 一种逆阻型igbt及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681817A (zh) * 2012-09-10 2014-03-26 中国科学院微电子研究所 Igbt器件及其制作方法
CN105895682A (zh) * 2016-07-11 2016-08-24 刘佩斯 逆导绝缘栅双极型晶体管结构及其对应的制造方法
CN107799588A (zh) * 2017-10-20 2018-03-13 电子科技大学 一种逆阻型igbt及其制造方法

Also Published As

Publication number Publication date
CN111146274A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN111146274B (zh) 一种碳化硅沟槽igbt结构及其制造方法
CN111312802B (zh) 低开启电压和低导通电阻的碳化硅二极管及制备方法
KR101309674B1 (ko) 절연 게이트형 바이폴라 트랜지스터와 그 제조방법
CN109192772B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN108183130B (zh) 带有p型埋层的双栅载流子储存性igbt器件
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
CN104241348A (zh) 一种低导通电阻的SiC IGBT及其制备方法
CN109166917B (zh) 一种平面型绝缘栅双极晶体管及其制备方法
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
CN115188814B (zh) 一种rc-jgbt器件及其制作方法
CN107437566B (zh) 一种具有复合介质层宽带隙半导体纵向双扩散金属氧化物半导体场效应管及其制作方法
CN110473917B (zh) 一种横向igbt及其制作方法
CN109065608B (zh) 一种横向双极型功率半导体器件及其制备方法
CN113838918A (zh) 具有载流子浓度增强的超结igbt器件结构及制作方法
CN110504314B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
KR101539880B1 (ko) 전력 반도체 소자
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN106601800B (zh) 一种沟槽绝缘栅双极型晶体管
CN114944421B (zh) 一种沟槽型碳化硅绝缘栅场效应晶体管及其制作方法
CN115425065A (zh) 一种碳化硅igbt器件及其制造方法
KR102585094B1 (ko) 분리 버퍼 구조를 갖는 초접합 igbt
US20150187922A1 (en) Power semiconductor device
CN115084229A (zh) P+屏蔽层自钳位沟槽型碳化硅igbt器件及其制备方法
CN111129137B (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220707

Address after: 361000 No. 501, Huanzhu Road, Jimei North Industrial Zone, Xiamen, Fujian Province

Patentee after: Xiamen lucky Microelectronics Co.,Ltd.

Address before: 310018 no.1158, 2 Baiyang street, Hangzhou Economic Development Zone, Hangzhou City, Zhejiang Province

Patentee before: HANGZHOU DIANZI University