CN111020045B - Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method - Google Patents

Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method Download PDF

Info

Publication number
CN111020045B
CN111020045B CN202010036127.4A CN202010036127A CN111020045B CN 111020045 B CN111020045 B CN 111020045B CN 202010036127 A CN202010036127 A CN 202010036127A CN 111020045 B CN111020045 B CN 111020045B
Authority
CN
China
Prior art keywords
primer
bacillus cereus
genome
reaction
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010036127.4A
Other languages
Chinese (zh)
Other versions
CN111020045A (en
Inventor
刘伟
李园园
李雪玲
贾犇
韦朝春
陆长德
李亦学
曹永梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Wangwang Food Group Co ltd
SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE
Original Assignee
Shanghai Wangwang Food Group Co ltd
SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Wangwang Food Group Co ltd, SHANGHAI INDUSTRIAL TECHNOLOGY INSTITUTE filed Critical Shanghai Wangwang Food Group Co ltd
Publication of CN111020045A publication Critical patent/CN111020045A/en
Application granted granted Critical
Publication of CN111020045B publication Critical patent/CN111020045B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a rapid constant-temperature detection method for bacillus cereus, a primer group and application. The method comprises the following steps: extracting genome DNA from a sample to be detected; carrying out constant-temperature amplification reaction under an enzyme reaction system by taking the genome DNA as a template and taking a primer group capable of amplifying a specific sequence of the bacillus cereus as a primer; and determining whether the bacillus cereus exists in the sample to be detected by judging whether the reaction result is positive or not. The detection method has the advantages of high sensitivity and high specificity, short detection time, simple result judgment, convenient operation, low cost and wide application prospect.

Description

Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
The application is filed on 2016, 8, 30, and has the application number of 201610780460.X and the name of the invention: the divisional application of the Chinese patent application of 'a method, a primer and a kit for rapidly detecting bacillus cereus at constant temperature'; the parent application claims the priority of the Chinese patent application with the application date of 2015, 9/2, the application number of 201510556917.4 and the name of 'method, primer and kit for rapid isothermal detection of cronobacter sakazakii'.
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a method, primers and a kit for rapidly detecting bacillus cereus at constant temperature.
Background
Bacillus cereus (Bacillus cereus) is widely distributed in nature and is a common food-borne pathogenic bacterium. Clinically, food poisoning caused by bacillus cereus can be divided into two types of diarrhea type and vomiting type, which are respectively caused by diarrhea toxin and vomiting toxin generated by the bacillus cereus, and the diarrhea toxin and the vomiting toxin are sensitive to heat and trypsin, so that the bacillus cereus can be prevented; the latter is stable to heat, the activity of the protease is not interfered by pepsin, even if the expression is micro-scale, the protease is harmful to human body, and the protease is not easy to prevent and often causes fulminant food poisoning. Therefore, it is very important to prevent and detect the bacteria.
The traditional bacillus cereus detection method has the defects of long detection period, relatively complex operation and low detection efficiency, and is difficult to meet the requirements of high flux, high sensitivity, high specificity, rapidness and convenience in the detection process of food-borne pathogenic bacteria in modern society. In recent years, researchers have developed detection means such as PCR with the development of nucleic acid molecule detection technology, but this method requires a special detection instrument, and is not suitable for real-time in-situ detection widely used in the basic detection department, particularly in the production line of enterprises. In order to ensure the safety of food, a rapid, simple and accurate method for detecting the bacillus cereus in the food is urgently needed.
Loop-mediated isothermal amplification (LAMP) is a novel isothermal Nucleic acid amplification method developed in recent years, which designs 4 specific primers (including upstream and downstream outer primers F3 and B3, and upstream and downstream inner primers FIP and BIP, wherein FIP is composed of F1C and F2, and BIP is composed of B1C and B2) for 6 regions of a target sequence, and completes the Nucleic acid amplification reaction by incubating for about 60min under isothermal conditions using a DNA polymerase having a strand displacement activity, and generates a macroscopic reaction byproduct, namely white magnesium pyrophosphate precipitate (see Notomi T, okayama H, masubhi H, yonekawa T, watane K, amino N, hase loop-mediated isothermal amplification of DNA, scientific Acids, JUN, 63 (12E). The technology can be completed at a constant temperature without a PCR instrument or a fluorescent quantitative PCR instrument, can judge the reaction result by naked eyes, and has the advantages of high sensitivity, strong specificity, short reaction time, convenient operation, low cost and the like.
Primer design is the most critical step in LAMP technology, and the conventional method is to introduce the acknowledged specific gene of a certain organism to be detected into an online website (http:// primer explorer. Jp/e) designed by LAMP primers, and set relevant parameters to generate a primer group. Bacillus cereus contains plasmids, so the prior art such as the invention patents CN 101831493B and CN 101402997B respectively carry out the design of the Bacillus cereus LAMP primer based on the plasmids or target sequences on chromosomes. However, because of the instability of plasmids in copy number and genetic structure, the LAMP primer designed aiming at the target sequence on the chromosome of Bacillus cereus in the prior art also has the problem of insufficient primer specificity, and the problem existing in the invention patent CN 101402997B is shown in the invention table 1. That is, the Bacillus cereus detection sequence used in the prior art method is not actually specific to Bacillus cereus, that is, it is possible that Bacillus cereus is erroneously identified as Bacillus cereus. Therefore, a bacillus cereus detection method capable of ensuring specificity is urgently needed in the industry, the requirements of basic detection departments on rapidness and convenience are met, and real-time on-site detection can be conveniently carried out in an enterprise production line.
Disclosure of Invention
The invention aims to overcome the defects of insufficient primer universality and specificity in the primer design of the LAMP technology, fully utilizes abundant microbial genome sequence information in the current public data resources and corresponding sequence analysis tools, designs a primer group for specifically identifying the bacillus cereus, and forms a high-sensitivity and high-specificity detection kit on the basis. The invention designs a Bacillus cereus LAMP primer based on microbial genome data resources (data of 8 months and 5 days in 2013) in a GenBank database, and provides a method, a primer group and a kit for rapid isothermal amplification detection of Bacillus cereus. The detection method for detecting the bacillus cereus has the advantages of high sensitivity and specificity, short detection time, simple result judgment, convenient operation and low cost.
The invention provides a method for rapidly detecting a bacillus cereus strain, which comprises the following steps:
(1) Extracting genome DNA from a sample to be detected;
(2) Carrying out constant-temperature amplification reaction under an enzyme reaction system by taking the genome DNA as a template and taking a primer group capable of amplifying the specific base sequence of the genome of the bacillus cereus as a primer;
(3) And determining whether the bacillus cereus exists in the sample to be detected or not by judging whether the reaction result is positive or not.
The method for detecting the bacillus cereus strain at constant temperature comprises the steps of extracting genome DNA from a sample to be detected, carrying out constant-temperature amplification reaction by taking the genome DNA as a template and taking a bacillus cereus specific amplification primer group as a primer, and then determining whether the bacillus cereus exists in the sample to be detected by judging whether a reaction result is positive or not. Wherein, the enzyme reaction system includes but is not limited to DNA polymerase reaction system.
In the invention, the genome-specific base sequence of the Bacillus cereus is the sequence of 3193434-3194011 bp base sequences of the Bacillus cereus with the GI number of 218895141.
In the invention, the primer group capable of amplifying the genome specific base sequence of the bacillus cereus is a part of the nucleic acid sequence of 3193434-3194011 bp positions of the genome (GI No. 218895141) or a part of a complementary strand thereof. Wherein the Bacillus cereus genome-specific nucleotide sequence is a nucleotide sequence that is unique to the Bacillus cereus genome and is not contained in the genome of another microorganism.
Wherein, the primer group capable of amplifying the specific base sequence of the bacillus cereus genome comprises but not limited to a primer group A, or a primer group with 55 percent of homology or more with a single sequence in the sequence of the primer group or the complementary strand sequence thereof.
Primer set a:
the upstream outer primer F3_ A:5 'AGGAACTATTAGAAAACGCG-containing 3' (SEQ ID NO: 1);
downstream outer primer B3_ A:5 'CCGGTTTAGATAATTCACGT-3' (SEQ ID NO: 2);
upstream inner primer FIP _ a:5 'CTAGCGCCTTTGTATGTTCCTCGCAGAGGTTTTAAGAAGTTC-3' (SEQ ID NO: 3);
the downstream inner primer BIP _ A: 5-.
In the present invention, the primer set capable of amplifying the specific nucleotide sequence of the bacillus cereus genome may further include a primer set having a homology of 55% or more with a single sequence in the sequences of each of the aforementioned primer sets or the complementary strand sequences thereof, and the primer set includes, but is not limited to, the following primer sets B:
primer set B:
the upstream outer primer F3_ B:5 'TAGAAAACGCGGGTATGA-3' (SEQ ID NO: 5) (homology of 55% to the primer F3_ A5 'AGGAACTATTAGAAAACGCG-3');
the downstream outer primer B3_ B:5 'CCGGTTTAGATAATTCACGT-doped 3' (SEQ ID NO: 6);
upstream inner primer FIP _ B:5' CTAGCGCGCCTTTGTATGTTCCTCGCAGAGGTTTTTAGAAGTT-;
a downstream inner primer BIP _ B:5 'CCACAGACACAAATGTAACTCATGGTTCTCTCCTTCTTTT-containing material 3' (SEQ ID NO: 8).
In the method of the present invention, in a specific embodiment, the enzyme reaction system for isothermal amplification is: 1 XBst DNA polymerase reaction buffer solution, 2-9mmol/L Mg 2+ (MgSO 4 Or MgCl 2 ) 1.0-1.6mmol/L dNTP,0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH 8.8), 10mmol/L KCl,10mmol/L (NH 4) 2 SO4,0.1%Triton X-100,2mM MgSO 4 . MgSO in 1 XBst DNA polymerase reaction buffer 4 And magnesium ion Mg in enzyme reaction system 2+ And (6) merging.
In the method of the invention, the reaction procedure of the isothermal amplification reaction is (1) incubation at 60-65 ℃ for 10-90 min, preferably 10-60 min; (2) the reaction is stopped at 80 ℃ for 2-20 min. The invention is not limited to the implementation of the detection method of the invention by other suitable reaction procedures.
In the method of the present invention, the detection method includes, but is not limited to, electrophoresis detection, turbidity detection, color detection, or the like. The electrophoresis detection is preferably a gel electrophoresis detection method, and may be agarose gel or polyacrylamide gel. In the electrophoresis detection result, if the electrophoresis image shows a characteristic stepped strip, the sample to be detected is positive to the bacillus cereus and contains the bacillus cereus; and if the electrophoretogram does not present a characteristic stepped strip, the sample to be detected is negative to the bacillus cereus. The turbidity detection is to detect turbidity by visual observation or a turbidity meter, and if the detection tube is obviously turbid, the sample to be detected is positive to bacillus cereus and contains bacillus cereus; if no turbidity is found, the sample to be detected is negative to the bacillus cereus. Or the bottom of the reaction tube can be observed by naked eyes after centrifugation to see whether the sediment exists or not, if the sediment exists at the bottom of the reaction tube, the sample to be detected is positive to the bacillus cereus and contains the bacillus cereus; if no precipitate is formed at the bottom of the reaction tube, the sample to be detected is negative to the bacillus cereus.
The color development detection is to add a color development reagent including but not limited to calcein (50 μ M) or SYBR Green I (30-50X), or hydroxynaphthol blue (i.e. HNB,120-150 μ M) into a reaction tube. When calcein or SYBR Green I is used as a color developing agent, if the color is orange after reaction, the sample to be detected is negative to bacillus cereus; if the color after the reaction is green, the sample to be detected is positive to the bacillus cereus and contains the bacillus cereus. When hydroxyl naphthol blue is used as a color developing agent, if the color after reaction is violet, the sample to be detected is negative to bacillus cereus; if the color after the reaction is sky blue, the sample to be detected is positive to the bacillus cereus. The chromogenic detection can be used for detecting the reaction result in real time or at the end point through a detection instrument besides observing the reaction result through naked eyes, and by reasonably setting a threshold value of negative reaction, when the reaction result of the sample to be detected is lower than or equal to the threshold value, the sample to be detected is negative to the bacillus cereus; and when the reaction result of the sample to be detected is greater than the threshold value, determining that the sample to be detected is positive to the bacillus cereus. The detection instrument comprises but is not limited to a fluorescence spectrophotometer, a fluorescence quantitative PCR instrument, a constant temperature amplification microfluidic chip nucleic acid analyzer, a Genie II isothermal amplification fluorescence detection system and the like.
In the color development detection, if calcein or hydroxynaphthol blue is used as a color developing agent, the color developing agent can be added before the constant-temperature amplification reaction, or can be added after the constant-temperature amplification reaction is completed, preferably before the constant-temperature amplification reaction, so that the possibility of reaction pollution can be effectively reduced. If SYBR Green I is adopted as the color developing agent, the SYBR Green I is added after the isothermal amplification reaction is finished. If adoptedThe calcein is used as color-developing agent, and 0.6-1mM [ Mn ] is added simultaneously with 50 μ M calcein in the enzyme reaction system 2+ ]For example, 0.6-1mM MnCl 2
The invention also provides a primer used in the method for detecting the bacillus cereus strain at constant temperature. The primer comprises a primer group capable of amplifying specific base sequences of the genome of the bacillus cereus, and the sequence of the primer comprises but is not limited to a part of a nucleic acid sequence with the length of 3193434-3194011 bp of the genome of the bacillus cereus with the GI number of 218895141 or a part of a complementary strand of the nucleic acid sequence.
Wherein the primer group capable of amplifying the specific nucleotide sequence of the Bacillus cereus genome is selected from any one of the following primer groups, or is selected from any one of the primer groups having homology of 55% or more with a single sequence in the sequences of the primer groups or the complementary strand sequence thereof. Wherein, the primer group includes but is not limited to the following primer group A. The primer set having a homology of 55% or more with a single sequence in the aforementioned primer set sequence or its complementary strand sequence includes, but is not limited to, the following primer set B.
Primer set a:
the upstream outer primer F3_ A:5 'AGGAACTATTAGAAAACGCG-doped 3';
downstream outer primer B3_ A:5 'CCGGTTTAGATAATTCACGT-3';
upstream inner primer FIP _ A:5 'CTAGCGCCTTTGTATGTTCCTCGCAGAGGTTTTAAGAAGTTC-3'; the downstream inner primer BIP _ A:5' CCACAGACACAAATGTAACTCATGATGTTCTCTCCTTCCT-;
primer set B:
the upstream outer primer F3_ B:5 'TAGAAAACGCGGGTATGA-3';
downstream outer primer B3_ B:5 'CCGGTTTAGATAATTCACGT-3';
upstream inner primer FIP _ B:5' CTAGCGCGCCTTTGTATGTTCCTCGCAGAGGTTTTAGAAAGTT-;
the downstream inner primer BIP _ B:5 'CCACAGACACAAATGTAACTCATGGTTCTCTCCCTTTCTTTT-3'.
The invention also provides a kit used in the method for detecting the bacillus cereus strain at constant temperature, which comprises the primer group capable of amplifying the specific base sequence of the bacillus cereus genome. In the kit of the invention, the primer group capable of amplifying the genome specific nucleotide sequence of Bacillus cereus comprises but is not limited to a part of the nucleic acid sequence of 3193434-3194011 bp site of genome (GI No. 218895141) or a part of the complementary strand thereof as the primer sequence; the primer includes but is not limited to the primer set a. But not limited to, a primer group having a homology of 55% or more with a single sequence in the aforementioned primer sequence or its complementary strand sequence as a primer; including but not limited to primer set B.
The kit also comprises Bst DNA polymerase buffer solution, bst DNA polymerase, dNTP solution and Mg 2+ (MgSO 4 Or MgCl 2 ) And betaine. In a specific embodiment, the enzyme reaction system of the kit comprises 1 XBst DNA polymerase reaction buffer solution and 2-9mmol/L Mg 2+ (MgSO 4 Or MgCl 2 ) 1.0-1.6mmol/L dNTP,0.8-2.0 mu mol/L FIP and BIP primers, 0.15-0.3 mu mol/L F3 and B3 primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine. For example, 1 XBst DNA polymerase reaction buffer can be 1 × Thermopol reaction buffer containing 20mmol/L Tris-HCl (pH 8.8), 10mmol/L KCl,10mmol/L (NH 4) 2 SO4,0.1%Triton X-100,2mM MgSO 4 . MgSO in 1 XBst DNA polymerase reaction buffer 4 And magnesium ion Mg in enzyme reaction system 2+ And (6) merging.
The kit of the invention further comprises a positive control template. In a specific embodiment, the positive control template includes, but is not limited to, a whole genomic DNA, a partial genomic DNA of a bacillus cereus genomic DNA, or a vector comprising a whole genomic DNA or a partial genomic DNA of a bacillus cereus genomic DNA.
The kit of the invention further comprises a negative control template, and the negative control template comprises but is not limited to double distilled water.
The kit also comprises a color-developing agent, wherein the color-developing agent comprises but is not limited to calcein, SYBR Green I or hydroxynaphthol blue. When developing colorWhen the agent is calcein, the kit also contains [ Mn 2+ ]For example, mnCl 2
The kit of the invention also comprises double distilled water.
The kit of the invention also comprises a nucleic acid extraction reagent.
The invention also provides a carrier, which comprises any one primer selected from the primer groups A and B. The vector contains a DNA sequence with the specificity of the bacillus cereus, so the vector can be applied to the research fields of microbial taxonomy, comparative genomics, evolution and the like, and the application fields of microbial detection and the like. The vector may be, but is not limited to, a plasmid vector (e.g., pBR322, pUC18, pUC19, pBluescript M13, ti plasmid, etc.), a viral vector (e.g., lambda phage, etc.), and an artificial chromosome vector (e.g., bacterial artificial chromosome BAC, yeast artificial chromosome YAC, etc.). For example, vector pBR322-A containing any one of the primers of primer set A, vector pBR322-B containing any one of the primers of primer set B, and the like. A vector lambda phage-A containing any one of the primers of the primer set A, a vector lambda phage-B containing any one of the primers of the primer set B, and the like.
The invention also provides application of the primers selected from any one of the primer groups A and B in constant temperature detection of the bacillus cereus.
The invention also provides application of the kit in constant temperature detection of bacillus cereus.
The invention also provides application of the vector in constant temperature detection of bacillus cereus.
The invention provides a simple, rapid and sensitive method for detecting bacillus cereus, a primer/primer group and a detection reagent/kit for the technical field of food safety detection, and has great significance for food safety in China. The beneficial effects of the invention include: the bacillus cereus detection method has the advantages of strong specificity, high sensitivity, short detection time, simple result judgment, convenient operation, low cost and the like. Compared with the current common detection method, the constant temperature amplification method adopted by the invention can be carried out under the constant temperature condition, only a simple constant temperature device is needed, expensive instruments in PCR experiments are not needed, and the steps of carrying out electrophoresis detection on the amplified products and the like are not needed, so the method is very suitable for being widely applied to various social fields including basic food safety detection departments for popularization and use, and can be fully applied even under the environment with relatively insufficient professional knowledge and skill base of molecular biology. Any combination of the above preferred conditions is within the scope of the present invention based on the general knowledge in the art.
Drawings
FIG. 1 shows the specificity of the isothermal detection method for Bacillus cereus of example 7 of the present invention.
FIG. 2 shows the sensitivity of the Bacillus cereus detection method of example 8 of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the following specific examples and drawings, and the present invention is not limited to the following examples. Variations and advantages that may occur to those skilled in the art are intended to be included within the invention without departing from the spirit and scope of the inventive concept, and the scope of the invention is to be determined by the appended claims. The procedures, conditions, reagents, experimental methods and the like for carrying out the present invention are general knowledge and common general knowledge in the art, except for the contents specifically mentioned below, and the present invention is not particularly limited.
EXAMPLES 1-6 Bacillus cereus isothermal reaction System and detection method
The detection is carried out according to the following steps (1) to (3):
(1) Extraction of genomic DNA
The bacillus cereus strain used for detection is from China general microbiological culture Collection center with the number of CGMCC 1.3760 (= ATCC 14579). 1mL of the bacterial culture was used to extract genomic DNA and DNA OD using a bacterial nucleic acid extraction kit from Beijing Tiangen bioengineering Co 260 /OD 280 At a concentration of 1.8, 5.36 ng/. Mu.L.
(2) Taking the genome DNA of the bacillus cereus to be detected as a template, respectively adopting self-prepared kits (shown in table 2 and table 3), preparing a reaction system according to the conditions in table 3, and taking a bacillus cereus specific amplification primer group as a primer to carry out constant-temperature amplification reaction. The primers in examples 1 to 6 were primer sets A, A, A, B, B, B, respectively.
(3) The amplification results were confirmed by electrophoresis, turbidity or color development under the conditions shown in Table 3.
As can be seen from Table 3, the detection method and the primer set and the reaction system adopted by the detection method can well amplify the specific fragment of the Bacillus cereus and obtain the detection result. Therefore, the invention can be applied to detecting whether the sample contains the bacillus cereus.
Example 7 Bacillus cereus-specific assay
Bacillus cereus 28 strains (1 to 4 in Table 4 and FIG. 1, 6 to 29) were collected, cultured separately from Bacillus cereus strains (5 in Table 4 and FIG. 1), 1mL of the culture was taken, bacterial DNA was extracted using kit IA, and LAMP amplification (primer set A) and visualization by addition of a color-developing agent were carried out, respectively, with reference to the reaction system and conditions of example 1.
The detection results are shown in Table 4 and FIG. 1, in FIG. 1, 1-4 are Staphylococcus aureus, staphylococcus aureus subspecies aureoflavus, staphylococcus epidermidis, rhodococcus equi, 6-29 are Bacillus mycoides, listeria monocytogenes, listeria inoke, listeria ehelii, salmonella enterica subspecies enterica, salmonella enteritidis, salmonella typhimurium, salmonella paratyphi B, shigella dysenteriae, shigella boydii, shigella flexneri, escherichia coli (containing Clostridium botulinum type A gene), pathogenic Escherichia coli, escherichia coli diarrheal, enterotoxigenic Escherichia coli, escherichia coli hemorrhagic, yersinia enterocolitica, yersinia pseudotuberculosis, vibrio vulnificus, vibrio parahaemolyticus, vibrio franciscensis and Vibrio cereus, respectively: negative control, 5: bacillus cereus. In FIG. 1, the amplification reaction product of only the Bacillus cereus strain showed a bright green color, which is a positive result, as shown in tube No. 5. The products of other non-Bacillus cereus strains and the negative control amplification reaction are orange, and are negative results, as shown in tubes No. 1-4, no. 6-29 and NTC negative control tube.
As can be seen from the results of FIG. 1 and Table 4, the detection kit and the detection method of the present invention have good specificity for Bacillus cereus strains, i.e., only Bacillus cereus strains amplify positively, and other non-Bacillus cereus strains are negative.
Preparing a detection kit, wherein a primer adopted in the kit is a primer group B, and obtaining the same detection result according to the specific detection method, namely, the product obtained after the amplification reaction of the non-bacillus cereus strain and the negative control is a negative result, and the product obtained after the amplification reaction of the bacillus cereus strain is a positive result.
In addition, theoretical analysis was performed on the specificity of each of the primer sets a to B according to the method described in table 1, and as a result, it was found that, in the case where each primer allows three mismatches at most, at most 1 primer in each primer set was aligned to bacillus cereus, indicating that the specificity of each primer set was good.
Example 8 sensitivity detection
DNA of the bacterium CGMCC 1.3760 was extracted by the method of example 2, and the DNA was added to the reaction system using the kit IIB in a gradient of 1ng, 100pg, 10pg, 1pg, 100fg, and 10fg DNA, and LAMP amplification (primer set A) and visualization by adding a color reagent were performed under the other reaction conditions according to the method of example 2 of Table 3. As shown in FIG. 2, 1 to 6 are 1ng, 100pg, 10pg, 1pg, 100fg and 10fg, respectively, NTC: and (5) negative control. In FIG. 2, the reaction products of 1ng, 100pg and 10pg treatments appeared bright green and as positive results, the reaction products of 1pg, 100fg and 10fg treatments and the negative control appeared orange and as negative results. The results of the tests showed that a minimum of 10pg (about 1700 bacteria) of DNA was detected in each reaction tube.
According to the above detection method, with the same other steps and conditions as above, DNA as low as 10pg in each reaction tube can be detected using the primer set B.
TABLE 1 specificity analysis of primers in existing detection methods for Bacillus cereus
Figure BDA0002366071790000091
Note: performing Blast comparison on the detection region sequence of the primer in the patent CN 101402997B in public database resources, and determining the base numbers of the mismatch of the detection region and each primer region of the bacillus cereus and the non-bacillus cereus respectively. The lower the number of mismatched bases of the primer region and strains of Bacillus cereus (including Yersinia pseudotuberculosis and Yersinia pestis), the higher the degree of match, the poorer the specificity.
TABLE 2 kit species and main components for isothermal detection of bacillus cereus
Figure BDA0002366071790000092
TABLE 3 examples 1-6 reaction conditions and results of detection in the method for isothermal detection of Bacillus cereus according to the present invention
Figure BDA0002366071790000101
TABLE 4 strains used in the test and test results
Figure BDA0002366071790000102
Figure BDA0002366071790000111
Note: a) CGMCC: china general microbiological culture Collection center, CICC: china center for preservation and management of industrial microbial strains, CMCC: china medical bacteria strain preservation and management center. b) +: positive result, -: and (5) negative result.
<110> Shanghai Industrial & technical research institute, shanghai Wangwang food group Co., ltd
<120> bacillus cereus nucleic acid rapid constant-temperature detection method and application
<160> 8
<210> 1
<211> 20
<212> DNA
<213> Artificial sequence
<400> 1
aggaactatt agaaaacgcg 20
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence
<400> 2
ccggtttaga taattcacgt 20
<210> 3
<211> 41
<212> DNA
<213> Artificial sequence
<400> 3
ctagcgcctt tgtatgttcc tcgcagaggt tttagaagtt c 41
<210> 4
<211> 45
<212> DNA
<213> Artificial sequence
<400> 4
ccacagaaca caaatgtaac tcatgaatgt ttctctccct ttcct 45
<210> 5
<211> 18
<212> DNA
<213> Artificial sequence
<400> 5
tagaaaacgc gggtatga 18
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence
<400> 6
ccggtttaga taattcacgt 20
<210> 7
<211> 40
<212> DNA
<213> Artificial sequence
<400> 7
ctagcgcctt tgtatgttcc tcgcagaggt tttagaagtt 40
<210> 8
<211> 45
<212> DNA
<213> Artificial sequence
<400> 8
ccacagaaca caaatgtaac tcatggtttc tctccctttc ctttt 45

Claims (9)

1. A rapid constant-temperature detection method aiming at Bacillus cereus for non-diagnosis purposes is characterized by comprising the following steps:
(1) Extracting genome DNA from a sample to be detected;
(2) Taking the genome DNA as a template, taking a primer group capable of amplifying the specific base sequence of the genome of the bacillus cereus as a primer, and carrying out constant-temperature amplification reaction in an enzyme reaction system;
(3) Determining whether the bacillus cereus exists in the sample to be detected or not by judging whether the reaction result is positive or not;
wherein the bacillus cereus genome specific base sequence is 3193434-3194011 bp bit sequence of bacillus cereus genome with GI number 218895141;
wherein the primer group capable of amplifying the specific base sequence of the bacillus cereus genome is a primer group B;
primer set B:
the upstream outer primer F3_ B:5 'TAGAAAACGCGGGTATGA-3';
downstream outer primer B3_ B:5 'CCGGTTTAGATAATTCACGT-3';
upstream inner primer FIP _ B:5' CTAGCGCGCCTTTGTATGTTCCTCGCAGAGGTTTTAGAAAGTT-;
a downstream inner primer BIP _ B:5 'CCACAGACACAAATGTAACTCATGGTTCTCTCCCTTTCTTTT-3'.
2. The method of claim 1, wherein in step (2), the enzymatic reaction system comprises: 1 XBst DNA polymerase reaction buffer, 2-9mmol/L Mg 2+ 1.0-1.6mmol/L dNTP,0.8-2.0 mu mol/L FIP _ B and BIP _ B primers, 0.15-0.3 mu mol/L F3_ B and B3_ B primers, 0.16-0.64U/mu L Bst DNA polymerase and 0-1.5mol/L betaine.
3. The method of claim 1, wherein the isothermal amplification reaction is performed by a reaction sequence comprising: (1) incubating for 10-90 min at 60-65 ℃; (2) the reaction is terminated for 2-20 min at 80 ℃.
4. The primer for rapid constant temperature detection of the bacillus cereus is characterized by comprising a primer group capable of amplifying a specific base sequence of a bacillus cereus genome, wherein the specific base sequence of the bacillus cereus genome is a part of a nucleic acid sequence or a part of a complementary strand of the nucleic acid sequence at 3193434-3194011 bp site of the bacillus cereus genome with the GI number of 218895141;
wherein the primer group capable of amplifying the specific base sequence of the bacillus cereus genome is a primer group B;
primer set B:
the upstream outer primer F3_ B:5 'TAGAAAACGCGGGTATGA-3';
downstream outer primer B3_ B:5 'CCGGTTTAGATAATTCACGT-3';
upstream inner primer FIP _ B:5' CTAGCGCGCCTTTGTATGTTCCTCGCAGAGGTTTTAGAAAGTT-;
the downstream inner primer BIP _ B:5 'CCACAGACACAAATGTAACTCATGGTTCTCTCCTTCTTTT-containing material 3'.
5. A rapid isothermal detection kit for Bacillus cereus, comprising the primer according to claim 4.
6. The kit of claim 5, further comprising a Bst DNA polymerase reaction buffer, bst DNA polymerase, dNTP solution, mg 2+ And one or more of betaine.
7. The kit of claim 5, wherein the enzymatic reaction system of the kit comprises: 1 XBst DNA polymerase reaction buffer solution, 2-9mmol/L Mg 2+ 1.0-1.6mmol/L dNTP,0.8-2.0 μmol/L FIP _ B and BIP _ B primers, 0.15-0.3 μmol/L F3_ B and B3_ B primers, 0.16-0.64U/μ L Bst DNA polymerase, and 0-1.5mol/L betaine.
8. Use of a primer for isothermal detection of bacillus cereus for non-diagnostic purposes, wherein the primer is according to claim 4.
9. Use of a kit according to any one of claims 5 to 7 for the isothermal detection of Bacillus cereus for non-diagnostic purposes.
CN202010036127.4A 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method Active CN111020045B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510556917 2015-09-02
CN2015105569174 2015-09-02
CN201610780460.XA CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610780460.XA Division CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature

Publications (2)

Publication Number Publication Date
CN111020045A CN111020045A (en) 2020-04-17
CN111020045B true CN111020045B (en) 2022-10-21

Family

ID=57899245

Family Applications (54)

Application Number Title Priority Date Filing Date
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN202010004054.0A Active CN110964786B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes
CN202010036127.4A Active CN111020045B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610780457.8A Active CN106434898B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application

Family Applications Before (47)

Application Number Title Priority Date Filing Date
CN202010035808.9A Active CN111041115B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN201911281772.6A Active CN110938677B (en) 2015-09-02 2016-08-30 Quick constant-temperature detection method for yersinia pseudotuberculosis nucleic acid and application
CN202010035775.8A Active CN111041112B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio vulnificus, primer set and application
CN201610767506.4A Active CN106434886B (en) 2015-09-02 2016-08-30 Method for rapidly detecting yersinia pseudotuberculosis at constant temperature, primer and application
CN202010043524.4A Active CN111041116B (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method and kit for vibrio vulnificus
CN202010035788.5A Active CN111041113B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201610767389.1A Active CN106434882B (en) 2015-09-02 2016-08-30 Method for rapidly detecting cronobacter sakazakii at constant temperature, primer and application
CN201610767354.8A Active CN106244706B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapid constant temperature detection of cronobacter sakazakii
CN201610767576.XA Active CN106434888B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting staphylococcus aureus at constant temperature
CN201610780456.3A Active CN106434897B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio cholerae O1 group at constant temperature
CN202010042445.1A Active CN111020049B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for staphylococcus aureus
CN202010036105.8A Active CN111020008B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method and kit for nucleic acid of vibrio cholerae O1 group
CN201610780460.XA Active CN106434899B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting bacillus cereus at constant temperature
CN201610767436.2A Active CN106367492B (en) 2015-09-02 2016-08-30 Method, primer and application for rapidly detecting listeria monocytogenes at constant temperature
CN202010035791.7A Active CN111073956B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio vulnificus
CN202010004056.XA Active CN110964788B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of cronobacter sakazakii, primer group and application
CN202010004054.0A Active CN110964786B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for cronobacter sakazakii
CN202010036146.7A Active CN111020047B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer set and application
CN202010003956.2A Pending CN110951840A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method and kit for vibrio cholerae O1 group
CN201610767491.1A Active CN106434885B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio cholerae O1 group at constant temperature, primer and application
CN202010035795.5A Active CN111041114B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010036128.9A Pending CN111020046A (en) 2015-09-02 2016-08-30 Nucleic acid rapid constant temperature detection method for yersinia pseudotuberculosis and application
CN202010042446.6A Active CN111057780B (en) 2015-09-02 2016-08-30 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN202010286794.8A Pending CN111334595A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN201610767703.6A Active CN106434891B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting shigella at constant temperature
CN201610767402.3A Active CN106434883B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio vulnificus at constant temperature and application of primer and kit
CN202010286793.3A Active CN111304348B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for bacillus cereus
CN201610780447.4A Active CN106434896B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio parahaemolyticus at constant temperature, primer and application
CN202010004057.4A Pending CN110964789A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer set and application
CN202010035812.5A Active CN111073989B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and application of shigella nucleic acid
CN202010035787.0A Active CN111041071B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio cholerae O1 group, primer group and application
CN202010042444.7A Active CN111057779B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for vibrio vulnificus and application
CN202010035771.XA Active CN111073955B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of vibrio cholerae O1 group and application
CN202010042440.9A Pending CN111020011A (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN202010036148.6A Active CN111020048B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for shigella
CN202010043523.XA Active CN111100939B (en) 2015-09-02 2016-08-30 Rapid isothermal detection method for nucleic acid of staphylococcus aureus and application thereof
CN201911167633.0A Active CN110760570B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapid constant-temperature detection of cronobacter sakazakii
CN201610780421.XA Active CN106367500B (en) 2015-09-02 2016-08-30 Method for rapidly detecting vibrio vulnificus at constant temperature, primer and application
CN202010042450.2A Active CN111057781B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method of vibrio parahaemolyticus, primer group and application
CN202010003957.7A Pending CN110951841A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for vibrio cholerae O1 group
CN201610767579.3A Active CN106434889B (en) 2015-09-02 2016-08-30 Method for rapidly detecting bacillus cereus at constant temperature, primers and application
CN201610767426.9A Active CN106434884B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201911337926.9A Active CN110951837B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method for Listeria monocytogenes nucleic acid and application
CN202010004055.5A Active CN110964787B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for cronobacter sakazakii
CN201911337898.0A Active CN110938678B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting listeria monocytogenes at constant temperature
CN201610780425.8A Active CN106434895B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting vibrio parahaemolyticus at constant temperature
CN202010036143.3A Active CN111020010B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method, primer set and kit for listeria monocytogenes

Family Applications After (6)

Application Number Title Priority Date Filing Date
CN201911167632.6A Active CN110760569B (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method and kit for nucleic acid of cronobacter sakazakii
CN202010036130.6A Active CN111020009B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio parahaemolyticus and application
CN201610780457.8A Active CN106434898B (en) 2015-09-02 2016-08-30 Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010035792.1A Pending CN111100906A (en) 2015-09-02 2016-08-30 Rapid constant-temperature detection method, primer group and kit for yersinia pseudotuberculosis
CN201911281105.8A Active CN110938676B (en) 2015-09-02 2016-08-30 Method, primer group and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature
CN202010042443.2A Active CN111057778B (en) 2015-09-02 2016-08-30 Rapid constant temperature detection method for nucleic acid of vibrio vulnificus and application

Country Status (1)

Country Link
CN (54) CN111041115B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041115B (en) * 2015-09-02 2022-07-26 上海产业技术研究院 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN107058599A (en) * 2017-06-22 2017-08-18 上海速创诊断产品有限公司 A kind of Primer composition, kit and its dual signal channel detection methods for detecting staphylococcus aureus
CN107475401B (en) * 2017-09-08 2021-03-19 江苏农林职业技术学院 Method and primer for detecting food-borne bacillus cereus by using loop-mediated isothermal amplification technology
CN108285925A (en) * 2017-12-29 2018-07-17 广东环凯微生物科技有限公司 A kind of rugged Cronobacter sakazakii quick detection kit of slope
CN108192988B (en) * 2018-03-06 2020-05-19 青岛大学 Staphylococcus aureus strand exchange amplification detection method
CN108611402A (en) * 2018-05-12 2018-10-02 浙江工商大学 Shigella flexneri visible detection method based on aptamers magnetic capture and direct LAMP
CN109680079A (en) * 2018-06-08 2019-04-26 深圳市计量质量检测研究院(国家高新技术计量站、国家数字电子产品质量监督检验中心) Detect RPA primer, probe, kit and the method for vibrio parahemolyticus
CN109593866A (en) * 2018-06-20 2019-04-09 齐鲁工业大学 Primer, kit and the detection method of ring mediated isothermal amplification Listeria monocytogenes
CN109517914A (en) * 2018-12-27 2019-03-26 广东环凯微生物科技有限公司 The dry powdered double PCR detection kit of the rugged Cronobacter sakazakii of slope
CN110257541B (en) * 2019-07-25 2022-08-09 沈阳农业大学 CAMP detection primer group and kit for enterotoxin gene of bacillus cereus
CN110358851B (en) * 2019-08-14 2023-01-17 河南科技学院 Nucleic acid sequence, primer, method and kit for detecting bacillus cereus
CN111172325A (en) * 2020-02-21 2020-05-19 北京天恩泽基因科技有限公司 Multi-target double-dye isothermal amplification rapid detection method and kit
CN111690757A (en) * 2020-05-19 2020-09-22 广东岭南职业技术学院 Primer and detection method for rapidly identifying vomitoxin-producing bacillus cereus
CN112538549A (en) * 2020-12-07 2021-03-23 菲吉乐科(南京)生物科技有限公司 On-site rapid detection test method for phage activity
CN112646908A (en) * 2020-12-31 2021-04-13 广州赛哲生物科技股份有限公司 Vibrio vulnificus isothermal amplification primer, probe, kit and detection method
CN113512554B (en) * 2021-07-09 2022-07-12 合肥工业大学 Protein for regulating sakazakii cronobacter sakazakii pressure-resistant strong stress, encoding gene thereof and application thereof
CN113846173A (en) * 2021-09-01 2021-12-28 东北农业大学 Novel target, primer group and detection method for cronobacter sakazakii detection
CN113957164B (en) * 2021-10-29 2023-05-23 上海市质量监督检验技术研究院 CRISPR One post detection method and kit thereof for Cronobacter in infant formula powder
CN114182029A (en) * 2021-11-30 2022-03-15 石家庄君乐宝乳业有限公司 Primer combination and application thereof in detection of cronobacter sakazakii in dairy products
CN114540516B (en) * 2022-03-08 2023-06-20 河南中检食安生物科技有限公司 LAMP double-strand detection probe, kit and detection method for staphylococcus aureus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831493A (en) * 2009-11-06 2010-09-15 武汉工业学院 Loop-mediated isothermal amplification (LAMP) primer pair of bacillus cereus and detection method

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016940A2 (en) * 2000-08-23 2002-02-28 Genome Therapeutics Corporation Genomics-assisted rapid identification of targets
US20040029129A1 (en) * 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
JP2003199572A (en) * 2001-12-28 2003-07-15 Eiken Chem Co Ltd Primer for detection of salmonella and detection method using the same
JP4226984B2 (en) * 2003-09-26 2009-02-18 日本ハム株式会社 LAMP primer for detection of Listeria monocytogenes
JP2007129935A (en) * 2005-11-09 2007-05-31 Ishikawa Pref Gov Primer specifically detecting microorganism in sample
CN101020927A (en) * 2007-03-09 2007-08-22 中国科学院南海海洋研究所 Reagent kit and process for detecting Vibrio vulnificus in circular mediated constant temperature amplification method
CN101153326B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting shigella
CN101153329B (en) * 2007-09-21 2010-11-03 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting staphylococcus aureus
CN101153332B (en) * 2007-09-21 2011-03-23 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting cholera vibrio
CN101153330B (en) * 2007-09-21 2011-07-13 珠海市疾病预防控制中心 Primer, detection method and detection reagent kit for detecting vibrio parahemolyticus
CN101140243B (en) * 2007-09-29 2010-04-14 上海水产大学 Method for detecting vibrio parahaemolyticus
CN101182575B (en) * 2007-11-19 2011-03-23 天津出入境检验检疫局动植物与食品检测中心 Method for detecting food-borne pseudotuberculosis yersinia genus by loop-mediated isothermal amplification
CN101245375A (en) * 2007-12-13 2008-08-20 山东出入境检验检疫局检验检疫技术中心 Method for producing and using trauma vibrio fast detection kit
CN101200760A (en) * 2007-12-13 2008-06-18 中国检验检疫科学研究院 Preparation and utilization method of yersinia genus rapid detection reagent kit
CN101307351A (en) * 2008-04-29 2008-11-19 广州华峰生物科技有限公司 Rapid diagnosis kit for listeria monocytogenes gene based on loop-mediated isothermal amplification technology and detecting method thereof
CN101319249B (en) * 2008-06-10 2011-05-11 山东出入境检验检疫局检验检疫技术中心 Fast detecting reagent kit for enterobacter sakazakii and detecting method thereof
CN101348835B (en) * 2008-09-09 2011-08-17 南开大学 Reagent kit for detecting vibrio vulnificus by loop-mediated isothermal amplification technology
CN101368204B (en) * 2008-09-16 2011-08-31 中国计量学院 Fast detection primer and reagent kit for enterobacter sakazakii hymenial veil mediated isothermality amplification technique
CN101403004B (en) * 2008-09-26 2011-08-24 广州华峰生物科技有限公司 Rapid diagnosis reagent kit and detection method for vibrio vulnficus gene
CN101402997B (en) * 2008-11-06 2010-08-11 中华人民共和国天津出入境检验检疫局 Reagent kit and method for detecting bacillus cereus with loop mediated isothermality amplification method
CN101748201B (en) * 2008-11-28 2012-06-27 中华人民共和国黑龙江出入境检验检疫局检验检疫技术中心 Method of loop-mediated isothermal amplification (LAMP) for detecting Listeria monocytogenes
CN101492733A (en) * 2008-12-15 2009-07-29 天津出入境检验检疫局动植物与食品检测中心 Reagent kit and method for detection of artificial tuberculosis yersinia genus with ring mediated isothermality amplification method
CN101845493A (en) * 2010-01-29 2010-09-29 华南农业大学 Primer for detection of shigella and detection method
CN101864483B (en) * 2010-04-12 2012-09-19 广州华峰生物科技有限公司 Salmonella and shigella joint detection kit and detection method thereof
CN101824482B (en) * 2010-06-07 2012-09-19 广州华峰生物科技有限公司 Detection kit for vibrio cholerae O1 group and detection method thereof
EP2593796A4 (en) * 2010-07-16 2016-07-27 Auckland Uniservices Ltd Bacterial nitroreductase enzymes and methods relating thereto
CN102094090B (en) * 2010-12-13 2013-03-13 华东师范大学 Cholera toxin virulence gene detection kit and detection method thereof
CN102154451B (en) * 2010-12-30 2013-07-31 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii
CN102206703A (en) * 2011-01-23 2011-10-05 浙江省质量技术监督检测研究院 Multiple rapid detection method for three food borne pathogenic bacteria, and detection primer set and kit thereof
CN102277422A (en) * 2011-06-20 2011-12-14 黑龙江省乳品工业技术开发中心 Method for rapid detection of Listeria monocytogenes viable bacteria in liquid milk
CN102329861B (en) * 2011-08-29 2013-06-05 中国疾病预防控制中心传染病预防控制所 Primer for detecting serotype of shigella flexneri and multiplex amplification using same
US8883488B2 (en) * 2011-11-15 2014-11-11 Tuskegee University Detection of food threat agents and food-borne pathogens
ITMI20112177A1 (en) * 2011-11-29 2013-05-30 Genefast S R L METHOD OF DETECTING SYNTHESIS AND / OR AMPLIFICATION OF A NUCLEIC ACID
CN102719535B (en) * 2012-06-01 2014-02-26 南昌大学 Method for rapidly detecting listeria monocytogenes in food
CN102925588B (en) * 2012-08-02 2014-04-23 四川农业大学 LAMP kit used for rapidly detecting porcine cytomegalovirus
CN102936621B (en) * 2012-08-27 2014-06-11 上海交通大学 Bacillus cereus detection method and kit
CN102864228A (en) * 2012-09-21 2013-01-09 武汉真福医药科技发展有限公司 Loop-mediated isothermal amplification (LAMP) kit for rapidly detecting vibrio parahaemolyticus
CN102851381A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Listeria monocytogenes
CN102851382A (en) * 2012-09-21 2013-01-02 武汉真福医药科技发展有限公司 LAMP kit for rapid detection of Shigella
CN103160606B (en) * 2013-04-08 2014-07-30 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit of vibrio cholerae and detection method thereof
CN103160604A (en) * 2013-04-08 2013-06-19 北京出入境检验检疫局检验检疫技术中心 LAMP (loop-mediated isothermal amplification) detection kit for Vibrio vulnificus and detection method using same
CN103243168A (en) * 2013-05-16 2013-08-14 汇智泰康生物技术(北京)有限公司 Kit for detecting vibrio parabaemolyticus in food and using method for kit
CN103243171A (en) * 2013-05-29 2013-08-14 光明乳业股份有限公司 Method for detecting cronobacter sakazakii as well as kit and primer thereof
CN103320435B (en) * 2013-06-28 2015-04-22 华南理工大学 Listeria monocytogenes LAMP (loop-mediated isothermal amplification) detection kit containing internal standard
CN103484536B (en) * 2013-07-10 2015-03-04 东北农业大学 Kit used for rapid detection of enterobacter sakazakii in milk, and applications thereof
CN103421904B (en) * 2013-08-14 2015-04-29 华中农业大学 Listeria monocytogenes LAMP (loop-medicated isothermal amplification) visualized detection method
CN103614466B (en) * 2013-11-11 2015-08-26 宁波大学 The primer detected for the LAMP-LFD of Vibrio vulnificus and probe sequence
CN103571961B (en) * 2013-11-12 2015-04-15 光明乳业股份有限公司 Method, primer pair, target probe, internal standard probe and kit for detecting Cronobacter sakazakii
CN104212885B (en) * 2014-06-26 2016-06-22 舟山出入境检验检疫局综合技术服务中心 The LAMP kit of vibrio cholera in a kind of aquatic products
CN104293954A (en) * 2014-10-13 2015-01-21 河北省食品检验研究院 LAMP primer of staphylococcus aureus and application method of LAMP primer
CN104313173B (en) * 2014-11-11 2016-05-04 舟山市质量技术监督检测研究院 The real-time turbidity LAMP of Listeria Monocytogenes detection method
CN104328208A (en) * 2014-11-24 2015-02-04 武汉明曼基因工程有限公司 Rapid detection kit of Shigella and application of rapid detection kit
CN104513857A (en) * 2014-12-22 2015-04-15 广东省微生物研究所 Loop-mediated isothermal amplification detection primer group, detection method and kit of vibrio parahaemolyticus
CN104911249A (en) * 2014-12-22 2015-09-16 浙江海隆生物科技有限公司 Kit for rapidly detecting staphylococcus aureus in milk animal and raw milk
CN104593516A (en) * 2015-02-09 2015-05-06 江南大学 Isothermal amplification method for rapid detection of listeria monocytogenes
CN104862399B (en) * 2015-05-21 2018-06-19 渤海大学 Detect the PCR method and kit containing amplification interior label of bacillus cereus in food
CN111041115B (en) * 2015-09-02 2022-07-26 上海产业技术研究院 Rapid isothermal nucleic acid detection method and kit for vibrio parahaemolyticus
CN105861702A (en) * 2016-05-16 2016-08-17 昆明理工大学 Specific gene of staphylococcus aureus and loop-mediated isothermal amplification kit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831493A (en) * 2009-11-06 2010-09-15 武汉工业学院 Loop-mediated isothermal amplification (LAMP) primer pair of bacillus cereus and detection method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bacillus cereus G9842,complete genome;Dodson,R.J.等;《Genbank database》;20150730;NC_011772.1 *
周巍等.环介导等温扩增技术检测酸乳中蜡样芽孢杆菌.《乳业科学与技术》.2013,(第05期), *
环介导等温扩增技术检测酸乳中蜡样芽孢杆菌;周巍等;《乳业科学与技术》;20130901(第05期);第30页左栏第1段,表2,第30页右栏第2段,第30页右栏第3段-第31页左栏第1段,图1-图3 *

Also Published As

Publication number Publication date
CN106434882A (en) 2017-02-22
CN111057781B (en) 2022-07-26
CN111041114A (en) 2020-04-21
CN111073989B (en) 2023-05-02
CN111041113A (en) 2020-04-21
CN106434897A (en) 2017-02-22
CN106434899B (en) 2020-02-21
CN106434888A (en) 2017-02-22
CN111020010B (en) 2023-05-02
CN106434897B (en) 2020-02-21
CN111100906A (en) 2020-05-05
CN111020008A (en) 2020-04-17
CN106434885A (en) 2017-02-22
CN106434884A (en) 2017-02-22
CN111057780A (en) 2020-04-24
CN106434883B (en) 2020-02-21
CN111041116B (en) 2022-07-22
CN110951840A (en) 2020-04-03
CN106434889B (en) 2020-06-09
CN106434895B (en) 2020-02-21
CN106434886A (en) 2017-02-22
CN106434888B (en) 2020-02-21
CN106434891A (en) 2017-02-22
CN110964788B (en) 2022-08-26
CN111100939A (en) 2020-05-05
CN111041071A (en) 2020-04-21
CN111041112B (en) 2022-09-20
CN111020009B (en) 2022-07-22
CN111073989A (en) 2020-04-28
CN110760569A (en) 2020-02-07
CN111041113B (en) 2022-10-21
CN110938677A (en) 2020-03-31
CN111020047B (en) 2022-07-26
CN110938677B (en) 2022-07-22
CN110760570A (en) 2020-02-07
CN111334595A (en) 2020-06-26
CN111057778B (en) 2022-07-26
CN111304348A (en) 2020-06-19
CN111041071B (en) 2022-10-21
CN110938678A (en) 2020-03-31
CN110964787A (en) 2020-04-07
CN106434896A (en) 2017-02-22
CN111020009A (en) 2020-04-17
CN111073955A (en) 2020-04-28
CN106434882B (en) 2020-02-21
CN106434899A (en) 2017-02-22
CN106434891B (en) 2020-02-18
CN111041116A (en) 2020-04-21
CN106367500B (en) 2020-02-21
CN111041115A (en) 2020-04-21
CN106244706A (en) 2016-12-21
CN111020048B (en) 2023-03-10
CN111057781A (en) 2020-04-24
CN111041112A (en) 2020-04-21
CN110938678B (en) 2022-08-26
CN110938676B (en) 2022-07-26
CN106244706B (en) 2020-01-10
CN110964789A (en) 2020-04-07
CN111073955B (en) 2022-10-21
CN111020045A (en) 2020-04-17
CN106434886B (en) 2020-01-21
CN111020010A (en) 2020-04-17
CN111073956B (en) 2022-09-20
CN111020049B (en) 2022-07-26
CN111041115B (en) 2022-07-26
CN110951841A (en) 2020-04-03
CN111057778A (en) 2020-04-24
CN111073956A (en) 2020-04-28
CN106367492A (en) 2017-02-01
CN106367500A (en) 2017-02-01
CN111057779B (en) 2022-08-26
CN110760569B (en) 2023-01-24
CN111020048A (en) 2020-04-17
CN106434885B (en) 2020-02-14
CN111057779A (en) 2020-04-24
CN106434898A (en) 2017-02-22
CN110938676A (en) 2020-03-31
CN111020046A (en) 2020-04-17
CN111041114B (en) 2023-03-28
CN111100939B (en) 2022-07-26
CN111057780B (en) 2022-07-22
CN110951837B (en) 2022-08-26
CN110964787B (en) 2022-08-26
CN106434898B (en) 2020-02-21
CN110964786A (en) 2020-04-07
CN111020047A (en) 2020-04-17
CN106434884B (en) 2020-02-21
CN106434889A (en) 2017-02-22
CN106434895A (en) 2017-02-22
CN111020008B (en) 2022-10-28
CN110760570B (en) 2023-01-24
CN111020049A (en) 2020-04-17
CN106434883A (en) 2017-02-22
CN111020011A (en) 2020-04-17
CN110951837A (en) 2020-04-03
CN106434896B (en) 2020-02-18
CN111304348B (en) 2022-07-26
CN110964786B (en) 2022-08-26
CN106367492B (en) 2020-02-07
CN110964788A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
CN111020045B (en) Rapid constant-temperature detection method for nucleic acid of bacillus cereus and application of rapid constant-temperature detection method
CN106367493B (en) Method, primer and application for rapid constant-temperature detection of salmonella
CN106434887B (en) Method, primer and kit for rapidly detecting staphylococcus aureus at constant temperature
CN106434900B (en) Method, primer and kit for simultaneously and rapidly detecting vibrio vulnificus and vibrio cholerae at constant temperature
CN106367501B (en) Method, primer and kit for rapid constant-temperature detection of salmonella

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant