CN111044471A - 一种基于损伤特征参数提取算法的裂纹损伤监测方法 - Google Patents

一种基于损伤特征参数提取算法的裂纹损伤监测方法 Download PDF

Info

Publication number
CN111044471A
CN111044471A CN201911422582.1A CN201911422582A CN111044471A CN 111044471 A CN111044471 A CN 111044471A CN 201911422582 A CN201911422582 A CN 201911422582A CN 111044471 A CN111044471 A CN 111044471A
Authority
CN
China
Prior art keywords
spectrum
spectral
fiber grating
solving
center wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911422582.1A
Other languages
English (en)
Inventor
金博
张峰
张卫方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC Information Science Research Institute
Original Assignee
CETC Information Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC Information Science Research Institute filed Critical CETC Information Science Research Institute
Priority to CN201911422582.1A priority Critical patent/CN111044471A/zh
Publication of CN111044471A publication Critical patent/CN111044471A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于损伤特征参数提取算法的裂纹损伤监测方法,包括获取光纤光栅传感器的光谱,对光谱进行Hilbert变换得到主峰数目,并针对每一传感器对应的反射光谱峰值;通过对光纤光栅光谱的求取质心来近似求解光纤光栅光谱的中心波长;将采集到的光谱区域依据光谱能量一半的位置作为光谱边界进行划分,提取光谱宽度;在所确认的光谱边界范围内,提取该区域对应的有效光纤光栅光谱数据信息。本发明相对于现有技术其它方法,不容易受到设定阈值和求取斜率的影响,利用求取质心的办法近似求解光纤光栅光谱的中心波长,进一步校正了中心波长的偏差。

Description

一种基于损伤特征参数提取算法的裂纹损伤监测方法
技术领域
本发明涉及材料结构健康监测领域,具体的,涉及一种基于损伤特征参数提取算法的裂纹损伤监测方法。
背景技术
随着材料工艺的发展,各种材料构建的配件的自身性能得到大幅度的提升,由配件制成的成品的服役期也随着提高,这就对各种配件的可靠性提出了更高的要求。
光纤光栅传感器能够用于各种结构配件的疲劳裂纹损伤监测,随着外界循环加载次数的增加,结构薄弱区域即结构孔边区域成为裂纹损伤易萌生区域,当裂纹扩展到接近光纤光栅传感器位置,光栅能够敏感感知由于结构损伤而造成非均匀应变,从而导致沿着FBG传感器栅区的周期由均匀分布变为啁啾分布,此时光纤光栅传感器无法保持其本身形态,而出现反射光谱形变的现象。
光谱形变信号可提取出与裂纹损伤相关的特征参数,Bao等人采用小波包分析方法提取光谱响应信号等奇异值作为监测损伤萌生与扩展过程的特征参数,裂纹起始因子(CIF)和裂纹扩展因子(CPF),然而相关的此信号处理方法没有实际的物理含义,且容易收到杂波信号的干扰。
由于光纤光栅传感器一通道刻录多个栅点,因此为了确定每个传感器的位置,需要采用一种有效的峰值探测算法,确定各传感器主峰的位置,常用的峰值探测方法有幅值法,高斯拟合法和最小二乘法等,这些方法均是求解问题极大值的思路,因此容易受到设定阈值以及求取斜率的影响。
因此,如何精确的求解主峰位置,更好的划分有效反射光谱边界,成为现有技术亟需解决的技术问题。
发明内容
本发明的目的在于提出一种基于损伤特征参数提取算法的裂纹损伤监测方法,能够更好的确定光谱主峰的位置,并有效的提取光纤光栅光谱数据信息。
为达此目的,本发明采用以下技术方案:
一种基于损伤特征参数提取算法的裂纹损伤监测方法,其特征在于,包括如下步骤:
Hilbert变换步骤S110:获取放置在材料结构损伤监测处的光纤光栅传感器的光谱,对光谱进行Hilbert变换得到该波段内包含的主峰数目,并针对每一传感器对应的反射光谱峰值波长进行分析获得最大能量或者强度,即峰值;
有效反射光谱边界划分步骤S130:将采集到的光谱区域依据光谱能量一半的位置作为光谱边界进行划分,提取光谱宽度;
数据信息提取步骤S140:在所确认的光谱边界范围内,提取该区域对应的有效光纤光栅光谱数据信息。
可选的,在步骤S110和S130之间,还具有中心波长求解步骤S120,通过对光纤光栅光谱的求取质心来近似求解光纤光栅光谱的中心波长,将波长作为质点系的位失,将反射光谱的光功率作为质心系中的质量,并对每个光谱数据分配相应的加权系数,做所有数据的加权平均值,所述加权平均值反映整个反射谱上的光功率分布情况,取该加权平均值的结果作为光纤光栅反射谱的中心波长。
可选的,在进行Hilbert变换前,首先将所获得的光纤光栅传感器的光谱进行去噪处理。
本发明采用Hilbert变换法求取主峰位置,相对于现有技术其它方法,不容易受到设定阈值和求取斜率的影响,利用求取质心的办法近似求解光纤光栅光谱的中心波长,进一步校正了中心波长的偏差。
附图说明
图1是根据本发明的基于损伤特征参数提取算法的裂纹损伤监测方法的流程图;
图2是根据本发明具体实施例的光纤光栅传感器所获得的光谱信号;
图3是根据本发明具体实施例的光谱信号进行Hilbert变换后的主峰示意图;
图4是根据本发明具体实施例的有效反射光谱边界划分示意图;
图5是根据本发明具体实施例与现有技术中各种方法结果方差分析对比示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
本发明在于,获取放置在材料结构损伤监测处的光纤光栅传感器的光谱,利用Hilbert变换求零点数目的方法确定主峰位置,并在此基础上求取该零点对应位置处的光谱峰值,将采集得到的光谱区域划分能量边界(通常选取光谱能量一半的位置作为光谱的边界),从而进一步提取光谱宽度。
具体的,参见图1,示出了根据本发明的基于损伤特征参数提取算法的裂纹损伤监测方法的流程图,包括如下步骤:
Hilbert变换步骤S110:获取放置在材料结构损伤监测处的光纤光栅传感器的光谱,得到该波段内包含的主峰数目,并针对每一传感器对应的反射光谱峰值波长进行分析获得最大能量或者强度,即峰值;
进一步的,在本步骤中,在进行Hilbert变换前,首先将所获得的光纤光栅传感器的光谱进行去噪处理。
参见图2,示出了光纤光栅传感器所获得的光谱信号,而图3是光谱信号进行Hilbert变换后的主峰示意图。
在进行Hilbert变换后,光纤光谱的中心波长存在一定的偏差,因此可以利用求取质心的办法近似求解光纤光栅光谱的中心波长,即具有:
中心波长求解步骤S120:通过对光纤光栅光谱的求取质心来近似求解光纤光栅光谱的中心波长,将波长作为质点系的位失,将反射光谱的光功率作为质心系中的质量,并对每个光谱数据分配相应的加权系数,做所有数据的加权平均值,所述加权平均值反映整个反射谱上的光功率分布情况,取该加权平均值的结果作为光纤光栅反射谱的中心波长。
有效反射光谱边界划分步骤S130:将采集到的光谱区域依据光谱能量一半的位置作为光谱边界进行划分,提取光谱宽度;
参见图4,示出了有效反射光谱边界划分示意图。
数据信息提取步骤S140:在所确认的光谱边界范围内,提取该区域对应的有效光纤光栅光谱数据信息。
实施例:
在本实施例中,采用现有技术中的峰值位置直接提取法、高斯拟合法、多项式拟合法、三次样条拟合法、质心提取法等方式提取光纤光栅光谱的中心波长,而本发明对应附图5中的综合的提取方法明显优于其它方法,本发明将试验采集得到的波长数据x和反射强度数据f(x),拟合高斯曲线函数p(x),通过对部分实测数据的分析,得出随裂纹长度增长光纤光栅光谱主峰中心波长的变化量,并在此基础上与实测结果做对比分析得出其方法的有效性。
本发明通过在传感器解调信号分析基础上,利用本发明的方法可提取出与裂纹损伤有关的特征参数,用于建立裂纹损伤与传感器信号端对端的关联关系,用于监测裂纹损伤的扩展,例如:电力管道的健康监测、桥梁结构的健康监测、飞机结构的健康监测等,而是本试验采用的光纤光栅传感器具有抗干扰、耐腐蚀性的特点可以用于埋入结构表面或复合材料夹层中,为工程的实际应用提供一种新的监测手段。
显然,本领域技术人员应该明白,上述的本发明的各单元或各步骤可以用通用的计算装置来实现,它们可以集中在单个计算装置上,可选地,他们可以用计算机装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件的结合。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定保护范围。

Claims (3)

1.一种基于损伤特征参数提取算法的裂纹损伤监测方法,其特征在于,包括如下步骤:
Hilbert变换步骤S110:获取放置在材料结构损伤监测处的光纤光栅传感器的光谱,对光谱进行Hilbert变换得到该波段内包含的主峰数目,并针对每一传感器对应的反射光谱峰值波长进行分析获得最大能量或者强度;
有效反射光谱边界划分步骤S130:将采集到的光谱区域依据光谱能量一半的位置作为光谱边界进行划分,提取光谱宽度;
数据信息提取步骤S140:在所确认的光谱边界范围内,提取该区域对应的有效光纤光栅光谱数据信息。
2.根据权利要求1所述的裂纹损伤监测方法,其特征在于:
在步骤S110和S130之间,还具有中心波长求解步骤S120,通过对光纤光栅光谱的求取质心来近似求解光纤光栅光谱的中心波长,将波长作为质点系的位失,将反射光谱的光功率作为质心系中的质量,并对每个光谱数据分配相应的加权系数,做所有数据的加权平均值,所述加权平均值反映整个反射谱上的光功率分布情况,取该加权平均值的结果作为光纤光栅反射谱的中心波长。
3.根据权利要求2所述的裂纹损伤监测方法,其特征在于:
在进行Hilbert变换前,首先将所获得的光纤光栅传感器的光谱进行去噪处理。
CN201911422582.1A 2019-12-31 2019-12-31 一种基于损伤特征参数提取算法的裂纹损伤监测方法 Pending CN111044471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911422582.1A CN111044471A (zh) 2019-12-31 2019-12-31 一种基于损伤特征参数提取算法的裂纹损伤监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911422582.1A CN111044471A (zh) 2019-12-31 2019-12-31 一种基于损伤特征参数提取算法的裂纹损伤监测方法

Publications (1)

Publication Number Publication Date
CN111044471A true CN111044471A (zh) 2020-04-21

Family

ID=70243305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911422582.1A Pending CN111044471A (zh) 2019-12-31 2019-12-31 一种基于损伤特征参数提取算法的裂纹损伤监测方法

Country Status (1)

Country Link
CN (1) CN111044471A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554613A (zh) * 2021-07-21 2021-10-26 中国电子科技集团公司信息科学研究院 一种基于分形理论的图像处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607699A (zh) * 2011-12-18 2012-07-25 西北工业大学 基于msp430的手持式光谱分析仪
CN202420675U (zh) * 2011-12-18 2012-09-05 西北工业大学 基于msp430的手持式光谱分析仪
CN104634460A (zh) * 2015-03-04 2015-05-20 重庆邮电大学 一种分布式fbg传感网络多峰自适应精确寻峰方法
CN108781279A (zh) * 2016-01-26 2018-11-09 巴科股份有限公司 激光-荧光体投影仪中的色彩原和白点的控制
CN109884080A (zh) * 2019-03-06 2019-06-14 北京航空航天大学 基于自适应多峰检测算法的fbg中心波长寻峰方法
CN110095470A (zh) * 2019-04-15 2019-08-06 北京航空航天大学 一种基于光纤光栅传感器的裂纹损伤定量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607699A (zh) * 2011-12-18 2012-07-25 西北工业大学 基于msp430的手持式光谱分析仪
CN202420675U (zh) * 2011-12-18 2012-09-05 西北工业大学 基于msp430的手持式光谱分析仪
CN104634460A (zh) * 2015-03-04 2015-05-20 重庆邮电大学 一种分布式fbg传感网络多峰自适应精确寻峰方法
CN108781279A (zh) * 2016-01-26 2018-11-09 巴科股份有限公司 激光-荧光体投影仪中的色彩原和白点的控制
CN109884080A (zh) * 2019-03-06 2019-06-14 北京航空航天大学 基于自适应多峰检测算法的fbg中心波长寻峰方法
CN110095470A (zh) * 2019-04-15 2019-08-06 北京航空航天大学 一种基于光纤光栅传感器的裂纹损伤定量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
胡颖等: "基于F-P滤波器的光纤光栅解调中寻峰算法分析", 《光通信技术》 *
蔡能宏等: "基于可调谐F-P滤波器的光纤光栅传感解调***寻峰算法对比分析", 《仪表技术与传感器》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554613A (zh) * 2021-07-21 2021-10-26 中国电子科技集团公司信息科学研究院 一种基于分形理论的图像处理方法及装置
CN113554613B (zh) * 2021-07-21 2024-03-01 中国电子科技集团公司信息科学研究院 一种基于分形理论的图像处理方法及装置

Similar Documents

Publication Publication Date Title
CN104333492A (zh) 一种评估通信网络结构合理性的方法及装置
CN111044471A (zh) 一种基于损伤特征参数提取算法的裂纹损伤监测方法
CN110119397B (zh) 一种同时实现数据异常检测及数据压缩的深度学习方法
WO2018003465A1 (en) Signal processing method and system based on time-of-flight mass spectrometry and eletronic apparatus
CN108225385A (zh) 一种重叠fbg传感信号峰值定位方法
CN110350993A (zh) 一种大数据场景下基于联网监测的黑广播自动发现方法
CN115248292A (zh) 一种变压器故障分析诊断方法及***
CN105116056B (zh) 基于fbg传感***和二阶统计量的声发射定位***及方法
CN102932077B (zh) 一种频谱占用度的测量方法
US20110154172A1 (en) Apparatus and method for assessing image quality in real-time
CN110609088A (zh) 一种支柱绝缘子故障识别方法及装置
CN110824310A (zh) 局部放电类型判断方法及装置
KR101555046B1 (ko) 태양 전파 폭발 검출 방법
CN114114400B (zh) 微地震事件有效信号拾取方法
CN115900958A (zh) 一种基于热红外高光谱遥感的地热区域判定***及方法
CN108270495B (zh) 一种背景噪声的提取方法及提取***
CN117269660A (zh) 基于变异系数差分算法的故障电弧检测方法及***
KR101932286B1 (ko) 풍력 발전을 고려한 순간전압강하 평가 방법 및 장치
CN113433850B (zh) 一种fpga异态逻辑修复方法
CN113255137B (zh) 目标对象应变数据的处理方法、装置及存储介质
KR101608155B1 (ko) 임계치 파형 작성 장치
CN108303196B (zh) 全同光纤光栅数字化解调及区域温度监测方法及其***
Fan et al. Research on partial discharge identification of power transformer based on chaotic characteristics extracted by GP algorithm
CN111866893B (zh) 小区的容量优化处理方法及装置
Xu et al. Load spectrum compilation based on nonparametric statistical extrapolation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421