CN110962634B - 基于高频电流注入的磁浮列车非接触辅助供电装置及方法 - Google Patents

基于高频电流注入的磁浮列车非接触辅助供电装置及方法 Download PDF

Info

Publication number
CN110962634B
CN110962634B CN201911310167.7A CN201911310167A CN110962634B CN 110962634 B CN110962634 B CN 110962634B CN 201911310167 A CN201911310167 A CN 201911310167A CN 110962634 B CN110962634 B CN 110962634B
Authority
CN
China
Prior art keywords
frequency
power supply
coil
receiving end
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911310167.7A
Other languages
English (en)
Other versions
CN110962634A (zh
Inventor
麦瑞坤
周凌云
吴一昊
余嘉淇
刘顺攀
何正友
何天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
CRRC Tangshan Co Ltd
Original Assignee
Southwest Jiaotong University
CRRC Tangshan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University, CRRC Tangshan Co Ltd filed Critical Southwest Jiaotong University
Priority to CN201911310167.7A priority Critical patent/CN110962634B/zh
Publication of CN110962634A publication Critical patent/CN110962634A/zh
Application granted granted Critical
Publication of CN110962634B publication Critical patent/CN110962634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于高频电流注入的磁浮列车非接触辅助供电装置及方法,属于无线电能传输技术领域,解决了现有技术中的磁浮列车需要额外敷设供电轨进行供电导致建设和运维成本巨大的问题,本发明包括发射端和接收端,发射端包括依次连接的直流电源U1、逆变器和发射线圈Lp,所述逆变器与发射线圈Lp之间连接有原边LCL谐振网络,接收端包括依次连接的电源U1、高频整流器直流输出侧的稳压电容CL、***的负载电阻R、高频整流器和接收端拾取线圈Ls,高频整流器与拾取线圈Ls之间连接有补偿电容CS和副边LCL谐振网络,所述发射线圈Lp和拾取线圈Ls之间设置有互感M。本发明可避免磁浮列车与供电轨的刚性接触,对磁浮列车进行稳定可靠的供电。

Description

基于高频电流注入的磁浮列车非接触辅助供电装置及方法
技术领域
本发明属于磁浮列车无线传能技术领域,具体为基于高频电流注入的磁浮列车非接触辅助供电装置及方法。
背景技术
磁悬浮列车的车载辅助设备(例如照明灯、空调、控制台等)运行所需的电能是由车载蓄电池提供的,然而,车载蓄电池由于其容量和体积限制,不能长时间、满负荷为列车供电。为了保证磁悬浮列车车载辅助设备的持续正常运行,需要通过地面端的供电设备持续、稳定地为车载蓄电池及车载辅助设备进行供电。
目前,磁悬浮列车上多利用直线电机的齿槽效应,采用车载直线发电机的方案为车载蓄电池及辅助设备进行供电,但当列车处于低速状态时、直线发电机产生的电能不能满足列车的用电需求,且当车载蓄电池所存储的能量耗尽时,将会导致列车用电设备停机,甚至列车停车等运行事故。
为此,高速磁悬浮列车通常会在低速端敷设接触式供电轨,中低速磁悬浮列车则会在全路段敷设接触式供电轨以保障列车用电设备的正常运行。然而,额外敷设供电轨的方案将极大地增加***建设成本,且在恶劣天气下,供电轨磨损情况较为恶劣,需要频繁更换,增加了***额外的运营和维护成本。
发明内容
本发明的目的在于:
为解决现有技术中的磁浮列车需要额外敷设供电轨进行供电导致建设和运维成本巨大的问题,提供一种基于高频电流注入的磁浮列车非接触辅助供电装置及方法,使用磁浮列车直线电机原有线圈作为发射线圈,能够在避免改装线路的基础上,实现可靠供电,有着不受环境影响,与车体运行状态无关的优点,很好的解决磁浮列车运行中供电问题。
本发明采用的技术方案如下:
基于高频电流注入的磁浮列车非接触辅助供电装置,包括发射端和接收端,所述发射端包括依次连接的直流电源U1、低频逆变器和发射线圈,所述发射线圈为直线电机原有线圈,电感为Lp,所述低频逆变器与发射线圈之间连接有加装的发射端LCL谐振网络,所述发射端LCL谐振网络包括电容Cp和线圈Lp1,发射端LCL谐振网络连接有高频逆变器和电源U0,所述高频逆变器频率为40kHz,所述接收端包括依次连接的高频整流器直流输出侧的稳压电容CL、***的负载电阻R、高频整流器和接收端拾取线圈,所述拾取线圈电感为Ls,高频整流器与拾取线圈之间连接有用于补偿接收端拾取线圈电感所需的补偿电容CS和接收端LCL谐振网络,所述接收端LCL谐振网络包括线圈L1、L2和电容C1,所述发射线圈和拾取线圈之间设置有互感M。
基于高频电流注入的磁浮列车非接触辅助供电方法,使用所述的基于高频电流注入的磁浮列车非接触辅助供电装置,包括以下步骤:
(1)根据电路叠加定理分析电路中电流电压关系,将不同频率之间的电源视为分开作用,在高频电路作用时,暂时忽略低频逆变器阻碍作用,将低频电源等效为一个理想电压源,并且置零,得到发射端的等效电路图,其中:Zr为接收端反映阻抗,U2为高频逆变器输出的交流电压,Lp1与Cp为LCL回路中的谐振电感电容,Lp为直线电机电感,Rp与R0共同构成直线电机电阻;
(2)由步骤(1)的等效方法得到接收端的等效电路图,其中:Uout为接收端感应得到的电压值,Ls为接收端拾取线圈电感,考虑电阻为Rs,Cs为补偿电容,L1,L2,C1构成LCL拓扑,其中L1与L2值相等,并且由环绕磁芯的利兹线绕制而成,忽略电阻值,Is为流过接收端拾取线圈的电流有效值,IL为流入高频整流器的电流有效值,Id为流过负载R的电流有效值;
(3)步骤(2)中的高频整流器使用包含4只二极管的整流器,其正向导通压降为0.5V,由于负载R有大电容滤波,故整流器两端电压电流UL,IL,Ud,Id有以下关系:
Figure GDA0003051805930000021
所以从整流器向负载侧看去,等效电阻RL为:
Figure GDA0003051805930000022
同时又根据接收端LCL拓扑,并考虑各个元件附加电阻值,有:
Figure GDA0003051805930000023
可以得到接收端各条支路电流的值与负载电压的值:
Figure GDA0003051805930000024
Figure GDA0003051805930000031
负载R得到的功率可以由Ud导出,即为
Figure GDA0003051805930000032
接收端等效电阻R′为:
Figure GDA0003051805930000033
根据接收端电阻等效到发射端的公式
Figure GDA0003051805930000034
即可得到:
Figure GDA0003051805930000035
其中
Figure GDA0003051805930000036
得到发射线圈中电流:
Figure GDA0003051805930000037
电流I2即是流过直线电机供电***的电流,为频率40kHz的正弦波,搭载在基频电流上,电容Cp上流过电流为:
Figure GDA0003051805930000038
因此高频电源发出的电流为:
Figure GDA0003051805930000039
高频电源发出有功功率即为:
Figure GDA00030518059300000310
功率传输效率为:
Figure GDA00030518059300000311
其中,Zr为接收端反馈到发射端的等效阻抗,j为虚数单位,Lp1描述为LCL谐振网络电感,根据传输效率公式,调节角频率ω、发射端和接收端互感值M、次边LCL电路中电感L以及负载R,降低电感附加阻抗使功率传输效率最大。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明的基于高频电流注入法的磁浮列车辅助供电装置,用高频电流注入的方法,在不改变磁浮列车原有直线电机定子绕组结构的基础上,向其三相电流中注入高频电流,通过无线传能的方法,采用改进后的LCL-LCL电路拓扑,避免磁浮列车与供电轨的刚性接触,对磁浮列车进行稳定可靠的供电。
本发明通过改装直线电机供电***电路,使原有的发射线圈中同时通有低频电流与高频电流,但由于原有直线电机供电***与辅助供电装置谐振频率设置不同,故在实现磁浮列车非接触辅助供电的同时不影响磁浮列车直线电机供电***正常工作。本发明相较于目前采用的磁浮列车与供电轨刚性接触方案,可避免磁浮列车与供电轨的刚性接触损耗,从而减小维护成本。本发明只需对磁浮列车直线电机供电***进行较小改造,采用原有线圈作为辅助供电装置发射线圈,能够大幅减少建设成本,实现对磁浮列车在中低速运行时稳定可靠的供电。
附图说明
图1为本发明提出的基于高频电流注入法的磁浮列车辅助供电装置的电路原理图;
图2为本发明提出的基于高频电流注入法的磁浮列车辅助供电装置的整体电路拓扑图;
图3为本发明提出的基于高频电流注入法的磁浮列车辅助供电装置的车载直线发电机示意图;
图4为本发明提出的基于高频电流注入法的磁浮列车辅助供电装置的效率优化方法发射端高频电路等效图;
图5为本发明提出的基于高频电流注入法的磁浮列车辅助供电装置的效率优化方法接收端高频电路等效图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明电路***结构如图1所示,整体电路拓扑图如图2所示,车载直线发电机示意图如图3所示。
本发明的基于高频电流注入的磁浮列车非接触辅助供电装置,包括发射端和接收端,所述发射端包括依次连接的直流电源U1、低频逆变器和发射线圈,所述发射线圈为直线电机原有线圈,电感为Lp,所述低频逆变器与发射线圈之间连接有加装的发射端LCL谐振网络,所述发射端LCL谐振网络包括电容Cp和线圈Lp1,发射端LCL谐振网络连接有高频逆变器和电源U0,所述高频逆变器频率为40kHz,所述接收端包括依次连接的高频整流器直流输出侧的稳压电容CL、***的负载电阻R、高频整流器和接收端拾取线圈,所述拾取线圈电感为Ls,高频整流器与拾取线圈之间连接有用于补偿接收端拾取线圈电感所需的补偿电容CS和接收端LCL谐振网络,所述接收端LCL谐振网络包括线圈L1、L2和电容C1,所述发射线圈和拾取线圈之间设置有互感M。
在电路工作时,直线电机供电***发出的低频电流为列车提供向前运动的驱动力,同时高频电源通过LCL-LCL回路注入高频电流到直线电机线圈中,从波形上来看,基频(40-300Hz)电流上叠加了频率为40kHz的幅值较小的电流。磁耦合机构以直线电机线圈作为初级线圈,通过接收端拾取线圈拾取能量,接收端拾取线圈Ls和补偿接收端拾取线圈电感所需的补偿电容CS两者都安装在车体上,在40kHz频率下谐振,因此直线电机供电***输出低频电流只会在接收端感应出电压,而不会产生电流。从而实现高频电流的传输。接收端安装的L1,L2,C1组成的LCL电路,保证对负载的恒电流输出,在负载R保持恒定时,能够保证获得功率的恒定。再经过整流器的稳流,从而供给车载设备运行所需功率。
本发明的供电方法其功率传输模型设计如下:根据电路叠加定理,分析电路中电流电压关系时,不同频率之间的电源可以视为分开作用,在高频电路作用时,暂不考虑低频逆变器阻碍作用,将低频电源等效为一个理想电压源,并且置零,可以得到如图4所示的等效电路图,其中Zr为接收端反映阻抗,U2为高频逆变器输出的交流电压,Lp1与Cp为LCL回路中的谐振电感电容,Lp为直线电机电感,Rp与R0共同构成直线电机电阻。
首先探究Zr的值与电路参数的关系,接收端电路等效图如图5所示。图中Uout为接收端感应得到的电压值,Ls为接收端拾取线圈电感,考虑电阻为Rs,Cs为补偿电容,L1,L2,C1构成LCL拓扑,其中L1与L2值相等,并且由环绕磁芯的利兹线绕制而成,因此不考虑电阻值。Is为流过接收端拾取线圈的电流有效值,IL为流入高频整流器的电流有效值,Id为流过负载R的电流有效值。
在本发明中,整流器使用4只二极管,其正向导通压降为0.5V,由于负载R有大电容滤波,因此整流器两端电压电流UL,IL,Ud,Id有以下关系:
Figure GDA0003051805930000061
所以从整流器向负载侧看去,等效电阻RL为:
Figure GDA0003051805930000062
同时又根据接收端LCL拓扑,并考虑各个元件附加电阻值,有:
Figure GDA0003051805930000063
可以得到接收端各条支路电流的值与负载电压的值:
Figure GDA0003051805930000064
Figure GDA0003051805930000065
负载R得到的功率可以由Ud导出,即为:
Figure GDA0003051805930000066
接收端等效电阻R′为:
Figure GDA0003051805930000067
根据接收端电阻等效到发射端的公式
Figure GDA0003051805930000068
即可得到:
Figure GDA0003051805930000069
其中
Figure GDA00030518059300000610
得到发射线圈中电流:
Figure GDA00030518059300000611
电流I2即是流过直线电机供电***的电流,为频率40kHz的正弦波,搭载在基频电流上。
电容Cp上流过电流为:
Figure GDA0003051805930000071
因此高频电源发出的电流为:
Figure GDA0003051805930000072
高频电源发出有功功率即为:
Figure GDA0003051805930000073
功率传输效率为:
Figure GDA0003051805930000074
从对传输效率的分析中可以看到,传输效率与角频率ω,发射端接收端互感值M,次边LCL电路中电感L的值,以及负载R有关。通过调节这些值,可以提升传输效率,同时保证传输功率。同时,由于发射端线圈附加电阻Rp,接收端拾取线圈附加电阻Rs对于效率起到减小作用,因此需要尽量降低电感的附加阻抗。
由于逆变器的导通阻抗存在,低频电流会对高频输出电压产生影响,例如容易出现磁饱和现象,减少高频电压有效值,降低高频电路的功率传输效率。同样的,额外添加的感应式非接触供电***也会对直线电机供电***产生一定的影响,例如降低直线电机获得功率,从而影响列车运行速度。以上问题可以通过增加相应电源的幅值,或调节相应逆变器,从而提升输出的交流电压,保证对直线电机的功率供应。同时,可以使用更优质的利兹线和导通阻抗更低的MOSFET管。
综上,该基于高频电流注入法的磁浮列车辅助供电装置能够实现通过LCL-LCL回路,使用注入法,利用磁浮列车轨道上原有电路,对车载设备进行可靠供电。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.基于高频电流注入的磁浮列车非接触辅助供电装置,其特征在于,包括发射端和接收端,所述发射端包括依次连接的直流电源U1、低频逆变器和发射线圈,所述发射线圈为直线电机原有线圈,电感为Lp,所述低频逆变器与发射线圈之间连接有加装的发射端LCL谐振网络,所述发射端LCL谐振网络包括电容Cp和线圈Lp1,发射端LCL谐振网络连接有高频逆变器和电源U0,所述高频逆变器频率为40kHz,所述接收端包括依次连接的高频整流器直流输出侧的稳压电容CL、***的负载电阻R、高频整流器和接收端拾取线圈,所述拾取线圈电感为Ls,高频整流器与拾取线圈之间连接有用于补偿接收端拾取线圈电感所需的补偿电容CS和接收端LCL谐振网络,所述接收端LCL谐振网络包括线圈L1、L2和电容C1,所述发射线圈和拾取线圈之间设置有互感M。
2.基于高频电流注入的磁浮列车非接触辅助供电方法,使用权利要求1所述的基于高频电流注入的磁浮列车非接触辅助供电装置,其特征在于,包括以下步骤:
(1)根据电路叠加定理分析电路中电流电压关系,将不同频率之间的电源视为分开作用,在高频电路作用时,暂时忽略低频逆变器阻碍作用,将低频电源等效为一个理想电压源,并且置零,得到发射端的等效电路图,其中:Zr为接收端反映阻抗,U2为高频逆变器输出的交流电压,Lp1与Cp为LCL回路中的谐振电感电容,Lp为直线电机电感,Rp与R0共同构成直线电机电阻;
(2)由步骤(1)的等效方法得到接收端的等效电路图,其中:Uout为接收端感应得到的电压值,Ls为接收端拾取线圈电感,考虑电阻为Rs,Cs为补偿电容,L1,L2,C1构成LCL拓扑,其中L1与L2值相等,L为L1、L2的电感值,并且由环绕磁芯的利兹线绕制而成,忽略电阻值,Is为流过接收端拾取线圈的电流有效值,IL为流入高频整流器的电流有效值,Id为流过负载R的电流有效值;
(3)步骤(2)中的高频整流器使用包含4只二极管的整流器,其正向导通压降为0.5V,由于负载R有大电容滤波,故整流器两端电压电流UL,IL,Ud,Id有以下关系:
Figure FDA0003051805920000011
所以从整流器向负载侧看去,等效电阻RL为:
Figure FDA0003051805920000012
同时又根据接收端LCL拓扑,并考虑各个元件附加电阻值,有:
Figure FDA0003051805920000021
其中
Figure FDA0003051805920000022
可以得到接收端各条支路电流的值与负载电压的值:
Figure FDA0003051805920000023
Figure FDA0003051805920000024
负载R得到的功率可以由Ud导出,即为
Figure FDA0003051805920000025
接收端等效电阻R′为:
Figure FDA0003051805920000026
根据接收端电阻等效到发射端的公式
Figure FDA0003051805920000027
即可得到:
Figure FDA0003051805920000028
其中
Figure FDA0003051805920000029
得到发射线圈中电流:
Figure FDA00030518059200000210
电流I2即是流过直线电机供电***的电流,为频率40kHz的正弦波,搭载在基频电流上,电容Cp上流过电流为:
Figure FDA00030518059200000211
因此高频电源发出的电流为:
Figure FDA00030518059200000212
高频电源发出有功功率即为:
Figure FDA0003051805920000031
功率传输效率为:
Figure FDA0003051805920000032
其中,j为虚数单位,根据传输效率公式,调节角频率ω、发射端和接收端互感值M、次边LCL电路中电感L以及负载R,降低电感附加阻抗使功率传输效率最大。
CN201911310167.7A 2019-12-18 2019-12-18 基于高频电流注入的磁浮列车非接触辅助供电装置及方法 Active CN110962634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911310167.7A CN110962634B (zh) 2019-12-18 2019-12-18 基于高频电流注入的磁浮列车非接触辅助供电装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911310167.7A CN110962634B (zh) 2019-12-18 2019-12-18 基于高频电流注入的磁浮列车非接触辅助供电装置及方法

Publications (2)

Publication Number Publication Date
CN110962634A CN110962634A (zh) 2020-04-07
CN110962634B true CN110962634B (zh) 2021-06-29

Family

ID=70034936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911310167.7A Active CN110962634B (zh) 2019-12-18 2019-12-18 基于高频电流注入的磁浮列车非接触辅助供电装置及方法

Country Status (1)

Country Link
CN (1) CN110962634B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113580949B (zh) * 2020-04-16 2023-05-26 中车株洲电力机车研究所有限公司 一种磁浮交通直线电机多重承载的方法及***装置
WO2021208002A1 (zh) * 2020-04-16 2021-10-21 中车株洲电力机车研究所有限公司 一种磁浮交通直线电机多重承载的方法及***装置
CN113315257B (zh) * 2021-06-04 2023-03-24 西南交通大学 一种适用于胎压传感器的旋转无线供电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497829A (en) * 2011-12-21 2013-06-26 Ampium Ltd Electrical roadway having theft prevention system
CN104283452A (zh) * 2014-09-11 2015-01-14 西南交通大学 基于并联逆变器的无线传能***及其功率调节方法
CN104617682A (zh) * 2015-02-05 2015-05-13 广西电网有限责任公司电力科学研究院 一种多导轨无线供电模式的电动汽车识别方法
CN107512176A (zh) * 2017-03-28 2017-12-26 西南交通大学 一种有轨电车动态无线供电***及其效率优化控制方法
CN108599390A (zh) * 2018-03-23 2018-09-28 浙江大学 一种采用e类放大器实现原副边通信的无线电能传输***
CN110001423A (zh) * 2019-03-22 2019-07-12 湖北理工学院 一种基于lcl谐振拓扑的ipt***平面线圈优化设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720582B (zh) * 2016-03-25 2017-11-21 中国矿业大学 一种特定谐波消除无线电能传输***及其设计方法
KR101926765B1 (ko) * 2016-12-28 2018-12-11 한국철도기술연구원 무선전력전송을 위한 모듈형 집전장치 구조
CN108512315B (zh) * 2018-04-23 2020-02-21 哈尔滨工业大学 基于双边lcc结构的注入式无线能量与信息同步传输电路
CN109664778A (zh) * 2018-12-19 2019-04-23 国网江苏省电力有限公司 一种基于短分段线圈的电动汽车动态无线充电***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497829A (en) * 2011-12-21 2013-06-26 Ampium Ltd Electrical roadway having theft prevention system
CN104283452A (zh) * 2014-09-11 2015-01-14 西南交通大学 基于并联逆变器的无线传能***及其功率调节方法
CN104617682A (zh) * 2015-02-05 2015-05-13 广西电网有限责任公司电力科学研究院 一种多导轨无线供电模式的电动汽车识别方法
CN107512176A (zh) * 2017-03-28 2017-12-26 西南交通大学 一种有轨电车动态无线供电***及其效率优化控制方法
CN108599390A (zh) * 2018-03-23 2018-09-28 浙江大学 一种采用e类放大器实现原副边通信的无线电能传输***
CN110001423A (zh) * 2019-03-22 2019-07-12 湖北理工学院 一种基于lcl谐振拓扑的ipt***平面线圈优化设计方法

Also Published As

Publication number Publication date
CN110962634A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN110962634B (zh) 基于高频电流注入的磁浮列车非接触辅助供电装置及方法
Green et al. 10 kHz inductively coupled power transfer-concept and control
Li et al. A new coil structure and its optimization design with constant output voltage and constant output current for electric vehicle dynamic wireless charging
JP6140220B2 (ja) 電気自動車での無線電力送信
CN108448693B (zh) 用于agv的无线电能传输***及其控制方法
CN107710358B (zh) 初级绕组结构的初级侧装置、初级侧装置的制造方法、用于感应电力传输的***以及向车辆感应式地供电的方法
CN106849678B (zh) 多逆变器并联感应电能传输***的功率调节方法
CN103259345B (zh) 一种并联谐振串联补偿的移动小车的非接触供电***
CN105262189A (zh) 一种物流电动车agv无线电能充电***
CN102963262B (zh) 城市交通车辆供电***
Kobayashi et al. Sensorless vehicle detection using voltage pulses in dynamic wireless power transfer system
Boys et al. IPT fact sheet series: no. 1–basic concepts
CN105052008A (zh) 供电装置以及非接触供电***
CN112636484A (zh) 一种应用于航天飞行器的导轨式无线供能***
CN108808873B (zh) 一种非接触式轨道交通供电***
Ronanki et al. Power electronics for wireless charging of future electric vehicles
Shuguang et al. Electric vehicle dynamic wireless charging technology based on multi-parallel primary coils
CN104901400A (zh) 一种无轨道定位装置的电动汽车路面动态高效感应充电***
Abdulhameed et al. Design and tuning of lcc compensation networks for dd-ddq coils in dynamic wireless ev charging systems
CN203562846U (zh) 电磁谐振式铁路机车无线供电***
Yang et al. Research on Contactless Power Supply System of Medium Speed Maglev Train Based on Inductive Power Transfer
CN110588386A (zh) 线圈小车及用于轨道车辆的无线充电***
Barsari et al. Push-pull driven low-cost coupler array for dynamic ipt systems
Shuguang et al. Modeling and Analysis of Contactless Traction Power Supply System for Urban Rail Transit
KR101172757B1 (ko) 비접촉 방식의 전력 중계장치, 중계집전 장치 및 급집전장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant