CN110993731B - 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法 - Google Patents

基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法 Download PDF

Info

Publication number
CN110993731B
CN110993731B CN201911181909.0A CN201911181909A CN110993731B CN 110993731 B CN110993731 B CN 110993731B CN 201911181909 A CN201911181909 A CN 201911181909A CN 110993731 B CN110993731 B CN 110993731B
Authority
CN
China
Prior art keywords
silicon
solution
gold
gold nanorod
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911181909.0A
Other languages
English (en)
Other versions
CN110993731A (zh
Inventor
崔大祥
白仕亨
卢静
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201911181909.0A priority Critical patent/CN110993731B/zh
Publication of CN110993731A publication Critical patent/CN110993731A/zh
Application granted granted Critical
Publication of CN110993731B publication Critical patent/CN110993731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于氧化层/金纳米棒/硅的可见‑短波红外光探测基底的制备方法,通过一种银诱导无种法合成具有不同长径比的小尺寸金纳米棒;将其负载到硅片表面作为光吸收层,经退火处理获得结合更紧密金纳米棒/硅片基底;在金纳米棒/硅复合基底表面沉积不同的氧化物薄膜,构建成具有良好光电响应的异质结结构,最终得到氧化物/金纳米棒/硅基底新型可见‑短波红外光探测基底。该复合基底能够对可见‑短波红外光表现出极高的探测灵敏度。与现有技术相比,本发明获得的探测基底具有光谱响应范围宽、响应灵敏度高、响应波段可调、抗干扰能力强等优点。

Description

基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制 备方法
技术领域
本发明属于半导体纳米材料和光电探测领域,具体涉及一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法。
背景技术
21世纪,信息技术和互联网对人类社会的影响日益深厚,在5G、大数据、云计算等高新技术加持下,未来即将进入物联网和人工智能时代,这对作为信息技术基础的半导体器件提出了更高的要求。在“摩尔定律”逐渐失效之际,传统的半导体器件微型化困难、性能瓶颈、功耗大幅升高的问题也日渐突出,因此开发新型半导体器件的任务迫在眉睫。纳米材料由于具备众多独特的性能,成为研究热点。基于纳米材料的光电器件极有可能承担起突破传统器件性能壁障的重任。光电探测技术是指基于光电效应将入射光信号转化为电信号的技术,光和电信号之间的转换已经成为影响我们日常生活的众多技术的核心。在科研人员不遗余力的努力下,高性能光电探测材料及其大规模生产和集成技术得到高度发展,使得包括视频成像,光通信,生物医学成像,安全,夜视,气体传感和运动检测在内的应用已经达到了很高的成熟度。应用领域的规模和多样性的不断扩大,意味着对具备优秀传输速度、传输效率、响应范围、灵敏度和CMOS集成度等特性的光电探测平台需求更加突出。
硅(Si)作为现代半导体技术的重要组成部分,具备上述要求。硅具备1.1eV的窄间接带隙,可以吸收紫外线(UV)到近红外(NIR)的太阳能。然而纯硅中载流子复合率高、光吸收强度有限,严重阻碍了硅在光电探测领域的应用。在硅表面构建异质结以及负载贵金属纳米颗粒是两种有效的解决办法。当金属表面自由电子与入射光波发生相互作用、产生有规律的集体振荡状态时,形成表面等离子激元。对于金属纳米结构,等离子体对应着束缚(或局域)模式,当入射光子频率与金属纳米结构表面电子的集体振动频率一致时,金属纳米结构将强烈吸收入射光子能量,发生局域表面等离子体共振(LSPR)。贵金属纳米材料局域表面等离子激元(LSPs)对光的吸收能力是其尺寸的数倍到数十倍,能够极大增强局域光吸收强度,可以在硅片表面充当“热点”,既能将光能转化为热能,又能产生热电子,提高光电信号的传输效率。贵金属材料诸如Cu,Ag,Au,Pt等在一定程度上均显示出局域表面等离子激元共振(LSPR)行为,其中金和银是最受欢迎的等离子体金属。金的能级结构较为特殊,适于低能量的光子(短波红外)激发热电子,能够产生更多的载流子,对提升短波红外侧向光伏效应的灵敏度具有一定的增益效果。相比于银,金不会在因氧化后表面形成氧化物使性能衰减。由于金纳米颗粒表面等离子激元共振特性与颗粒形状密切相关,因此可以通过调控纳米颗粒的形貌实现对光吸收的可控调节,使得应用场景大幅扩展。在目前已经能够成熟制备的各向异性金纳米粒子中,围绕金纳米棒(AuNR)展开的研究最多。
与球形金纳米颗粒单一吸收峰位的吸收光谱不同,金纳米棒吸收光谱中最显着的特征之一是出现两个等离子体激元共振峰位,分别是横向表面等离子共振峰位(对应金纳米棒短轴)和纵向表面等离子共振峰位(对应金纳米棒长轴),其横向表面等离子共振峰位与普通球形颗粒吸收谱峰位相近且基本保持不变 (520-530 nm),纵向表面等离子激元共振峰位受金纳米棒长径比的强烈影响。因此,纵向表面等离子激元的能量可以简单地通过改变金纳米棒长径比从光谱的可见区域(〜600 nm)调谐到红外区域(〜1800 nm)。虽然纵向表面等离子体激元的能量取决于纵横比,但是AuNRs的尺寸参数对其光学性能也有很大影响,Ali等人的研究证实,小尺寸金纳米棒比较大尺寸金纳米棒具有更小的消光系数(ε)。因此,较小的金纳米棒可以应用到光热治疗和光电效应器件中,二者都是基于将入射光子转换为其他能量的原理来实现,因此小尺寸金纳米棒由于其相对较高的吸收效率,可以提供更高的能量转换效率。
发明内容
针对现有技术的不足,本发明目的在于提供一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法。
本发明通过下述方案实现:一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,通过一种银诱导无种法合成具有不同长径比的小尺寸金纳米棒;将其负载到硅片表面作为光吸收层,经退火处理获得结合更紧密金纳米棒/硅片基底;在金纳米棒/硅片基底表面沉积不同的氧化物薄膜,构建成具有良好光电响应的异质结结构,最终得到氧化物/金纳米棒/硅基底可见-短波红外光探测基底,包括如下步骤:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.1-0.3 M的CTAB溶液为生长溶液,在500-3000转/分固定搅拌速率下向溶液中依次加入浓度在0.01-0.03 mM氯金酸(HAuCl4)溶液、硝酸银(AgNO3)溶液、对苯二酚溶液、浓度应控制在1.335-2.088×10-3 mM的硼氢化钠(NaBH4)的冰水混合物溶液(0℃),持续搅拌一定时间后,在28-35℃范围内恒温静置,待充分反应后离心提纯溶液,获得长径比不同、纵向表面等离子激元共振峰在500nm-1100nm范围内的金纳米棒,其中,HAuCl4与AgNO3浓度比在4:5-7:1;
(2)金纳米棒负载到硅片表面:对干净的硅片进行表面处理使得硅片表面携带负电荷,通过静电吸附使金纳米棒组装到硅片表面,获得负载有金纳米棒的金纳米棒/硅片复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底进行退火处理:将基底置于退火设备中,在惰性气体或真空环境下升至200℃-400℃,保持5s-4h后缓慢冷却;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积1nm-100nm厚度的氧化膜,获得氧化物/金纳米棒/硅复合基底,其中,氧化膜至少包括氧化锌(ZnO)、氧化铝(Al2O3)、氧化钛(TiO2)、铝掺杂氧化锌(AZO)中的一种。
本发明通过化学法合成了吸收峰不同的金纳米棒;将其负载在硅片表面作为吸收层;在此基础上沉积了不同的氧化物薄膜,构建成具有良好光电响应的异质结结构,本发明提供的方法很好地结合构建异质结以及负载贵金属纳米颗粒两种解决纯硅中载流子复合率高、光吸收强度有限问题。
步骤(1)中,提纯过程为采用转述为9000-12000转/分的速率离心2-3次。
步骤(2)中硅片进行表面处理使得硅片表面携带负电荷的方法是:包括但不仅限于用食人鱼溶液浸泡、PSS溶液浸泡、紫外光照射或等离子体清洗方法等。
步骤(4)中沉积方式包括但不仅限于原子层沉积(ALD)、磁控溅射、电化学沉积技术等。利用原子层沉积、磁控溅射、电化学沉积等技术在上一步获得的金纳米棒/硅复合基底表面沉积一定厚度的氧化物薄膜;从而获得氧化物/金纳米棒/硅的可见-短波红外光探测复合基底。
与现有技术相比,本发明具有以下优点:
(1)光谱响应范围宽,响应灵敏度高,在400nm-1100 nm波段均能做出良好响应。
(2)响应波段可调,利用长径比不同的金纳米棒的吸收特性,对特定波长的激光表现出明显的选择性,可实现对不同波段的选择性增强;
(3)抗干扰能力强;氧化物薄膜能够有效维持复合基底的稳定性,在各种环境下均能长时间维持良好的探测特性。
附图说明
图1:本发明合成的具有不同纵向表面等离子激元共振峰位的金纳米棒吸收光谱图;
图2:本发明实施例1制备的氧化物/金纳米棒/硅可见-短波红外光探测基底SEM图;
图3:本发明实施例1制备的氧化锌/金纳米棒/硅可见-短波红外光探测基底的表面侧向光伏效应图;
图4:基于氧化物-金纳米棒-硅短波红外探测基底的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1:
一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底,通过一种银诱导无种法合成具有不同长径比的小尺寸金纳米棒;将其负载到硅片表面作为光吸收层,经退火处理获得结合更紧密金纳米棒/硅片基底;在金纳米棒/硅片基底表面沉积不同的氧化物薄膜,构建成具有良好光电响应的异质结结构,最终得到氧化物/金纳米棒/硅基底可见-短波红外光探测基底,按如下步骤制备:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、5.4ml 10 mM AgNO3溶液和22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1000转/分固定搅拌速率下向溶液中加入22.8 μl 17.05 mM NaBH4的冰水混合物溶液(0℃),持续搅拌溶液2min后30℃恒温状态下保存溶液12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰为1000nm的金纳米棒,见图1。
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓硫酸(H2SO4)和浓过氧化氢(30%, H2O2)按照7:3体积比混合配置的食人鱼洗液中,在80℃下浸泡40 min后取出,用去离子水清洗硅片,氮气吹干,获得表面携带羟基(OH-)的硅基底,将表面携带羟基的硅基底放入金纳米棒溶液静置2天,取出硅片,用去离子水清洗干净后用氮气吹干,获得负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至200℃并保持1h,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用原子层沉积技术,在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积10nm的氧化锌薄膜,获得氧化锌/金纳米棒/硅的可见-短波红外光探测基底产品,SEM图见图2。
图3为本实施例的1制备的氧化锌/金纳米棒/硅可见-短波红外光探测基底产品的表面侧向光伏效应图。与硅、金纳米棒/硅比较,氧化锌/金纳米棒/硅的灵敏度明显提高。
基于氧化物-金纳米棒-硅短波红外探测基底的结构如图4所示。
实施例2:
一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底,与实施例1近似,按如下步骤制备:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、0.9ml 10 mM AgNO3溶液、22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1500转/分的搅拌速率下向溶液中加入18 μl 17.05 mM NaBH4的冰水混合物溶液(0℃),持续搅拌溶液2min后30℃恒温静置充分反应12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰在600nm的金纳米棒;
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓度为10mg/L的PSS溶液(溶有10 mM的NaCl)中,浸泡12 h后用去离子水清洗,氮气吹干后获得表面携带PSS分子的硅基底,将表面携带PSS分子的硅基底放入金纳米棒溶液静置2天,取出硅片,用去离子水清洗干净后用氮气吹干,获得负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至300℃并保持30 min,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用原子层沉积技术,在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积50nm厚度的氧化铝薄膜,获得氧化铝/金纳米棒/硅复合基底可见-短波红外光探测基底。
实施例3:
一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底,与实施例1近似,按如下步骤制备:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、3.6ml 10 mM AgNO3溶液、22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1000转/分搅拌速率下向溶液中加入27.6 μl 17.05 mM NaBH4的冰水混合物溶液(0℃),持续搅拌2min后在30℃恒温静置保存溶液12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰在850nm的金纳米棒;
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓硫酸(H2SO4)和浓过氧化氢(30%, H2O2)按照7:3体积比混合配置的食人鱼洗液中,在80℃下浸泡40 min后取出,氮气吹干,用去离子水清洗硅片,获得表面携带羟基(OH-)的硅基底,将表面携带羟基的硅基底置于匀胶机上,在1000转/分钟的转速下将800μL金纳米棒溶液涂覆到硅片表面,用去离子冲洗硅片,氮气吹干后得到旋涂法制备的负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至400℃并保持5 min,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用磁控溅射技术在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积15nm厚度的氧化钛薄膜,获得氧化钛/金纳米棒/硅复合基底。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.一种基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,其特征在于通过一种银诱导无种法合成具有不同长径比的小尺寸金纳米棒;将其负载到硅片表面作为光吸收层,经退火处理获得结合更紧密金纳米棒/硅片基底;在金纳米棒/硅片基底表面沉积不同的氧化物薄膜,构建成具有良好光电响应的异质结结构,最终得到氧化物/金纳米棒/硅基底可见-短波红外光探测基底,包括如下步骤:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.1-0.3 M的CTAB溶液为生长溶液,在500-3000转/分固定搅拌速率下向溶液中依次加入浓度在0.01-0.03 mM氯金酸HAuCl4溶液、硝酸银AgNO3溶液、对苯二酚溶液、浓度应控制在1.335-2.088×10-3 mM的硼氢化钠NaBH4的0℃冰水混合物溶液,持续搅拌后28-35℃恒温静置充分反应,经离心提纯溶液后获得长径比不同、纵向表面等离子激元共振峰在500nm-1100nm范围内的吸收峰可控的金纳米棒,HAuCl4与AgNO3浓度比在4:5-12:1;
(2)金纳米棒负载到硅片表面:对干净的硅片进行表面处理使得硅片表面携带负电荷,通过静电吸附使金纳米棒组装到硅片表面,获得负载有金纳米棒的金纳米棒/硅片复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底进行退火处理:将基底置于退火设备中,在惰性气体或真空环境下升至200℃-400℃,保持5s-4h后缓慢冷却;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积1nm-100nm厚度的氧化膜,获得氧化物/金纳米棒/硅复合基底,其中,氧化膜至少包括氧化锌ZnO、氧化铝Al2O3、氧化钛TiO2、铝掺杂氧化锌AZO中的一种。
2.根据权利要求1所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,其特征在于步骤(1)提纯过程为采用转述为9000-12000转/分的速率离心2-3次。
3.根据权利要求1所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,其特征在于步骤(2)中硅片进行表面处理使得硅片表面携带负电荷的方法是:用食人鱼溶液浸泡、PSS溶液浸泡、紫外光照射或等离子体清洗方法。
4.根据权利要求1所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,其特征在于步骤(4)中沉积方式至少为原子层沉积ALD、磁控溅射、电化学沉积技术中的一种。
5.根据权利要求1或2或3或4所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,按如下步骤:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、5.4 ml10 mM AgNO3溶液和22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1000转/分固定搅拌速率下向溶液中加入22.8 μl 17.05 mM NaBH4的0℃冰水混合物溶液,持续搅拌溶液2min后30℃恒温状态下保存溶液12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰为1000nm的金纳米棒;
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓硫酸H2SO4和30%浓过氧化氢,按照7:3体积比混合配置的食人鱼洗液中,在80℃下浸泡40 min后取出,用去离子水清洗硅片,氮气吹干,获得表面携带羟基OH-的硅基底,将表面携带羟基的硅基底放入金纳米棒溶液静置2天,取出硅片,用去离子水清洗干净后用氮气吹干,获得负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至200℃并保持1h,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用原子层沉积技术,在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积10nm的氧化锌薄膜,获得氧化锌/金纳米棒/硅的可见-短波红外光探测基底产品。
6.根据权利要求1或2或3或4所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,按如下步骤:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、0.9 ml10 mM AgNO3溶液、22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1500转/分的搅拌速率下向溶液中加入18 μl 17.05 mM NaBH4的0℃冰水混合物溶液,持续搅拌溶液2min后30℃恒温静置充分反应12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰在600nm的金纳米棒;
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓度为10mg/L的PSS溶液中,所述PSS溶液溶有10 mM的NaCl,浸泡12 h后用去离子水清洗,氮气吹干后获得表面携带PSS分子的硅基底,将表面携带PSS分子的硅基底放入金纳米棒溶液静置2天,取出硅片,用去离子水清洗干净后用氮气吹干,获得负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至300℃并保持30 min,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用原子层沉积技术,在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积50nm厚度的氧化铝薄膜,获得氧化铝/金纳米棒/硅复合基底可见-短波红外光探测基底。
7.根据权利要求1或2或3或4所述基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法,按如下步骤:
(1)长径比不同的金纳米棒的合成:采用银诱导无种法,以浓度在0.22 M的CTAB溶液为生长溶液,向192.49ml 0.22M的CTAB溶液中依次加入9.12 ml 10 mM HAuCl4溶液、3.6 ml10 mM AgNO3溶液、22.8 ml 0.053 M 对苯二酚溶液,待溶液变为无色后在1000转/分搅拌速率下向溶液中加入27.6 μl 17.05 mM NaBH4的0℃冰水混合物溶液,持续搅拌2min后在30℃恒温静置保存溶液12h以上,将上述溶液在11000转/分、15min的条件下离心三次去除溶液中的CTAB,获得纵向表面等离子激元吸收峰在850nm的金纳米棒;
(2)金纳米棒负载到硅片表面:将干净的硅片浸入浓硫酸H2SO4和30%浓过氧化氢H2O2,按照7:3体积比混合配置的食人鱼洗液中,在80℃下浸泡40 min后取出,氮气吹干,用去离子水清洗硅片,获得表面携带羟基OH-的硅基底,将表面携带羟基的硅基底置于匀胶机上,在1000转/分钟的转速下将800μL金纳米棒溶液涂覆到硅片表面,用去离子冲洗硅片,氮气吹干后得到旋涂法制备的负载有金纳米棒的金纳米棒/硅复合基底;
(3)金纳米棒/硅片复合基底的热处理:对步骤(2)获得的金纳米棒/硅基底置于退火炉内,在惰性气体或真空环境下升至400℃并保持5 min,后自然冷却至室温;
(4)金纳米棒/硅片复合基底表面沉积氧化物薄膜:利用磁控溅射技术在步骤(3)获得的金纳米棒/硅片复合基底的表面沉积15nm厚度的氧化钛薄膜,获得氧化钛/金纳米棒/硅复合基底。
CN201911181909.0A 2019-11-27 2019-11-27 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法 Active CN110993731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911181909.0A CN110993731B (zh) 2019-11-27 2019-11-27 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911181909.0A CN110993731B (zh) 2019-11-27 2019-11-27 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法

Publications (2)

Publication Number Publication Date
CN110993731A CN110993731A (zh) 2020-04-10
CN110993731B true CN110993731B (zh) 2021-06-04

Family

ID=70087265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911181909.0A Active CN110993731B (zh) 2019-11-27 2019-11-27 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法

Country Status (1)

Country Link
CN (1) CN110993731B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665674B (zh) * 2020-06-17 2021-10-01 中国科学技术大学 一种选择性光吸收-电致变色膜及其制备方法和选择性光吸收-电致变色器件
CN112701189A (zh) * 2020-12-29 2021-04-23 杭州电子科技大学 一种光探测器及制备方法
KR20230142737A (ko) * 2021-01-26 2023-10-11 다나카 기킨조쿠 고교 가부시키가이샤 전이 금속 디칼코제나이드 박막을 구비하는 광전 변환소자 및 상기 광전 변환 소자를 구비하는 수광 소자

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272297A1 (en) * 2006-05-24 2007-11-29 Sergei Krivoshlykov Disordered silicon nanocomposites for photovoltaics, solar cells and light emitting devices
CN101954489B (zh) * 2010-11-01 2012-12-05 同济大学 一种异质结构FeCo-Pt合金纳米棒的制备方法
EP3038164B1 (en) * 2014-12-22 2018-12-12 Total S.A. Opto-electronic device with textured surface and method of manufacturing thereof
CN105097994A (zh) * 2015-08-17 2015-11-25 电子科技大学 一种太阳能电池及其制造方法
CN105489694A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
CN106684201B (zh) * 2017-01-13 2018-01-19 合肥工业大学 一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法
CN107910392A (zh) * 2017-11-20 2018-04-13 中国石油大学(华东) 基于氢化二氧化钛纳米棒阵列/硅异质结的宽带光探测器及其制备方法
CN109873048A (zh) * 2019-01-09 2019-06-11 厦门瑶光半导体科技有限公司 一种透明紫外光电子器件的制造方法

Also Published As

Publication number Publication date
CN110993731A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110993731B (zh) 基于氧化物/金纳米棒/硅的可见-短波红外光探测基底的制备方法
Luo et al. Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells
US20150036234A1 (en) Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices
Alsultany et al. Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse
KR101056132B1 (ko) 박막형 태양전지 및 그 제조방법
Welegergs et al. Thickness dependent morphological, structural and optical properties of SS/CuO nanocoatings as selective solar absorber
CN105336501A (zh) 纳米银和二氧化钛协同修饰氧化锌纳米线阵列及制备方法
Fu et al. Electrodeposition of Ag dendrites/AgCl hybrid film as a novel photodetector
CN110311007A (zh) 一种量子点近红外光电探测器及其制备方法
EP2904620A1 (en) Plasmon-enhanced dye-sensitized solar cells
CN112147724B (zh) 基于Mxene的宽频和广角完美吸收体及其制备方法
Tran et al. Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells
Gonfa et al. Investigation of the plasmonic effect in air-processed PbS/CdS core–shell quantum dot based solar cells
Veeralingam et al. based flexible, VIS-NIR photodetector with actively variable spectrum and enhanced responsivity using surface engineered transitional metal buffer layer
Jung et al. Effects of native oxidation on Ti/TiO2 nanodot arrays and their plasmonic properties compared to Au nanodot arrays
JP5961355B2 (ja) 光誘起電荷分離素子、光電池及びそれらの製造方法
Jiang et al. Light absorption enhancement in ultrathin perovskite solar cells using plasmonic light trapping and bionic anti-reflection coating
Jiang et al. Harvesting the lost photon by plasmonic enhanced hematite-upconversion nanocomposite for water splitting
CN110136966B (zh) 一种Al2O3-Ag@TiO2纳米棒光阳极复合材料及其制备方法
Li et al. Surface plasmon resonance effects of silver nanoparticles in graphene-based dye-sensitized solar cells
CN104576070B (zh) 二氧化钛纳米棒‑金空心球‑CdS复合光阳极的制备方法
KR20090019609A (ko) 나노 입자층을 포함하는 고효율 태양전지 및 그 제조방법
CN110328361B (zh) 一种二氧化硅包覆的骨头状金纳米棒及其制备方法
CN110010770A (zh) 一种金双棱锥等离子增强的钙钛矿太阳能电池的制备
Raval et al. Quantum mechanical investigation of optoelectronic properties of gold nanoparticle attached titanium dioxide nanorods for device applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant