CN111106676A - Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法 - Google Patents

Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法 Download PDF

Info

Publication number
CN111106676A
CN111106676A CN202010016337.7A CN202010016337A CN111106676A CN 111106676 A CN111106676 A CN 111106676A CN 202010016337 A CN202010016337 A CN 202010016337A CN 111106676 A CN111106676 A CN 111106676A
Authority
CN
China
Prior art keywords
coil
lcc
parameters
coupling mechanism
magnetic coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010016337.7A
Other languages
English (en)
Other versions
CN111106676B (zh
Inventor
李津
王子驰
苏玉刚
马慧卓
郭天鸿
王赛豪
王智慧
左志平
李皓然
范中华
杨东娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiongan New Area Power Supply Company State Grid Hebei Electric Power Co
Chongqing University
Pinggao Group Co Ltd
Original Assignee
Xiongan New Area Power Supply Company State Grid Hebei Electric Power Co
Chongqing University
Pinggao Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiongan New Area Power Supply Company State Grid Hebei Electric Power Co, Chongqing University, Pinggao Group Co Ltd filed Critical Xiongan New Area Power Supply Company State Grid Hebei Electric Power Co
Priority to CN202010016337.7A priority Critical patent/CN111106676B/zh
Publication of CN111106676A publication Critical patent/CN111106676A/zh
Application granted granted Critical
Publication of CN111106676B publication Critical patent/CN111106676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种LCC‑S型MC‑WPT***的磁耦合机构参数多目标优化方法,按照以下步骤进行:S1:设定线圈半径、传输距离、线圈匝数作为待优化参数;S2:以***输出功率、传输效率和***总谐波畸变率为目标函数,并基于步骤S1中的待优化参数和***中其它电路元件参数确定各个目标函数的表达式;S3:确定约束条件;S4:基于NSGA‑Ⅱ优化算法确定待优化参数的优化结果。该方法以线圈半径、传输距离、线圈匝数作为决策变量,以***传输效率、传输功率与总谐波畸变率为目标函数,采用NSGA‑II实现了***磁耦合机构几何参数的最优化,并验证了其应用在LCC‑S型MC‑WPT***中的可行性和有效性。

Description

LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法
技术领域
本发明涉及无线电能传输技术,具体涉及一种LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法。
背景技术
无线电能传输(Wireless PowerTransfer,WPT)技术是一种综合利用电力电子技术和现代控制理论并通过软介质来实现电能无线传输的技术,该技术已成为国内外研究热点。世界经济论坛(WEF)也连续两年将无线电能传输技术列为对世界影响最大、最有可能为全球面临的挑战提供答案的十大新兴技术之一。它解决了传统导线直接电气接触带来的各种问题,具有广泛的应用前景。该项技术能灵活方便、安全可靠地为用电设备供电,并且不会对自然环境释放有害污染或形成威胁。此外,该技术不会受到环境湿度、尘埃和化学腐蚀的影响,能够实现低维护甚至免维护条件下的可靠运行。
磁场耦合式无线电能传输(Magnetic-field Coupled Wireless PowerTransfer,MC-WPT)技术,以磁场作为电能传输介质,具有***电能传输效率高、可传输功率大、易实现等优点,该技术已广泛应用于消费电子、生物医学、电动汽车、智能家居等领域,如何通过各种技术进一步提供***性能是目前的研究热点。
然而现有技术中大多通过预先设定磁耦合机构结构参数,通过优化其它电子元件参数来提升***性能,而对于如何设置最佳的磁耦合机构参数却研究较少。
发明内容
有鉴于此,本发明以LCC-S型MC-WPT***为对象,提出一种磁耦合机构参数多目标优化方法,通过求解***传输效率、输出功率和总谐波畸变率(THD)关于线圈半径、传输距离、线圈匝数的关系式,构建表征***传输能力的约束条件,并建立***的非线性规划(NLP)模型。利用基于带精英策略的非支配排序遗传算法(NSGA-II)在预设范围内对线圈半径、传输距离、线圈匝数寻优,得出***输出功率、传输效率和THD三个目标函数的Pareto解集,最后根据实际需求目标,得到一组最优解,从而确保***性能的优化。
为了实现上述目的,本发明所采用的具体技术方案如下:
一种LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其关键在于按照以下步骤进行:
S1:设定线圈半径、传输距离、线圈匝数作为待优化参数;
S2:以***输出功率、传输效率和***总谐波畸变率为目标函数,并基于步骤S1中的待优化参数和***中其它电路元件参数确定各个目标函数的表达式;
S3:确定约束条件;
S4:基于NSGA-Ⅱ优化算法确定待优化参数的优化结果。
可选地,LCC-S型MC-WPT***包括电能发射端和电能接收端,所述电能发射端包括直流电源Edc或电网交流电经整流滤波后的直流电、高频逆变模块、LCC补偿网络和发射线圈L2,其中LCC补偿网络由电感L1、电容C1和电容C2构成,所述电能接收端包括接收线圈L3、补偿电容C3、整流滤波模块和负载电阻;所述发射线圈L2和所述接收线圈L3均采用单层多匝平面圆形线圈且二者同轴放置。
可选地,所述发射线圈L2和所述接收线圈L3结构采用相同设计。
可选地,步骤S3中确定的约束条件包括:
(1)额定参数的约束,要求电感电流和电容电压不超过额定上限值;
(2)品质因数的约束,要求电能发射端和电能接收端的品质因数处于预设范围内;
(3)待优化参数的约束,要求根据应用场景确定线圈半径、传输距离、线圈匝数各自的上下限;
(4)ZPA约束,要求***工作于全谐振状态;
(5)功率传输约束,要求传能系数SLCC的范围在(0,1)之间,其中:
Figure BDA0002359011010000031
其中Uout为负载输出电压有效值,Up为逆变输出电压基波分量有效值,Rs为电源等效内阻,Req为负载交流等效电阻。
可选地,步骤S3中确定的约束条件要求传能系数SLCC的范围在(0.7,1)之间。
可选地,步骤S4中先从***输出功率、传输效率和THD三个目标函数的Pareto解集中选择3组最优参数解为参考,然后再根据实际需求目标,确定最终参数。
可选地,步骤S2将待优化参数作为***互感的影响变量引入各个目标函数中,具体为:
S21:按照
Figure BDA0002359011010000032
计算发射端第i匝线圈和接收端第j匝线圈之间的互感值,其中:
ri=r1-(n1-i)(wp+sp)-wp/2,表示发射线圈中第i匝线圈的半径;wp为发射线圈的线径,sp为发射线圈的匝间间距;n1为发射线圈的匝数;r1为发射线圈最外圈的半径;
rj=r2-(n2-j)(ws+ss)-ws/2;表示接收线圈中第j匝线圈的半径;ws为接收线圈的线径,ss为接收线圈的匝间间距;n2为接收线圈的匝数;r2为接收线圈最外圈的半径;
d为传输距离,即发射线圈和接收线圈之间距离;
S22:按照
Figure BDA0002359011010000041
计算***互感。
本发明的有益效果:
本发明提出的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,该方法以线圈半径、传输距离、线圈匝数作为决策变量,以***传输效率、传输功率与总谐波畸变率为目标函数,采用NSGA-II实现了***磁耦合机构几何参数的最优化,并验证了其应用在LCC-S型MC-WPT***中的可行性和有效性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。
图1为LCC-S型MC-WPT***的电路原理图;
图2为平面圆形线圈的结构示意图;
图3为LCC-S型MC-WPT***简化电路模型图;
图4为图3的受控源等效电路;
图5为图3的反射阻抗等效电路;
图6为NSGA-Ⅱ的耦合机构参数优化流程图;
图7为算法的优化结果图;
图8(a)(b)(c)分别为算法优化结果在不同平面的投影效果图;
图9为仿真验证中逆变输出电压和电流仿真波形;
图10为仿真验证中线圈电流仿真波形;
图11为仿真验证中负载电压和电流仿真波形;
图12为实测实验中逆变输出电压和电流实验波形;
图13为实测实验中负载电压和电流实验波形。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
本实施例提供一种LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,如图1所示,LCC-S型MC-WPT***包括电能发射端和电能接收端,所谓LCC-S型结构,即发射端补偿网络为电感-电容-电容的形式,接收端为单电容串联补偿,该结构的MC-WPT***具有发射端恒流、负载端恒压输出特性,受到广泛应用。通过图1可以看出,电能发射端包括直流电源Edc或电网交流电经整流滤波后的直流电、高频逆变模块、LCC补偿网络和发射线圈L2,其中LCC补偿网络由电感L1、电容C1和电容C2构成,所述电能接收端包括接收线圈L3、补偿电容C3、整流滤波模块和负载电阻;整流滤波模块由D1-D4和Cf组成,直流电通过高频逆变电路将电能转换成高频交流电,经发射端补偿环节使电路工作于谐振状态下,能量通过高频电磁场在磁耦合***中交换,接收端经补偿网络匹配工作于同一谐振频率下,使得能量得以高效传输,最终经整流滤波成直流电为负载供电。
在具体实施时,平面式绕制的线圈构成的耦合机构具有耦合面积大、占用体积小及受水平偏移影响小等突出的优点,常应用于大功率无线供电的场合,在线圈尺寸被严格限制的应用场合需要根据实际需求采用双层甚至多层的平面线圈,无线电能传输***的磁耦合机构大部分采用单层圆形谐振线圈,如图2所示。
单匝线圈自感Ln可以由以下公式确定:
Figure BDA0002359011010000051
式中μ0为真空中磁导率,w为线圈线径,n为发射端和接收端线圈的序数。
两匝流线圈之间的互感Mij计算公式为:
Figure BDA0002359011010000061
其中:
Figure BDA0002359011010000062
式中ri表示发射线圈中第i匝线圈的半径;wp为发射线圈的线径,sp为发射线圈的匝间间距;n1为发射线圈的匝数;r1为发射线圈最外圈的半径;rj=r2-(n2-j)(ws+ss)-ws/2;表示接收线圈中第j匝线圈的半径;ws为接收线圈的线径,ss为接收线圈的匝间间距;n2为接收线圈的匝数;r2为接收线圈最外圈的半径;d为传输距离,即发射线圈和接收线圈之间距离;x为偏移距离。
为避免两个线圈轴心发生偏离从而导致传输效率下降的问题,本文将发射线圈与接收线圈同轴放置,故x=0,代入公式(2),化简得到:
Figure BDA0002359011010000063
因此,对于多匝线圈构成的磁耦合机构,其互感公式可化简为:
Figure BDA0002359011010000064
由此以来,本实施例中所述发射线圈L2和所述接收线圈L3均采用单层多匝平面圆形线圈且二者同轴放置。
基于前文描述可以看出,磁耦合机构的几何参数与接收线圈和发射线圈的电感和互感存在一定的数学关系。而***输出功率、传输效率和THD等性能主要由***电路参数决定,因此需要建立LCC-S型MC-WPT***性能关于电路参数的关系式,进一步建立***性能与磁耦合机构几何参数之间的关系,并给出相应的参数设计方法,得到***NLP模型,以便于对***进行优化。
本发明采用基波近似(Fundamental harmonic approximation,FHA)方法对电路***进行分析,可将图1所示的电路简化为图3所示电路,图中Rs为电源等效内阻,R1、R2和R3分别为L1、L2和L3的等效串联电阻(Equivalent series resistance,ESR),up为逆变输出电压基波分量,其有效值为
Figure BDA0002359011010000071
Req为交流等效电阻,且Req=RL·8/π2
由于***电路在高频工作情况下,电感的感抗和电容的容抗远大于其ESR,为了简化计算,以便于得到电抗元件之间的关系,可以忽略两个线圈的内阻、补偿电感的内阻和电源内阻。
图3可简化为如图4所示电路。图中接收端线圈的自感L3和补偿电容C3间发生串联谐振,因此可以等效为短路,故以下关系式成立:
ω2L3C3=1 (6)
式中ω为接收端谐振频率,令***工作频率与接收端谐振频率保持一致,进一步可得接收端电流为:
Figure BDA0002359011010000072
将式(7)代入接收端的受控源可得:
Figure BDA0002359011010000073
式中Rref为接收端反射阻抗,且Rref=ω2M2/Req,因此可以将图4所示电路进一步化简为如图5所示电路,推出其各级阻抗分别为:
Figure BDA0002359011010000081
因此接收端电路输入阻抗Z3可表示为:
Figure BDA0002359011010000082
为保证***工作于全谐振状态,输入阻抗虚部应为零,由式(10)可以推出:
Figure BDA0002359011010000083
将式(6)和(11)的关系代入式(10)中,可以将输入阻抗化简为:
Figure BDA0002359011010000084
式(11)所示的等式关系即为***工作于ZPA的等式约束条件,若***频率一定,则可根据式(6)和式(11)确定***补偿元件参数与线圈电感之间的关系式。若输入电压和负载电阻一定,可根据式(12)给出***输入功率关于电路参数的表达式,以便于求解***输出功率和传输效率。
由于高阶***及其磁耦合机构涉及的参数和性能指标较多,计算公式复杂,现有参数设计方法很难得到全局最优解,因此考虑采用一种智能优化算法对***磁耦合机构参数进行全局优化。智能算法有很多,本文选择NSGA-II,其算法操作简单,全局搜索能力强且搜索效率高,具备处理多目标优化复杂问题的能力。
在对***优化之前,首先需要建立***NLP模型。本发明主要考虑***输出功率、传输效率和***总谐波畸变率三个目标函数,将磁耦合机构几何参数与***参数相结合,对***参数进行优化,进一步提高***性能。在优化中需要考虑发射端和接收端的线圈内阻及补偿电感的内阻,如图3所示等效电路,输入端阻抗Zp表达式为:
Figure BDA0002359011010000091
***的输入功率为:
Figure BDA0002359011010000092
***功率损耗为:
Ploss=I1 2R1+I2 2R2+I3 2R3 (15)
其中,
Figure BDA0002359011010000093
m=1、2、3,QL为电感品质因数。由式(14)和(15)可以得到***的输出功率为:
Figure BDA0002359011010000094
进一步得到***效率为:
Figure BDA0002359011010000095
其中
Figure BDA0002359011010000096
由于轻载时LCC补偿网络受高次谐波的影响,输入电流容易发生畸变,因此本文将输入电流的总谐波畸变率(THD)作为***性能指标之一,其计算公式如式(18)所示。对于***而言,THD值越小,电流的品质越好,越接近于基波,因此在优化中THD应取最小值。
Figure BDA0002359011010000097
考虑***的约束条件如下:
(1)额定参数值约束。***电路中的电感电流和电容电压必须比额定值小,用下标max表示额定值,也即电感电流与电容电压的上限值。
(2)品质因数约束。***的品质因数太小会增大***的输入谐波含量,所以发射端、接收端的品质因数Q0、QL必须大于Ql,Ql是提高***谐振品质的最小容限。但随着品质因数增加到过大,***对参数变化更敏感,会导致电路谐振更困难,所以Q值也必须有上限Qu
(3)参数变量的约束。实际线圈尺寸半径、匝数、传输距离在不同的应用环中有局限性,实际变量有自己的上下限,输出功率也与应用场合有关。通常情况下,电感电容的值都不能是负值,因此计算过程中也应满足以上条件。
(4)ZPA约束。为了使***工作于全谐振状态,***电路参数之间需要满足一定的关系,式(11)即为***满足ZPA的等式约束条件。
(5)功率传输约束。为了获得更合适的功率,定义SLCC为表征***传输功率能力的系数,其表达式为:
Figure BDA0002359011010000101
根据电路理论可以得到:
Figure BDA0002359011010000102
SLCC的范围在(0,1)之间,其值越大,说明***功率传输能力越强。根据经验,本文保证其值在(0.7,1)范围内。
利用等式约束条件消除非独立变量,不仅减少约束条件个数,也简化了变量个数。令独立的待优化变量为线圈半径r、传输距离d、线圈匝数n,本实施例参数优化设计的目标函数包括***的最大输出功率Pout、最大传输效率η及最小THD,f1(X)=-Pout,f2(X)=-η,f2(X)=THD。建立***的非线性规划(NLP)模型:
Figure BDA0002359011010000111
其中Q0是发射端品质因数,
Figure BDA0002359011010000112
QL是负载品质因数,
Figure BDA0002359011010000113
NSGA-II优化算法通过引入快速非支配排序策略、精英策略和拥挤距离策略,减少了计算复杂性。将此算法应用于本实施例中磁耦合机构参数优化,优化算法流程图如图6所示。
若给定Edc、L1、RL、wp、ws、sp和ss,令L1=12μH,r1=r2=r、n1=n2=n,wp=ws=1.35mm,sp=ss=0.1mm。采用NSGA-II算法对实施例提供的LCC型WPT***磁耦合机构进行优化,算法优化结果如图7所示,优化解集构成一个三维的Pareto曲面,其在不同平面的投影如图8(a)、图8(b)、图8(c)所示。
从优化所得到的Pareto前沿中选取三组最优参数,如表1所示,可以看出优化结果不唯一。虽然优化结果之间相互不影响,但是优化结果不可能同时保证三个目标函数同时取最小值。对于大部分优化结果而言,只能保证其中两个目标函数最优,而另外一个目标函数相较于其他解较差。因此,在工程应用中,可根据实际耦合机构的尺寸需求,以及不同的功率、效率和THD的需求,折中选择不同的优化参数。
表1从Pareto前沿选取的优化结果
Figure BDA0002359011010000121
综上所述,本发明提供的一种LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,包括步骤:
S1:设定线圈半径、传输距离、线圈匝数作为待优化参数;
S2:以***输出功率、传输效率和***总谐波畸变率为目标函数,并基于步骤S1中的待优化参数和***中其它电路元件参数确定各个目标函数的表达式;
S3:确定约束条件;
S4:基于NSGA-Ⅱ优化算法确定待优化参数的优化结果。
按照上述步骤执行后,可以得到耦合机构参数的最优设定值,从而有效提升***性能。为了进一步验证上述方法的正确性和有效性,本实施例中还以70W的输出功率、95%的传输效率和15%的THD为目标,以工作频率85kHz、负载电阻为5Ω、输入电压为20V为例,从优化结果中选取了一组满足条件的最优解,半径r1=r2=8.727,传输距离d=3.769,线圈匝数n=21.64,得到的输出功率Pout=70.67W,传输效率为95.741%,THD为13.986%。基于图1所示电路和相应参数设计与优化方法,计算出***其它参数如表2所示。在MATLAB/Simulink仿真平台下建立***仿真模型,将表2所示参数带入仿真模型中对***进行仿真。如图9所示为逆变输出电压和电流波形,可见电压和电流同相位,但是由于THD较大,导致电流波形发生了畸变,线圈电流始终保持正弦,如图10所示,因此不影响电能传输。负载端电压和电流仿真波形如图11所示,可以计算出负载拾取到70.67W功率,可见经过优化后的***能满足所需求的性能指标。
表2***主要参数
Figure BDA0002359011010000131
进一步地,本实施例还基于图1所示的MC-WPT***电路拓扑和算法优化结果以及表2所示参数,搭建了一套实测实验装置,耦合机构的线圈采用利兹线绕制,补偿电感采用利兹线和铁粉芯磁芯绕制而成,所用的电容均为高频无感电容,逆变器开关管使用型号为STP30NF20的MOSFET,整流桥使用型号为HFA08TB60的二极管。
实测实验中,逆变输出电压和电流波形如图12所示,电压电流的波形同相位,***工作于ZPA状态。负载RL两端的电压和电流波形如图13所示,可以测出输出功率为71.83W,输入功率为78.76W,传输效率为91.2%。由于实验装置存在实际损耗,***实际传输功率及效率与仿真值略有不同,但是实验结果与仿真结果基本一致。
综上所述,本发明针对LCC-S型MC-WPT***,提出的一种磁耦合机构参数多目标优化方法,实现了***磁耦合机构几何参数的最优化。给出了磁耦合机构原接收端线圈自感和互感关于其几何参数的表达式,推导了满足***全谐振的等式约束条件,以线圈半径、传输距离、线圈匝数作为决策变量,以***传输效率、传输功率与总谐波畸变率为目标函数,采用NSGA-II对***磁耦合机构参数进行了优化,得到了三个目标函数的Pareto前沿。根据目标需求,选取了一组Pareto解集中的最优解,并计算出***其它参数,建立了***仿真模型,搭建了一套输出功率71.83W、传输效率91.2%的实验装置,仿真和实验一致性较好,验证了本文所提出的参数设计与优化算法的可行性和有效性。
最后需要说明的是,以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (7)

1.一种LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于按照以下步骤进行:
S1:设定线圈半径、传输距离、线圈匝数作为待优化参数;
S2:以***输出功率、传输效率和***总谐波畸变率为目标函数,并基于步骤S1中的待优化参数和***中其它电路元件参数确定各个目标函数的表达式;
S3:确定约束条件;
S4:基于NSGA-Ⅱ优化算法确定待优化参数的优化结果。
2.根据权利要求1所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于:LCC-S型MC-WPT***包括电能发射端和电能接收端,所述电能发射端包括直流电源Edc或电网交流电经整流滤波后的直流电、高频逆变模块、LCC补偿网络和发射线圈L2,其中LCC补偿网络由电感L1、电容C1和电容C2构成,所述电能接收端包括接收线圈L3、补偿电容C3、整流滤波模块和负载电阻;所述发射线圈L2和所述接收线圈L3均采用单层多匝平面圆形线圈且二者同轴放置。
3.根据权利要求2所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于:所述发射线圈L2和所述接收线圈L3结构采用相同设计。
4.根据权利要求2所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于,步骤S3中确定的约束条件包括:
(1)额定参数的约束,要求电感电流和电容电压不超过额定上限值;
(2)品质因数的约束,要求电能发射端和电能接收端的品质因数处于预设范围内;
(3)待优化参数的约束,要求根据应用场景确定线圈半径、传输距离、线圈匝数各自的上下限;
(4)ZPA约束,要求***工作于全谐振状态;
(5)功率传输约束,要求传能系数SLCC的范围在(0,1)之间,其中:
Figure FDA0002359009000000021
其中Uout为负载输出电压有效值,Up为逆变输出电压基波分量有效值,Rs为电源等效内阻,Req为负载交流等效电阻。
5.根据权利要求4所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于:步骤S3中确定的约束条件要求传能系数SLCC的范围在(0.7,1)之间。
6.根据权利要求1-5任一所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于,步骤S4中先从***输出功率、传输效率和THD三个目标函数的Pareto解集中选择3组最优参数解为参考,然后再根据实际需求目标,确定最终参数。
7.根据权利要求1-5任一所述的LCC-S型MC-WPT***的磁耦合机构参数多目标优化方法,其特征在于,步骤S2将待优化参数作为***互感的影响变量引入各个目标函数中,具体为:
S21:按照
Figure FDA0002359009000000022
计算发射端第i匝线圈和接收端第j匝线圈之间的互感值,其中:
ri=r1-(n1-i)(wp+sp)-wp/2,表示发射线圈中第i匝线圈的半径;wp为发射线圈的线径,sp为发射线圈的匝间间距;n1为发射线圈的匝数;r1为发射线圈最外圈的半径;
rj=r2-(n2-j)(ws+ss)-ws/2;表示接收线圈中第j匝线圈的半径;ws为接收线圈的线径,ss为接收线圈的匝间间距;n2为接收线圈的匝数;r2为接收线圈最外圈的半径;
d为传输距离,即发射线圈和接收线圈之间距离;
S22:按照
Figure FDA0002359009000000031
计算***互感。
CN202010016337.7A 2020-01-08 2020-01-08 Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法 Active CN111106676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010016337.7A CN111106676B (zh) 2020-01-08 2020-01-08 Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010016337.7A CN111106676B (zh) 2020-01-08 2020-01-08 Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法

Publications (2)

Publication Number Publication Date
CN111106676A true CN111106676A (zh) 2020-05-05
CN111106676B CN111106676B (zh) 2021-05-07

Family

ID=70426901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010016337.7A Active CN111106676B (zh) 2020-01-08 2020-01-08 Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法

Country Status (1)

Country Link
CN (1) CN111106676B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931299A (zh) * 2020-06-02 2020-11-13 西安理工大学 磁耦合谐振无线输电应用中平面螺旋线圈的优化设计方法
CN112231988A (zh) * 2020-12-14 2021-01-15 中国人民解放军海军工程大学 Ipt***抗偏移参数优化方法、***及计算机设备
CN112290695A (zh) * 2020-09-14 2021-01-29 德清阿尔法创新研究院 一种基于磁谐振的mimo磁安全充电方法
CN112926239A (zh) * 2021-02-01 2021-06-08 西安交通大学 一种基于lcc-s拓扑的无线电能传输***参数设计方法
CN113691029A (zh) * 2021-07-29 2021-11-23 广西电网有限责任公司电力科学研究院 基于线圈位置优化排布的wpt***效率提升方法
CN113691028A (zh) * 2021-07-29 2021-11-23 广西电网有限责任公司电力科学研究院 一种基于线圈位置优化排布的wpt效率提升***
CN115425768A (zh) * 2022-07-21 2022-12-02 广西电网有限责任公司电力科学研究院 基于PyTorch的LCC-S型WPT***负载与自互感识别方法及***
CN115864681A (zh) * 2023-02-22 2023-03-28 广东电网有限责任公司湛江供电局 一种供电***的输出功率控制方法、***、设备和介质
CN116799928A (zh) * 2023-08-22 2023-09-22 中国人民解放军海军工程大学 一种s-s型无线供电***的电容参数补偿方法
CN116845893A (zh) * 2023-07-13 2023-10-03 浙江大学 基于nsga-ii算法的弱电网lcl型并网逆变滤波器参数优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372500A1 (en) * 2013-02-13 2015-12-24 North Carolina State University Systems and methods for wireless power transfer
CN105914831A (zh) * 2016-05-20 2016-08-31 西安交通大学 基于ss拓扑的磁耦合谐振无线电能传输***参数设计方法
CN106655529A (zh) * 2016-11-30 2017-05-10 重庆大学 实现负载软切换的ecpt***及其参数设计方法
CN108551211A (zh) * 2018-04-18 2018-09-18 西安交通大学 一种移动式无线电能传输***效率最优的闭环控制方法
CN109787367A (zh) * 2019-03-08 2019-05-21 重庆大学 基于层叠式耦合机构的ec-wpt***及其参数优化方法
CN109831013A (zh) * 2019-01-11 2019-05-31 江苏大学 一种恒流-恒压副边自动切换电路及谐振式无线电能传输***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372500A1 (en) * 2013-02-13 2015-12-24 North Carolina State University Systems and methods for wireless power transfer
CN105914831A (zh) * 2016-05-20 2016-08-31 西安交通大学 基于ss拓扑的磁耦合谐振无线电能传输***参数设计方法
CN106655529A (zh) * 2016-11-30 2017-05-10 重庆大学 实现负载软切换的ecpt***及其参数设计方法
CN108551211A (zh) * 2018-04-18 2018-09-18 西安交通大学 一种移动式无线电能传输***效率最优的闭环控制方法
CN109831013A (zh) * 2019-01-11 2019-05-31 江苏大学 一种恒流-恒压副边自动切换电路及谐振式无线电能传输***
CN109787367A (zh) * 2019-03-08 2019-05-21 重庆大学 基于层叠式耦合机构的ec-wpt***及其参数优化方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931299A (zh) * 2020-06-02 2020-11-13 西安理工大学 磁耦合谐振无线输电应用中平面螺旋线圈的优化设计方法
CN111931299B (zh) * 2020-06-02 2024-04-16 西安理工大学 磁耦合谐振无线输电应用中平面螺旋线圈的优化设计方法
CN112290695B (zh) * 2020-09-14 2024-01-16 德清阿尔法创新研究院 一种基于磁谐振的mimo磁安全充电方法
CN112290695A (zh) * 2020-09-14 2021-01-29 德清阿尔法创新研究院 一种基于磁谐振的mimo磁安全充电方法
CN112231988A (zh) * 2020-12-14 2021-01-15 中国人民解放军海军工程大学 Ipt***抗偏移参数优化方法、***及计算机设备
CN112926239A (zh) * 2021-02-01 2021-06-08 西安交通大学 一种基于lcc-s拓扑的无线电能传输***参数设计方法
CN112926239B (zh) * 2021-02-01 2022-10-25 西安交通大学 一种基于lcc-s拓扑的无线电能传输***参数设计方法
CN113691029A (zh) * 2021-07-29 2021-11-23 广西电网有限责任公司电力科学研究院 基于线圈位置优化排布的wpt***效率提升方法
CN113691028A (zh) * 2021-07-29 2021-11-23 广西电网有限责任公司电力科学研究院 一种基于线圈位置优化排布的wpt效率提升***
CN115425768A (zh) * 2022-07-21 2022-12-02 广西电网有限责任公司电力科学研究院 基于PyTorch的LCC-S型WPT***负载与自互感识别方法及***
CN115425768B (zh) * 2022-07-21 2023-04-07 广西电网有限责任公司电力科学研究院 基于PyTorch的LCC-S型WPT***负载与自互感识别方法及***
CN115864681A (zh) * 2023-02-22 2023-03-28 广东电网有限责任公司湛江供电局 一种供电***的输出功率控制方法、***、设备和介质
CN115864681B (zh) * 2023-02-22 2023-05-05 广东电网有限责任公司湛江供电局 一种供电***的输出功率控制方法、***、设备和介质
CN116845893A (zh) * 2023-07-13 2023-10-03 浙江大学 基于nsga-ii算法的弱电网lcl型并网逆变滤波器参数优化方法
CN116845893B (zh) * 2023-07-13 2024-05-17 浙江大学 基于nsga-ii算法的弱电网lcl型并网逆变滤波器参数优化方法
CN116799928B (zh) * 2023-08-22 2023-12-19 中国人民解放军海军工程大学 一种s-s型无线供电***的电容参数补偿方法
CN116799928A (zh) * 2023-08-22 2023-09-22 中国人民解放军海军工程大学 一种s-s型无线供电***的电容参数补偿方法

Also Published As

Publication number Publication date
CN111106676B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN111106676B (zh) Lcc-s型mc-wpt***的磁耦合机构参数多目标优化方法
WO2021008203A1 (zh) 一种无线电能传输***在最大效率跟踪下的阻抗匹配网络优化方法
CN109130903B (zh) 一种双侧lccl-t拓扑的低压大功率无线充电***
CN109474081A (zh) 基于无线电能传输***恒流-恒压输出特性的充电方法
CN111898289B (zh) 一种远距离无线充电lcc-s拓扑参数设计方法
Wu et al. Design of symmetric voltage cancellation control for LCL converters in inductive power transfer systems
CN113659684A (zh) 副边cl/s恒流恒压ipt充电***及其参数设计方法
CN107276390A (zh) 双lcc谐振补偿无线充电***的电磁干扰预测电路及方法
Wu et al. Multiobjective parameter optimization of a four-plate capacitive power transfer system
CN107526899A (zh) 基于遗传算法的磁耦合wpt***负载与互感识别方法
CN108322050B (zh) 一种适用于谐振网络的拓扑优化与元件参数优化方法
CN109904937A (zh) 一种无线电能传输***平面折角型线圈设计方法
CN216134292U (zh) 副边cl/s恒流恒压ipt充电***
Shen et al. Research on optimization of compensation topology parameters for a wireless power transmission system with wide coupling coefficient fluctuation
CN117010315B (zh) 一种无线电能传输***的lcc-s拓扑参数设计方法
CN113691028A (zh) 一种基于线圈位置优化排布的wpt效率提升***
Yang et al. Analysis and design of a high‐efficiency three‐coil WPT system with constant current output
CN209860675U (zh) 一种磁耦合谐振式无线输电***
Yang et al. A four‐coil structure wireless power transfer system with constant current and constant voltage charging: analysis, design, and experiment
CN110138097A (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电***
CN114189060B (zh) 多中继wpt***效率、功率计算和双中继wpt***的优化方法
Zhang et al. Maximum efficiency point tracking control method for series–series compensated wireless power transfer system
CN115714542A (zh) 一种用于无线充电***的双边lcc补偿网络参数调谐方法
CN115051483A (zh) 一种两轮电动车无线充电功率的控制方法
CN109921523B (zh) 基于ss拓扑的磁谐振无线能量传输***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant