WO2021208002A1 - 一种磁浮交通直线电机多重承载的方法及***装置 - Google Patents

一种磁浮交通直线电机多重承载的方法及***装置 Download PDF

Info

Publication number
WO2021208002A1
WO2021208002A1 PCT/CN2020/085070 CN2020085070W WO2021208002A1 WO 2021208002 A1 WO2021208002 A1 WO 2021208002A1 CN 2020085070 W CN2020085070 W CN 2020085070W WO 2021208002 A1 WO2021208002 A1 WO 2021208002A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
information
power generation
vehicle
train
Prior art date
Application number
PCT/CN2020/085070
Other languages
English (en)
French (fr)
Inventor
***
冯江华
丁荣军
许义景
石煜
韩亮
文艳晖
南永辉
赵岸峰
吕浩炯
方凯
刘华东
申慧
成庶
苏军贵
周振邦
李程
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to PCT/CN2020/085070 priority Critical patent/WO2021208002A1/zh
Priority to US17/912,884 priority patent/US20230147692A1/en
Publication of WO2021208002A1 publication Critical patent/WO2021208002A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • B60L13/035Suspension of the vehicle-borne motorparts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • B60L13/08Means to sense or control vehicle position or attitude with respect to railway for the lateral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • maglev trains are different from wheel-rail trains. Its technical features are as follows: First, it no longer uses wheels for support and guidance, but uses the interaction of magnetic poles and tracks to achieve vertical suspension and lateral guidance, and the vehicle is suspended in the air during operation; Second, instead of rotating electric machine traction, linear motor traction is used, the stator is installed on the ground track, and the rotor is installed on the vehicle; third, the catenary and pantograph are no longer used to obtain electricity, but from the power supply rail when parking and low-speed section Electricity, when the high-speed maglev train is higher than a certain speed, it is generated by the power generating coil in the suspended magnetic pole.
  • the output voltage U generation is calculated, C is the parameter related to the stator current i and the vehicle structure of the maglev train, D is the parameter related to the vehicle structure of the maglev train, and V represents the vehicle speed of the maglev train;
  • the method also includes:
  • the critical value of the vehicle speed of the maglev train and the weighting coefficient value of the speed factor K v according to the preset control strategy the critical value of the vehicle speed is not less than zero and not greater than the maximum value of the vehicle speed;
  • the power generation based on the vehicle's induction power generation information is removed and replaced with the existing cogging power generation.
  • generating the train communication signal according to the communication control function includes:
  • the digital communication information is converted from digital to analog through the communication control function to obtain an analog train communication signal.
  • the train communication signal does not affect the normal traction function of the maglev train and the induction power generation function of the vehicle.
  • the carrying channel of linear motor traction power information constructed by the linear motor structure transmits other carrying information of the linear motor, including:
  • the vehicle induced power generation information and/or the train communication signal are received.
  • the carrying channel of linear motor traction power information constructed by the linear motor structure transmits other carrying information of the linear motor, including:
  • the vehicle induced power generation information and/or the train communication signal are received.
  • the carrying channel of linear motor traction power information constructed by the linear motor structure transmits other carrying information of the linear motor, including:
  • the vehicle induced power generation information and/or the train communication signal are received.
  • the second aspect of the present invention provides a multi-loaded system device of a maglev transportation linear motor, which includes:
  • the linear motor structure includes a stator section installed on the ground track and a rotor installed on the maglev train;
  • the converter module generates linear motor traction power information and other load-bearing information of the linear motor, and uses the linear motor traction power information carrying channel constructed by the linear motor structure to transmit other load-bearing information of the linear motor.
  • load-bearing information of the linear motor includes vehicle induction power generation information and/or train communication signal
  • converter module includes:
  • Traction converter components are used to generate linear motor traction power information according to the traction demand of the maglev train;
  • the power generation output converter component is used to generate vehicle induced power generation information according to the power generation control function
  • the communication converter component is used to generate the train communication signal according to the communication control function
  • Vehicle induction power generation information, train communication signals, and linear motor traction power information are in different frequency bands.
  • the traction converter component, the power output converter component and/or the communication converter component are three-phase converters, single-phase converters or dual single-phase converters.
  • the rotor of the linear motor structure includes a linear motor rotor and a vehicle induction generating coil
  • the vehicle induction generating coil is used for coupling with the vehicle induction generating power information of the stator section of the linear motor structure to generate generating power;
  • the vehicle induction generating coil can also be used to couple with the train communication signal of the stator section of the linear motor structure, and then transmit the coupled signal to the signal demodulator, so that the signal demodulator can demodulate the train communication signal; please add the following: also available To transmit the on-board signal to the stator section.
  • Vehicle induction generating coils can also be used to transmit on-board signals to the stator segment of the linear motor structure.
  • system device further includes: a communication transceiver coil;
  • the rotor of the linear motor structure includes the linear motor rotor and the vehicle induction generating coil;
  • the vehicle induction generating coil is used for coupling with the vehicle induction generating power information of the stator section of the linear motor structure to generate generating power;
  • the communication transceiver coil is used to couple with the train communication signal of the stator section of the linear motor structure, and then transmit the coupled signal to the signal demodulator, so that the signal demodulator can demodulate the train communication signal;
  • the communication transceiver coil can also be used to transmit on-board signals to the stator segment of the linear motor structure
  • the communication transceiver coil is connected to any two of the three-phase terminals of the signal demodulator;
  • any two of the three-phase terminals of the signal demodulator are respectively used as the positive terminal of a single communication transceiver coil, and the other one is used as a common ground terminal.
  • the multi-loading method of the maglev transportation linear motor can use the linear motor structure to construct a bearing channel of the linear motor traction power information, and realize the transmission of other bearing information of the linear motor besides the linear motor traction power information through the bearing channel, so that the linear motor
  • the structure is not only used to transmit the traction power of the vehicle, but also can transmit other load-bearing information of the linear motor.
  • Figure 1-1 is a frame diagram of the multiple load carrying system of the maglev transportation linear motor of the present invention.
  • Figure 1-2 is a schematic flowchart of an embodiment of a method for multiple loading of a maglev transportation linear motor according to the present invention
  • Figure 2 is a schematic structural diagram of an existing vehicle-mounted power generation and power supply scheme
  • Figure 3 is a schematic structural diagram of an existing non-contact power supply solution
  • Figure 4 is a diagram of the existing vehicle-to-ground communication architecture for high-speed maglev line train control
  • Figure 5 is a diagram of the vehicle-to-ground communication architecture for traditional rail transit train control
  • FIG. 6 is a schematic flowchart of another embodiment of a method for multiple loading of a maglev transportation linear motor according to the present invention.
  • Fig. 7 is another frame diagram of the multiple load carrying system of the maglev transportation linear motor of the present invention.
  • Figures 8-18 are the frame diagrams of the system of the multiple load-bearing maglev transportation linear motor of the present invention.
  • FIG. 19 is a schematic flowchart of another embodiment of a method for multiple loading of a maglev transportation linear motor according to the present invention.
  • Figure 20 is a typical waveform diagram of FSK
  • FIG. 21 is a frame diagram of a system of multiple load-bearing maglev transportation linear motors with single-channel communication induction coils according to the present invention.
  • FIG. 22 is a frame diagram of the system of the multiple-carrying system of the maglev transportation linear motor of the dual-channel communication induction coil of the present invention.
  • FIG. 23 is a frame diagram of a system of multiple load-bearing maglev transportation linear motors integrated with traction converter components and power generation output converter components of the present invention
  • FIG. 24 is a frame diagram of a system of multiple load-bearing maglev transportation linear motors integrated with traction converter components and communication converter components of the present invention
  • FIG. 25 is a frame diagram of a maglev transportation linear motor multi-carrying system integrated with a traction converter component, a power output converter component, and a communication converter component of the present invention
  • FIG. 26 is a schematic diagram of charging a maglev train by the charging pile of the present invention.
  • FIG. 27 is a frame diagram of a system for multiple loading of a maglev transportation linear motor with a first band-pass filter according to the present invention
  • Fig. 28 is a frame diagram of a system of multiple load-bearing maglev transportation linear motors with a second band-pass filter according to the present invention
  • Fig. 29 is a frame diagram of a system for multiple loading of a maglev transportation linear motor with a third band-pass filter according to the present invention.
  • the core of the present invention is to provide a method and system device for multiple loading of a maglev transportation linear motor, which utilizes the existing linear motor structure to carry vehicle traction power and other load information.
  • the present invention is mainly used in the field of maglev transportation.
  • the linear motor traction technology of the maglev train technology is discussed, but the rotor installed on the vehicle and the stator section installed on the ground track of the existing maglev train are only used for carrying Traction power of the vehicle.
  • the embodiment of the present invention provides a method for multiple loading of a maglev transportation linear motor, which includes:
  • the linear motor traction power information is generated according to the existing technology and according to the traction demand of the maglev train.
  • the other load information of the linear motor is other information besides the traction power. In the present invention, it may specifically be generated power. And train communication signals, etc.
  • the carrying channel of the linear motor traction power information constructed by the linear motor structure transmits other carrying information of the linear motor.
  • the linear motor structure adopts an existing solution that has been applied, that is, the linear motor stator is installed on the ground track, and the linear motor rotor is installed on the maglev train, thereby constructing the linear motor traction power carrying channel.
  • the existing linear motor structure is used to transmit other load-carrying information of the linear motor on the constructed load-carrying channel of the linear motor traction power.
  • the other information carried by the linear motor is the train communication signal, it can realize the communication between the vehicle and the ground.
  • 201 represents the stator coil winding
  • 202 represents the stator cogging structure-slot
  • 203 represents the stator cogging structure-tooth
  • 204 represents the on-board generator winding
  • 205 represents the field pole pole
  • 206 represents the field coil
  • 207 represents Traveling wave magnetic field.
  • the existing power supply scheme 1 is: use the contact power supply between the power rail and the current receiving shoe when parking or at low speed, and use cogging power generation (non-contact) power supply at medium speed and high speed. Specifically, when the vehicle stops, Or the vehicle is decelerating at a low speed stage, and power is supplied to the vehicle through the power supply rail next to the line and the vehicle's power receiving shoe; when the vehicle speed is higher than a certain speed, the linear motor rotor (also called the mover, mainly suspended magnetic poles) on the vehicle
  • the attached induction generating coil cuts the magnetic field lines of the traveling wave magnetic field and generates electric energy according to the principle of electromagnetic induction to supply power to the vehicle.
  • This kind of scheme requires that sufficient long power supply rails be provided in station areas and temporary parking areas, and vehicles are equipped with flow-receiving shoes.
  • the existing power supply scheme 2 is: use a set of induction coil and converter equipment to realize non-contact power supply at parking and low speed, and still adopt the medium speed and high speed scheme of traditional scheme 1 at medium speed and high speed.
  • a non-contact power supply solution as shown in Figure 3 was innovated when parking and low speed, where 301 is the primary transmitting coil of the induction coil, 302 is the vehicle secondary receiving coil of the induction coil, and 303 is the high Frequency cable, 304 is the power conversion module, 305 is the converter device, 306 is the installation base of the primary end of the induction coil, 307 is the suspended magnetic pole module, 308 is the synchronous linear motor stator module, and 309 is the track infrastructure.
  • the power supply rail next to the middle line and the current receiving shoe on the vehicle are equipped with an induction coil on the vehicle, and an induction coil and a converter for supplying power to the induction coil are installed on a relatively long section of the line in the station area and the temporary parking area Equipment and other supporting equipment.
  • the converter and induction coil on the line provide non-contact power to the induction coil on the vehicle; when the vehicle speed is higher than a certain speed, the medium speed and the traditional scheme 1 are still used. High-speed plan.
  • the disadvantage of Option 1 is that the vehicle can only park in the station area or temporary parking area, and the flow shoe will increase the wind resistance of the vehicle at high speed, and the line cost is high;
  • the disadvantage of Option 2 is that there are more ground system equipment and more vehicles.
  • the receiving coil and supporting equipment increase the load-bearing load, the system is complicated, and the line cost is high. It is only laid in the station area and temporary parking area, not the entire line, and vehicles can only be parked in the station area or temporary parking area.
  • the existing vehicle-ground communication scheme is: as shown in Fig. 4, the vehicle-ground communication architecture for high-speed maglev train control.
  • the disadvantage is that the train control completely relies on the vehicle-ground communication system, and there is no independent backup communication.
  • Figure 5 shows the traditional train-to-vehicle communication architecture for rail transit train control.
  • the track circuit control signals support the train to continue running at a degraded speed; when the track circuit controls When the signal also fails at the same time, the driver can visually control the car to run slowly under the manual dispatch command.
  • the train In the current high-speed maglev transportation system, the train is completely suspended in the air when the train is running, and the vehicle-to-ground communication adopts microwave communication, and the microwave communication has channel redundancy.
  • the disadvantage is that the maglev transportation system completely relies on the vehicle-ground microwave communication without independent backup communication. Once the microwave communication channel fails, the train cannot continue to run and can only stop.
  • the present invention focuses on other information carried by the linear motor on the vehicle induction power generation information and/or the train communication signal. It should be noted that in the specific In implementation, it is not only limited to vehicle induced power generation information and/or train communication signals, but also other types of information, which are not specifically limited.
  • the embodiments of the present invention are discussed in three situations: (1) Other load information of the linear motor is vehicle induction power generation information; (2) Other load information of the linear motor is train communication signal; (3) Other load of the linear motor The information includes vehicle induction power generation information and train communication signals.
  • the other carrying information of the linear motor is the vehicle's induction power generation information
  • the stator segment of the ground linear motor has no traction voltage and current power
  • the induction generating coil on the rotor of the vehicle linear motor has no induced voltage and current power
  • the vehicle is started or at low speed, it is applied to the ground linear
  • the frequency and amplitude of the current on the stator section of the motor are not sufficient for the induction generator coil attached to the rotor of the linear motor of the vehicle to induce a sufficiently high and usable alternating voltage and current power.
  • the power value is called the threshold, and this threshold corresponds to the vehicle speed threshold for induction power generation, that is, when the vehicle speed is higher than the speed threshold, the induction power generation coil can induce enough electrical energy.
  • the output voltage U generation is calculated, C is the parameter related to the stator current i and the vehicle structure of the maglev train, D is the parameter related to the vehicle structure of the maglev train, and V represents the vehicle speed of the maglev train;
  • the vehicle speed critical value V 0 and the weighting coefficient value K of the speed factor K v of the maglev train are set.
  • the vehicle speed critical value V 0 is not less than zero and not greater than the maximum vehicle speed V max , the expression is V o ⁇ [0,V max ], K ⁇ [0,1];
  • determine the speed factor K v of the current vehicle speed V of the maglev train, and the weighting coefficient value K can be set to any value greater than 0;
  • the comparison between the current vehicle speed V and the vehicle speed critical value V 0 to determine whether the cogging power demand is met that is, when the speed factor K v is equal to K, it means that the current vehicle speed V is greater than the vehicle speed critical value V 0 , and the tooth The demand for slot power generation; when the speed factor K v is equal to 0, it means that the current vehicle speed V is less than the vehicle speed critical value V 0 , and the demand for cogging power generation is not met at this time;
  • the power generation based on the vehicle's induction power generation information is removed and replaced with the existing cogging power generation.
  • the carrying channel of linear motor traction power information constructed by using the linear motor structure transmits vehicle induced power generation information.
  • f(t) traction represents the linear motor traction power
  • f(t) generation represents the vehicle's induction power generation.
  • the induction generating coil attached to the rotor can also obtain a voltage higher than the voltage threshold. , Then it can solve the problem that the maglev train is inductive in the whole line, so that the train can stop at any place of the line, liberating the original limitation of parking in specific areas, canceling the power supply rail next to the line and the current receiving shoe on the vehicle.
  • the final friction parts have greatly reduced construction costs, maintenance costs, and vehicle wind resistance and weight.
  • Step 603 is described below. The transmission of other information carried by the linear motor through the carrying channel is explained.
  • the vehicle induction power information is connected to the stator segment of the linear motor structure through a three-phase method, and the vehicle induction power information is received through the rotor of the linear motor structure;
  • connection methods are further divided into the following types:
  • the traction converter component 802 outputs linear motor traction power
  • the power output converter component 803 outputs vehicle induction power generation.
  • the traction converter component in the figure The schematic diagram of the component 802 and the power generation output converter component 803 is embodied in the form of a converter, and both are three-phase converters. In practical applications, they can also be in other forms, and only need to have an input terminal and a power generation control.
  • the function's processor, output terminal, and feedback structure connected to the output terminal. The feedback structure is used to dynamically adjust the output power and information of the output terminal.
  • the independent transformer assembly 801 needs to be used to realize the transformation process to protect the entire linear motor structure. It should be noted that the transformation process is based on actual needs. Adjusting the voltage may be a step-down or a step-up.
  • the output end of the power generation output converter component 1003 is directly connected to the stator section of the linear motor structure through a three-phase method, and the vehicle induction generating coil attached to the rotor of the linear motor structure is coupled to receive the vehicle induction power generation, and the vehicle induction power generation The power is then transmitted to the vehicle's power storage equipment or directly used by the equipment to realize the power supply to the maglev train;
  • the vehicle induction power generation information is connected to the stator segment of the linear motor structure through a single-phase method, and the vehicle induction power generation information is received through the rotor of the linear motor structure;
  • an independent primary winding transformer component 1301 needs to be added.
  • the traction transformer component 1302 and the power output transformer component 1303 are connected to the primary side of the independent primary winding transformer component 1301.
  • the secondary side of the primary winding transformer component 1301 is connected to the stator segment of the linear motor structure.
  • the feedback structure is used to dynamically adjust the output power and information of the output terminal.
  • the traction independent converter component 1401 needs to be used for voltage transformation.
  • the power generation output converter components 1403 and 1404 select any one of the three terminals U, V, and W as the common ground terminal, and the other two terminals are the positive line terminals of the two power generation output converter components 1403 and 1404, respectively.
  • the traction independent transformer component 1601, traction converter component 1602, power generation output converter components 1603 and 1604, are the same as those in (3.1), but in terms of power output
  • an independent primary winding transformer component 1605 needs to be added, and the power generation output transformer components 1603 and 1604 are connected to the primary side of the independent primary winding transformer component 1605.
  • the secondary side of the independent primary winding transformer assembly 1605 is connected to the stator segment of the linear motor structure;
  • the output end of the power generation output converter component 1703 needs to be connected to any two of the three-phase terminals U, V, and W of the stator segment of the linear motor structure; or, as shown in Figure 18, power generation After the output converter components 1803 and 1804 are connected in series, they are connected to any two of the three-phase terminals U, V, and W of the stator segment of the linear motor structure through the power generation independent transformer component 1805.
  • the train In the current high-speed maglev transportation system, the train is completely suspended in the air when the train is running, and the vehicle-to-ground communication adopts microwave communication, and the microwave communication has channel redundancy.
  • the disadvantage is that the maglev transportation system completely relies on the vehicle-ground microwave communication without independent backup communication. Once the microwave communication channel fails, the train cannot continue to run and can only stop.
  • the present invention can use the linear motor traction power carrying channel constructed by the linear motor structure to transmit train communication signals.
  • an embodiment of the present invention provides a method for multiple loading of a maglev transportation linear motor, including:
  • the transmission between the ground and the maglev train is digital communication information, and the carrying channel transmits AC current and voltage, it is necessary to perform digital-to-analog conversion through the communication control function to obtain an analog train communication signal.
  • the communication control function is based on the frequency shift keying technology, and the train communication signal does not affect the normal traction function of the floating train.
  • a typical frequency shift keying (FSK) communication function is used as an example.
  • frequency shift keying technology is widely used in the field of rail transit, using the frequency change of the carrier to transmit digital information.
  • the frequency of the carrier varies with the binary baseband signal between f1 and f2.
  • the typical waveform of FSK is shown in Figure 22, and the general expression is as follows:
  • g n (t) represents a single rectangular pulse
  • T s represents the pulse duration
  • ⁇ n are the initial phases of the n-th signal symbol, which can usually be set to zero. Therefore, the above formula can be simplified, and the obtained expression is as follows:
  • the carrying channel of linear motor traction power information constructed by the linear motor structure transmits train communication signals.
  • the communication converter components that output train communication signals are connected to the stator segment of the linear motor structure.
  • the connection mode can be specific to the three-phase mode. Referring to the above (1), the vehicle induction power generation information is connected to the stator segment of the linear motor structure through the three-phase method (1.1), (1.2) and (1.3), only the power generation output needs to be changed.
  • the communication induction coil can be single-channel or dual-channel. In single-channel mode, only one communication induction coil is required.
  • the specific connection method is shown in Figure 21.
  • the communication transceiver coil is connected to the three-phase signal demodulator. Any two of terminals U, V, and W; in the dual-channel mode, there are two communication induction coils.
  • the specific connection method is shown in Figure 22. Connect any two of the three-phase terminals U, V, and W of the signal demodulator. One is used as the positive terminal of a single communication receiving and sending coil 1 and communication receiving and sending coil 2, and the other one is used as a common ground terminal.
  • the other carrying information of the linear motor is the vehicle's induction power generation information, and the linear motor traction power and the vehicle induction power generation are both independently output by the traction converter component and the power output converter component.
  • other information carried by the linear motor is the train communication signal, and the traction power of the linear motor and the train communication signal are independently output by the traction converter component and the communication converter component.
  • the following (3) It also describes the integration of traction converter components and power output converter components, the integration of traction converter components and communication converter components, and the three traction converter components, power output converter components, and communication converter components. The situation of the integration.
  • Other load-bearing information of the linear motor includes vehicle induction power generation information and train communication signals.
  • the linear motor traction power information, vehicle induction power generation information, and train communication signal are in different frequency bands respectively, and the frequency range of the linear motor traction power information is limited to be lower than the frequency range of the vehicle induction power generation information ,
  • the frequency range of the vehicle induction power generation information is lower than the frequency range of the train communication signal.
  • the specific linear motor traction power ranges from zero to tens of megavolt amperes, and the vehicle induction power generation power ranges from zero to hundreds of kilowatts.
  • the two-way train communication signal is not measured by power but by the real-time and error-free transmission of information.
  • the traction power generation integrated converter component 2501 includes the functions of the traction converter component 2502 and the power output converter component 2503.
  • the linear motor traction power information and the vehicle induced power generation information are combined to obtain the first composite information. , Sending the first composite information through the stator segment of the linear motor, and receiving the linear motor traction power through the rotor coupling of the rotor of the linear motor structure, and receiving the vehicle induction power generation power through the vehicle induction generating coil coupling;
  • the traction communication integrated converter component 2401 includes the functions of the traction converter component 2402 and the communication converter component 2403.
  • the traction power information of the linear motor and the train communication signal are synthesized and processed to obtain the second composite information.
  • the stator section of the motor sends the second composite information, and receives the linear motor traction power through the rotor coupling of the rotor of the linear motor structure, and obtains the train communication signal through the communication transceiver coil coupling, and the signal demodulator demodulates the train communication signal;
  • the traction communication integrated converter component 2501 includes the functions of the traction converter component 2502, the power generation output converter component 2503, and the communication converter component 2504, which provide information on the traction power of linear motors, vehicle induction power generation, and trains.
  • the communication signal is synthesized and processed to obtain the third synthesized information.
  • the third synthesized information is sent through the stator section of the linear motor, and the linear motor traction power is received through the rotor coupling of the rotor of the linear motor structure, and the vehicle induction is received through the vehicle induction generator coil coupling.
  • the generated power is coupled through the communication transceiver coil, and the signal demodulator demodulates to obtain the train communication signal.
  • the specific connection method is through the on-board external power input port.
  • the on-board external power input port is generally set at the beginning and the end of the maglev train. At the same time, in order to ensure the reliable control of the maglev train, the communication signal channel of the train must be normal.
  • the types of linear motor structures include single-sided linear motors, bilateral linear and polygonal linear motors, and the magnetic types of the rotor of the linear motor include permanent magnet rotors, electrically excited rotors, and hybrids of permanent magnets and electric excitations.
  • Type of rotor include permanent magnet rotors, electrically excited rotors, and hybrids of permanent magnets and electric excitations.
  • the first band-pass filter performs the first band-pass filtering process on the linear motor traction power information and other load information of the linear motor, allowing the linear motor traction power information and signals related to braking and traction control to pass.
  • it can be the fundamental wave of linear motor traction power and its effective harmonics, train braking energy and information, and signals of traction control switching frequency, which can achieve decoupling of linear motor control feedback signals under multiple load conditions, and other multi-loaded signals. Signal decoupling to ensure the control quality of linear motor traction.
  • energy and information are transmitted bidirectionally between the ground converter and the on-board equipment through the filter. It should be noted that the on-board equipment to the ground converter The main return is braking energy and control information;
  • the second band-pass filter performs the second band-pass filtering process on the linear motor traction power information and other load-carrying information of the linear motor, allowing the passage of vehicle induced power information and power generation control-related signals, which can be specifically The fundamental wave of vehicle induced power generation and its effective harmonics, and the signal of the switching frequency of power generation control, realize the decoupling of the vehicle power generation control feedback signal under multiple load conditions; decoupling of other signals of multiple loads to ensure vehicle power generation The quality of control;
  • the third band-pass filter performs the third band-pass filtering process on the linear motor traction power information and other load-bearing information of the linear motor, allowing the passage of train communication signals and train control-related signals, which can specifically be train communication
  • the modulation wave of the signal and its effective harmonics and switching frequency signals realize the decoupling of train communication signals under the condition of multiple loads, and the decoupling of other signals carried by multiple loads to ensure the transmission quality of train communication signals.
  • the train communication signal is transmitted bidirectionally between the ground converter and the on-board equipment through the filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种磁浮交通直线电机多重承载的方法及***装置,利用现有的直线电机结构承载车辆牵引功率及其它承载信息。磁浮交通直线电机多重承载的方法包括:生成直线电机牵引功率信息及直线电机其它承载信息(101);利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息(102)。

Description

一种磁浮交通直线电机多重承载的方法及***装置 技术领域
本发明涉及磁悬浮交通领域,特别是涉及一种磁浮交通直线电机多重承载的方法及***装置。
背景技术
轮轨列车的技术特征有:一采用车轮与轨道来支撑及导向,二采用旋转电机牵引,三采用接触网和受电弓取电。
现有的磁浮列车区别于轮轨列车,其技术特征有:一不再采用车轮来支撑及导向,而是采用磁极和轨道相互作用来实现垂向悬浮和横向导向,运行时车辆悬浮在空中;二不采用旋转电机牵引,而采用直线电机牵引,定子安装在地面轨道上,转子安装在车辆上;三不再用接触网和受电弓取电,而是在停车和低速段时从供电轨取电,高速磁浮列车大于一定速度时由悬浮磁极里的发电线圈发电。现有的磁浮交通***相对于轮轨交通***而言,它没有了轮轨关系,没有了车轮与轨道之间的摩擦阻力,同时获得不受轮轨黏着物理限制的更大的牵引动力;采用抱轨磁极导向或U形磁极轨道因而没有了脱轨系数,不需要担忧脱轨问题;没有了弓网关系,不用担心脱弓和摩擦高温融化铜线的问题。这些技术进步使磁浮列车摆脱了轮轨列车的诸多物理束缚,从而使列车具备达到更高速度的技术条件。
但是,现有的磁浮列车技术模式的直线电机牵引技术中,安装在车辆上的转子及安装在地面轨道上的定子仅用于承载车辆牵引功率。
发明内容
本发明的目的是提供一种磁浮交通直线电机多重承载的方法及***装置,利用现有的直线电机结构承载车辆牵引功率及其它承载信息。
本发明第一方面提供一种磁浮交通直线电机多重承载的方法,包括:
生成直线电机牵引功率信息及直线电机其它承载信息;
利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息。
进一步的,直线电机其它承载信息包括车辆感应发电功率信息和/或列车通信信号,
生成直线电机牵引功率信息及直线电机其它承载信息,包括:
根据磁浮列车的牵引需求生成直线电机牵引功率信息;
根据发电控制函数生成车辆感应发电功率信息;
和/或,
根据通信控制函数生成列车通信信号;
车辆感应发电功率信息、列车通信信号及直线电机牵引功率信息分别处于不同的频段区间。
进一步的,根据发电控制函数生成车辆感应发电功率信息,包括:
根据发电控制函数的输出端电压公式
Figure PCTCN2020085070-appb-000001
计算得到输出端电压U,m表示直线电机的定子段的由m段长定子段组成,L表示直线电机的定子段的总电感,L n表示第n段长定子段的电感,1≤n≤m,R n表示L n对应的第n段长定子段的定子绕组电阻,i表示定子电流,
Figure PCTCN2020085070-appb-000002
为磁浮列车在定子绕组上产生的反电动势;
根据磁浮列车的牵引需求和发电控制函数构造出输出牵引力公式
F traction(t)=A*K V+B*(1-K V)
计算得到输出牵引力F traction(t),A和B为与定子电流i及磁浮列车的车辆结构相关的参数,K v表示速度因子;
根据发电控制函数构造输出电压公式
U generation=C*(1-K V)+D*V*K V
计算得到输出电压U generation,C为与定子电流i及磁浮列车的车辆结构相关的参数,D为与磁浮列车的车辆结构相关的参数,V表示磁浮列车的车辆速度;
根据输出牵引力F traction(t)及V的乘积计算得到牵引功率f(t) traction
将输出电压U generation乘以车辆感应发电线圈的电流,计算得到车辆感应发电功率f(t) generation
或,
将输出电压U generation进行平方之后,除以车辆感应发电线圈接收回路的等效电阻,计算得到车辆感应发电功率f(t) generation
车辆感应发电功率f(t) generation不影响磁浮列车的正常牵引功能。
进一步的,方法还包括:
根据预设的控制策略设定磁浮列车的车辆速度临界值及速度因子K v的加权系数值,车辆速度临界值不小于零且不大于车辆速度最大值;
根据车辆速度临界值,确定磁浮列车当前车辆速度的速度因子K v
根据当前车辆速度与车辆速度临界值的比较判断是否满足齿槽发电需求;
当不满足齿槽发电需求时,通过车辆感应发电功率信息进行发电;
当满足齿槽发电需求时,切除车辆感应发电功率信息的发电,改为现有的齿槽发电。
进一步的,根据通信控制函数生成列车通信信号,包括:
获取数字化通信信息;
通过通信控制函数对数字化通信信息进行数模转换,得到模拟化的列车通信信号,列车通信信号不影响磁浮列车的正常牵引功能及车辆感应发电功能。
进一步的,利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息,包括:
通过三相方式将车辆感应发电功率信息和/或列车通信信号接入直线电机结构的定子段;
通过直线电机结构的转子或另设的通信收发线圈,接收车辆感应发电功率信息和/或列车通信信号。
进一步的,利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息,包括:
通过单相方式将车辆感应发电功率信息和/或列车通信信号接入直线电机结构的定子段;
通过直线电机结构的转子或另设的通信收发线圈,接收车辆感应发电功率信息和/或列车通信信号。
进一步的,利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息,包括:
通过双单相方式将车辆感应发电功率信息和/或列车通信信号接入直线电机结构的定子段;
通过直线电机结构的转子或另设的通信收发线圈,接收车辆感应发电功率信息和/或列车通信信号。
本发明第二方面提供一种磁浮交通直线电机多重承载的***装置,包括:
直线电机结构及配套的变流模块;
直线电机结构包括设置于地面轨道的定子段及安装于磁浮列车的转子;
变流模块生成直线电机牵引功率信息及直线电机其它承载信息,利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息。
进一步的,直线电机其它承载信息包括车辆感应发电功率信息和/或列车通信信号,变流模块包括:
牵引变流组件,用于根据磁浮列车的牵引需求生成直线电机牵引功率信息;
发电输出变流组件,用于根据发电控制函数生成车辆感应发电功率信息;
和/或,
通信变流组件,用于根据通信控制函数生成列车通信信号;
车辆感应发电功率信息、列车通信信号及直线电机牵引功率信息分别处于不同的频段区间。
进一步的,牵引变流组件、发电输出变流组件和/或通信变流组件为三相变流器、单相变流器或者双单相变流器。
进一步的,直线电机结构的转子包括直线电机转子、车辆感应发电线圈;
车辆感应发电线圈,用于与直线电机结构的定子段的车辆感应发电功率信息耦合产生发电功率;
车辆感应发电线圈,还可用于与直线电机结构的定子段的列车通信信号耦合后,将耦合信号传输至信号解调器,使得信号解调器解调得到列车通信信号;请补充下:还可用于将车载信号向定子段传递。
车辆感应发电线圈,还可用于将车载信号传输至直线电机结构的定子段。
进一步的,***装置还包括:通信收发线圈;
直线电机结构的转子包括直线电机转子、车辆感应发电线圈;
车辆感应发电线圈,用于与直线电机结构的定子段的车辆感应发电功率信息耦合产生发电功率;
通信收发线圈,用于与直线电机结构的定子段的列车通信信号耦合后,将耦合信号传输至信号解调器,使得信号解调器解调得到列车通信信号;
通信收发线圈,还可用于将车载信号传输至直线电机结构的定子段;
当通信通道为单通道时,通信收发线圈连接信号解调器的三相端子中任意两个端子;
当通信通道为双通道时,将信号解调器的三相端子中任意两个分别作为单个通信收发线圈的正线端子,另外一个作为共地端子。
由此可见,磁浮交通直线电机多重承载的方法能够利用直线电机结构构建直线电机牵引功率信息的承载通道,通过承载通道实现直线电机牵引功率信息之外的直线电机其它承载信息的传输,使得直线电机结构不仅仅只能用于传输车辆牵引功率,还能够传输直线电机其它承载信息。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其它的附图。
图1-1为本发明的磁浮交通直线电机多重承载的***的一个框架图;
图1-2为本发明的磁浮交通直线电机多重承载的方法的一个实施例的流程示意图;
图2为现有的车载发电供电方案的结构示意图;
图3为现有的非接触供电方案的结构示意图;
图4为现有的高速磁浮线列车控制用车地通信架构图;
图5为传统轨道交通列车控制用车地通信架构图;
图6为本发明的磁浮交通直线电机多重承载的方法的另一个实施例的流程示意图;
图7为本发明的磁浮交通直线电机多重承载的***的另一个框架图;
图8-图18都为本发明的磁浮交通直线电机多重承载的***的框架图;
图19为本发明的磁浮交通直线电机多重承载的方法的又一个实施例的流程示意图;
图20为FSK典型波形图;
图21为本发明的单通道通信感应线圈的磁浮交通直线电机多重承载的***的框架图;
图22为本发明的双通道通信感应线圈的磁浮交通直线电机多重承载的***的框架图;
图23为本发明的牵引变流组件和发电输出变流组件集成的磁浮交通直线电机多重承载的***的框架图;
图24为本发明的牵引变流组件和通信变流组件集成的磁浮交通直线电机多重承载的***的框架图;
图25为本发明的牵引变流组件、发电输出变流组件和通信变流组件集成的磁浮交通直线电机多重承载的***的框架图;
图26为本发明的充电桩进行磁浮列车充电的示意图;
图27为本发明的具有第一带通滤波器的磁浮交通直线电机多重承载的***的框架图;
图28为本发明的具有第二带通滤波器的磁浮交通直线电机多重承载的系 统的框架图;
图29为本发明的具有第三带通滤波器的磁浮交通直线电机多重承载的***的框架图。
具体实施方式
本发明的核心是提供一种磁浮交通直线电机多重承载的方法及***装置,利用现有的直线电机结构承载车辆牵引功率及其它承载信息。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明主要应用于磁浮交通领域,在背景技术中,论述了磁浮列车技术的直线电机牵引技术,但是现有的磁浮列车安装在车辆上的转子及安装在地面轨道上的定子段仅用于承载车辆牵引功率。
结合图1-1所示的磁浮交通直线电机多重承载的***的框架图,在图1-1中磁浮列车的直线电机所采用的技术和结构为现有的,如图1-2所示,本发明实施例提供一种磁浮交通直线电机多重承载的方法,包括:
101、生成直线电机牵引功率信息及直线电机其它承载信息;
本实施例中,直线电机牵引功率信息是依据现有的技术,按照磁浮列车的牵引需求生成的,直线电机其它承载信息是除了牵引功率之外的其它信息,在本发明中具体可以是发电功率及列车通信信号等。
102、利用直线电机结构构建的直线电机牵引功率信息的承载通道传输直线电机其它承载信息。
本实施例中,直线电机结构采用的是现有的已经应用的方案,即在地面轨道安装直线电机定子,在磁浮列车上安装直线电机转子,从而构建了直线电机牵引功率的承载通道,在本发明中,利用现有的直线电机结构,在构建的直线电机牵引功率的承载通道之上还可以传输直线电机其它承载信息,例如,直线 电机其它承载信息是车辆感应发电功率信息时,能够实现车辆的发电;直线电机其它承载信息是列车通信信号时,能够实现车辆与地面的通信。
在图1-1和图1-2所示的实施例中增加直线电机其它承载信息是因为现有的磁浮列车的技术中存在需要克服的技术难题,具体如下:
一、车辆的取电方式;
目前车辆取电方式需要在可能的停车区铺设供电轨,换句话说,列车只能停靠在预定的停车区间,这限制了列车应对紧急事故尤其是应对线路突发自然灾害的能力。如图2所示,201表示定子线圈绕组,202表示定子齿槽结构-槽,203表示定子齿槽结构-齿,204表示车载发电机绕组,205表示励磁磁极磁极,206表示励磁线圈,207表示行波磁场。
现有的取电方案1为:停车或低速时采用供电轨与受流靴的接触式供电,中速和高速时采用齿槽发电(非接触式)供电,具体是,当车辆停站时、或者车辆减速处于低速阶段,通过线路旁的供电轨与车辆受电靴接触向车辆供电;当车辆速度高于一定速度时,由车辆上的直线电机转子(也称动子,主要为悬浮磁极)上附设的感应发电线圈切割行波磁场磁力线,根据电磁感应原理产生电能,向车辆进行供电。这种方案要求在车站区和临时停车区设有足够长的供电轨,车辆设有受流靴。
现有的取电方案2为:停车和低速时用一套感应线圈和变流器设备实现非接触式供电,中速和高速时仍然采用传统方案1的中速和高速方案。具体是,停车和低速时创新了一种如图3所示的非接触式供电方案,其中,301为感应线圈之初级端发射线圈,302为感应线圈之车载次级端接收线圈,303为高频电缆,304为功率变换模块,305为变流器装置,306为感应线圈初级端安装基座,307为悬浮磁极模块,308为同步直线电机定子模块,309为轨道基础结构,取消了方案1中的线路旁边的供电轨和车辆上的受流靴,在车辆上设有感应线圈,在车站区和临时停车区的相当长的一段线路上设有感应线圈和为感应线圈供电的变流器装置等配套设备。当车辆停站时,或者车辆处于低速段,线路上的变流器及感应线圈向车辆上的感应线圈进行非接触供电;当车辆速度高于一定速度时,仍然采用传统方案1的中速和高速方案。
但是,方案1的不足在于,车辆只能停靠车站区或临时停车区,而且受流靴在高速时会增加车辆的风阻,线路成本高;方案2的不足在于,地面***设备多,车辆要增加接收线圈及配套设备,加重了承重负荷,***复杂、线路成本高,只在车站区和临时停车区铺设,不宜全线铺设,车辆也只能停靠在车站区或临时停车区。
二、车地通信。
现有的车地通信方案为:如图4所示为高速磁浮线列车控制用车地通信架构,其不足在于列车控制完全依赖该车地通信***,没有独立的后备通信。如图5所示为传统轨道交通列车控制用车地通信架构,有一套轨道电路传递控制信号作为备用,当无线通信失效时,轨道电路控制信号支持列车以速度降级方式继续运行;当轨道电路控制信号也同时故障时,可以在人工调度指挥下司机目视控车慢速运行。现行的高速磁浮交通***,列车运行时完全悬浮在空中,车地通信采用微波通信,微波通信有信道冗余。其不足之处在于,磁浮交通***完全依赖车地微波通信,没有独立的后备通信,一旦微波通信信道全部故障,列车无法继续运行,只能停车。
为了解决以上现有技术中一和二的取电和通信的问题,本发明中将直线电机其它承载信息的重点放在车辆感应发电功率信息和/或列车通信信号,需要说明的是,在具体实施时,不仅仅只限制在车辆感应发电功率信息和/或列车通信信号,还可以包括其它类型的信息,具体不做限定。
本发明的实施例以3种情况进行论述,(一)、直线电机其它承载信息为车辆感应发电功率信息;(二)、直线电机其它承载信息为列车通信信号;(三)、直线电机其它承载信息包括车辆感应发电功率信息和列车通信信号。
下面分别通过方法及***装置相结合的方式,通过具体实施例对以上(一)、(二)及(三)的3种情况进行分别描述:
(一)、直线电机其它承载信息为车辆感应发电功率信息;
基于现有的理论,只要在地面直线电机的定子段上有交变的电流,而且与运动车辆直线电机转子上的感应发电线圈存在电磁空间相对速度,车辆直线电机的转子上附设的感应发电线圈就会感应出交变的电流,就可以向车辆实施感 应发电。但实际上,当车辆处于停车状态时,地面直线电机的定子段没有牵引电压电流功率,车辆直线电机的转子上感应发电线圈没有感应电压电流功率;当车辆启动或低速状态时,施加在地面直线电机的定子段上的电流的频率和幅值都不足以让车辆直线电机的转子上附设的感应发电线圈感应出足够高而可用的交变的电压电流功率,我们把这种需要足够高电压电流功率值称为阈值,这个阈值又对应到感应发电的车辆速度阈值,即当车辆速度高于速度阈值时,感应发电线圈可感应出足够的电能。
上述原理需要一个前提,根据法拉第电磁感应定律,直线电机的定子段电磁场与附设在直线电机的转子里的感应发电线圈要有一个电磁空间相对速度,才能有感应发电。现有磁浮交通***采用的是同步直线电机。事实上,车辆上直线电机的转子内附设的感应发电线圈磁场的空间速度等于直线电机定子基波的速度,车辆直线电机的转子里附设的感应发电线圈利用的是感应直线电机定子齿槽电磁场的变化来得到发电电压,其频率是直线电机定子基波频率的数倍,因此,两者始终存在着数倍的速度差,这为车辆上直线电机的转子内附设的感应发电线圈发电提供了必要的基础条件。我们称此方法为齿槽发电。但是,齿槽发电仍然只适合较高速度。因为速度低时,齿槽电磁场的幅值小,变化小,感应发电线圈切割磁力线的速度低,感应发电线圈上的感应电压电流功率不能满足车辆需要;停车时,齿槽发电为零。
因此,本发明需要解决的问题是,如果能在停车和低速时,即车辆速度低于速度阈值时,也能够让感应发电线圈获得高于电压阈值的电压,那么就能解决磁浮列车在全线路供电,使列车可以在线路的任意处停车,解放了原有的特定区域停车的限制,取消了线路旁边的供电轨和车辆上的受流靴,取消了最后的摩擦部件,大幅降低了建设成本,也降低了维护成本,减少了车辆风阻和重量。
基于以上的思路,如图6所示,本发明实施例提供一种磁浮交通直线电机多重承载的方法,包括:
601、根据磁浮列车的牵引需求生成直线电机牵引功率信息;
本实施例中,现有的直线电机结构,如图7所示,安装于地面轨道的直线电机的定子段701和安装于磁浮列车的直线电机的转子702。直线电机牵引功 率信息利用现有的牵引变流组件,具体的牵引变流组件可以为牵引变流器,在实际应用中采用的是三相变流器,将直线电机牵引功率通过三相方式接入到直线电机的定子段的三相端子,按照磁浮列车的牵引需求生成。
602、根据发电控制函数生成车辆感应发电功率信息;
本实施例中,车辆感应发电功率信息的生成一般是通过发电输出变流组件,发电输出变流组件具体可以是发电输出变流器,发电输出变流器的类型可以是三相、单相或者双单相,根据发电控制函数的计算方式具体如下:
根据发电控制函数的输出端电压公式
Figure PCTCN2020085070-appb-000003
计算得到输出端电压U,m表示直线电机的定子段的由m段长定子段组成,L表示直线电机的定子段的总电感,L n表示第n段长定子段的电感,1≤n≤m,R n表示L n对应的第n段长定子段的定子绕组电阻,i表示定子电流,
Figure PCTCN2020085070-appb-000004
为磁浮列车在定子绕组上产生的反电动势;
根据磁浮列车的牵引需求和发电控制函数构造出输出牵引力公式
F traction(t)=A*K V+B*(1-K V)
计算得到输出牵引力F traction(t),A和B为与定子电流i及磁浮列车的车辆结构相关的参数,K v表示速度因子;
根据发电控制函数构造输出电压公式
U generation=C*(1-K V)+D*V*K V
计算得到输出电压U generation,C为与定子电流i及磁浮列车的车辆结构相关的参数,D为与磁浮列车的车辆结构相关的参数,V表示磁浮列车的车辆速度;
根据输出牵引力F traction(t)及V的乘积计算得到牵引功率f(t) traction
将输出电压U generation乘以车辆感应发电线圈的电流,计算得到车辆感应发电功率f(t) generation
或,
将输出电压U generation进行平方之后,除以车辆感应发电线圈接收回路的等效电阻,计算得到车辆感应发电功率f(t) generation
车辆感应发电功率f(t) generation不影响磁浮列车的正常牵引功能,车辆感应发电功率f(t) generation即作为车辆感应发电功率信息。
车辆感应发电功率信息和直线电机牵引功率信息分别处于不同的频段区间,从而车辆感应发电的时候,既不形成导致车辆行进的磁场,也不形成导致车辆有感振动的磁场,从而不会影响磁浮列车的正常牵引功能。
在以上发电控制函数的基础上,速度因子K v具体的设置规则如下:
根据预设的控制策略设定磁浮列车的车辆速度临界值V 0及速度因子K v的加权系数值K,车辆速度临界值V 0不小于零且不大于车辆速度最大值V max,表达式为V o∈[0,V max],K∈[0,1];
根据车辆速度临界值V 0,确定磁浮列车当前车辆速度V的速度因子K v,加权系数值K的设定可以是任意大于0的值;
根据当前车辆速度V与车辆速度临界值V 0的比较判断是否满足齿槽发电需求,即速度因子K v等于K的时候,表示当前车辆速度V大于车辆速度临界值V 0,此时满足了齿槽发电的需求;速度因子K v等于0的时候,表示当前车辆速度V小于车辆速度临界值V 0,此时不满足齿槽发电的需求;
当不满足齿槽发电需求时,通过车辆感应发电功率信息进行发电,即通过附设在转子的感应发电线圈与定子段的耦合进行车辆感应发电;
当满足齿槽发电需求时,切除车辆感应发电功率信息的发电,改为现有的齿槽发电。
603、利用直线电机结构构建的直线电机牵引功率信息的承载通道传输车辆感应发电功率信息。
本实施例中,利用的是现有的图7所示的直线电机结构,安装于地面轨道的直线电机的定子段701和安装于磁浮列车的直线电机的转子702,在本发明的实际应用中,如果在转子702已经附加有感应发电线圈,就无需增设,如果在转子702没有感应发电线圈,则在转子702附加感应发电线圈。从而实现了在现 有直线电机结构的基础上构建了直线电机牵引功率信息及车辆感应发电功率信息的承载通道。利用已有的直线电机牵引功率信息的承载通道增加车辆感应发电功率信息的传输,而在具体实施时,利用傅立叶变换,能将满足一定条件的某个函数表示成三角函数(正弦或余弦函数)或者它们的积分的线性组合,表达式一般如下:
Figure PCTCN2020085070-appb-000005
从根本上说,把直线电机结构作为车辆牵引用的电压电流功率、车辆发电用的电压电流功率的公用传输通道,也就是让直线电机结构多重承载牵引功率信息和车辆发电功率信息,直线电机结构的输出构成如下所示:
f(t) all=f(t) traction+f(t) generation
Figure PCTCN2020085070-appb-000006
表示直线电机结构所承载的所有信息,f(t) traction表示直线电机牵引功率,f(t) generation表示车辆感应发电功率。
由上可以,与现有技术中的方案1和方案2相比较,在停车和低速时,即车辆速度低于速度阈值时,也能够让附加在转子的感应发电线圈获得高于电压阈值的电压,那么就能解决磁浮列车在全线路感电,使列车可以在线路的任意处停车,解放了原有的特定区域停车的限制,取消了线路旁边的供电轨和车辆上的受流靴,取消了最后的摩擦部件,大幅降低了建设成本,也降低了维护成本,减少了车辆风阻和重量。
在以上图6所示的实施例中,只描述利用直线电机结构的牵引功率承载通道传输车辆感应发电功率信息的原理,但是直线电机结构是如何实现信息承载的并未具体说明,以下对步骤603中通过承载通道实现直线电机其它承载信息的传输进行说明。
直线电机结构的承载通道承载传输车辆感应发电功率信息的方式有三种,三相方式、单相方式及双单相方式,对每一种方式进行详细说明,具体如下:
(1)、通过三相方式将车辆感应发电功率信息接入直线电机结构的定子段,通过直线电机结构的转子接收车辆感应发电功率信息;
在三相方式中,具体的又分为以下几种连接方式:
第(1.1)种,如图8所示,牵引变流组件802输出的是直线电机牵引功率,发电输出变流组件803输出的是车辆感应发电功率,需要说明的是,在图中牵引变流组件802和发电输出变流组件803的示意图是以变流器的形式体现的,并且都是三相变流器,在实际应用中,还可以是其它形式,只需要具有输入端、具备发电控制函数的处理器、输出端及与输出端连接的反馈结构,反馈结构用于动态地调整输出端的输出功率及信息。在牵引变流组件802接入直线电机的定子段之前,还需要通过牵引独立变压组件801实现变压处理,实现对整个直线电机结构的保护,需要说明的是,变压处理是根据实际需要调整电压,有可能是降压,也有可能是升压。发电输出变流组件1003的输出端通过三相方式直接接入直线电机结构的定子段,通过直线电机结构的转子附加的车辆感应发电线圈耦合,就能接收得到车辆感应发电功率,将车辆感应发电功率再传送给车辆储电设备或者直接供设备使用,实现对磁浮列车的供电;
第(1.2)种,如图9所示,牵引独立变压组件901、牵引变流组件902、发电输出变流组件903的论述与第(1.1)种中的相同,但是在发电输出变流组件903接入直线电机结构的定子段之前,还需要增加发电独立变压组件904,发电独立变压组件904实现对车辆感应发电功率的变压处理,对直线电机结构起到保护作用;
第(1.3)种,如图10所示,牵引变流组件1002、发电输出变流组件1003的论述与第(1.1)种中的相同,但是在发电输出变流组件1003和牵引变流组件1002接入直线电机结构的定子段之前,还需要增加独立原边绕组变压组件1001,牵引变流组件1002和发电输出变流组件1003接入到独立原边绕组变压组件1201的原边,独立原边绕组变压组件1001的副边接入到直线电机结构的定子段。
(2)、通过单相方式将车辆感应发电功率信息接入直线电机结构的定子段,通过直线电机结构的转子接收车辆感应发电功率信息;
在单相方式中,具体的又分为以下几种连接方式:
第(2.1)种,如图11所示,牵引变流组件1102输出的是直线电机牵引功率,发电输出变流组件1103输出的是车辆感应发电功率,需要说明的是, 在图中牵引变流组件1102和发电输出变流组件1103的示意图是以变流器的形式体现的,牵引变流组件1102是三相变流器,发电输出变流组件1103是单相变流器,在实际应用中,还可以是其它形式,只需要具有输入端、具备发电控制函数的处理器、输出端及与输出端连接的反馈结构,反馈结构用于动态的调整输出端的输出功率及信息。在牵引变流组件1102接入直线电机的定子段之前,还需要通过牵引独立变压组件1101实现变压处理。发电输出变流组件1103的输出端通过单相方式直接接入直线电机结构的定子段直的三相端子中的任意两个端子,即在U、V、W三个端子中选择任意两个端子接入,通过直线电机结构的转子附加的车辆感应发电线圈耦合,就能接收得到车辆感应发电功率,将车辆感应发电功率再传送给车辆储电设备,实现磁浮列车的发电;
第(2.2)种,如图12所示,牵引独立变压组件1201、牵引变流组件1202、发电输出变流组件1203的论述与第(2.1)种中的相同,但是在发电输出变流组件1203接入直线电机结构的定子段之前,还需要增加发电独立变压组件1204,发电独立变压组件1204实现对车辆感应发电功率的变压处理;
第(2.3)种,如图13所示,牵引变流组件1302、发电输出变流组件1303的论述与第(2.1)种中的相同,但是在发电输出变流组件1303和牵引变流组件1302接入直线电机结构的定子段之前,还需要增加独立原边绕组变压组件1301,牵引变流组件1302和发电输出变流组件1303接入到独立原边绕组变压组件1301的原边,独立原边绕组变压组件1301的副边接入到直线电机结构的定子段。
(3)、通过双单相方式将车辆感应发电功率信息接入直线电机结构的定子段,通过直线电机结构的转子接收车辆感应发电功率信息。
在双单相方式中,具体的又分为以下几种连接方式:
第(3.1)种,如图14所示,牵引变流组件1402输出的是直线电机牵引功率,发电输出变流组件因为是双单相的,因此具有两个1403和1404,输出的是车辆感应发电功率,需要说明的是,在图中牵引变流组件1402和发电输出变流组件1403和1404的示意图是以变流器的形式体现的,牵引变流组件1402是三相变流器,发电输出变流组件1403和1404是双单相变流器,在实际应用中,还可以是其它形式,只需要具有输入端、具备发电控制函数的处理 器、输出端及与输出端连接的反馈结构,反馈结构用于动态的调整输出端的输出功率及信息。在牵引变流组件1402接入直线电机的定子段之前,还需要通过牵引独立变压组件1401实现变压处理。发电输出变流组件1403和1404分别选取U、V、W三端子中的任意一个端子为共地端,另外两个端子则分别为两个发电输出变流组件1403和1404输出的正线端子,通过直线电机结构的转子附加的车辆感应发电线圈耦合,就能接收得到车辆感应发电功率,将车辆感应发电功率再传送给车辆储电设备,实现磁浮列车的发电;
第(3.2)种,如图15所示,牵引独立变压组件1501、牵引变流组件1502、发电输出变流组件1503和1504的论述与第(3.1)种中的相同,但是在发电输出变流组件1503和1504接入直线电机结构的定子段之前,还需要增加发电独立变压组件1505和1506,发电独立变压组件1505和1506实现对车辆感应发电功率的变压处理;
第(3.3)种,如图16所示,牵引独立变压组件1601、牵引变流组件1602、发电输出变流组件1603和1604的论述与第(3.1)种中的相同,但是在发电输出变流组件1603和1604接入直线电机结构的定子段之前,还需要增加独立原边绕组变压组件1605,发电输出变流组件1603和1604接入到独立原边绕组变压组件1605的原边,独立原边绕组变压组件1605的副边接入到直线电机结构的定子段;
第(3.4)种,如图17所示,牵引独立变压组件1701、牵引变流组件1702、发电输出变流组件1703和1704的论述与第(3.1)种中的相同,而与以上(3.1)、(3.2)、(3.3)中不同之处在于,发电输出变流组件1703和1704是进行串联的,那么在串联之后,双单相方式的两个车辆感应发电功率信息,实际上已经串联为了一个了,那么只需要发电输出变流组件1703的输出端接入到直线电机结构的定子段的三相端子U、V、W中的任意两个端子;或,如图18所示,发电输出变流组件1803和1804在串联之后,通过发电独立变压组件1805接入到直线电机结构的定子段的三相端子U、V、W中的任意两个端子。
在以上(一)中描述了直线电机其它承载信息为车辆感应发电功率信息,下面通过实施例对直线电机其它承载信息为列车通信信号进行详细说明。
以上二的车地通信论述中,已经描述了图4所示的高速磁浮线列车控制用车地通信架构,缺点是列车控制完全依赖该车地通信***,没有独立的后备通信;图5所示的传统轨道交通列车控制用车地通信架构,有一套轨道电路传递控制信号作为备用,当无线通信失效时,轨道电路控制信号支持列车以速度降级方式继续运行;当轨道电路控制信号也同时故障时,可以在人工调度指挥下司机目视控车慢速运行。现行的高速磁浮交通***,列车运行时完全悬浮在空中,车地通信采用微波通信,微波通信有信道冗余。其不足之处在于,磁浮交通***完全依赖车地微波通信,没有独立的后备通信,一旦微波通信信道全部故障,列车无法继续运行,只能停车。
为了增强磁浮列车的***安全性和可靠性,需要增加一套独立的列车通信信号传输通道,因此,本发明可以利用直线电机结构构建的直线电机牵引功率承载通道来传输列车通信信号。
基于以上的思路,如图19所示,本发明实施例提供一种磁浮交通直线电机多重承载的方法,包括:
1901、根据磁浮列车的牵引需求生成直线电机牵引功率信息;
本实施例中,具体参考图6所示实施例中步骤601的描述。
1902、根据通信控制函数生成列车通信信号;
本实施例中,由于地面和磁浮列车之间的传输都是数字化通信信息,而承载通道传输的是交流电流和电压,那么需要通过通信控制函数进行数模转换,得到模拟化的列车通信信号,通信控制函数基于移频键控技术,列车通信信号不影响浮列车的正常牵引功能,本实施例中具体采用典型的移频键控(Frequency Shift Keying,FSK)通信函数为例,在实际应用中,包括但不限于本典型函数,移频键控技术广泛应用于轨道交通领域,利用载波的频率变化来传递数字信息。载波的频率随二进制基带信号在f1和f2两个频率点间变化。FSK典型波形如图22所示,一般表达式如下:
Figure PCTCN2020085070-appb-000007
在图20中,2FSK信号的模型(a)可以分解成波形(b)和波形(c),看成两个不同载频的2ASK信号的叠加。因此,2FSK信号的时域表达式又可以写成
Figure PCTCN2020085070-appb-000008
其中,g n(t)表示单个矩形脉冲,T s表示脉冲持续时间,
Figure PCTCN2020085070-appb-000009
和θ n分别是第n个信号码元的初始相位,通常可令其为零,因此,可以对以上公式进行简化,得到的表达式如下:
e 2FSK(t)=s 1(t)cosω 1t+s 2(t)cosω 2t,
Figure PCTCN2020085070-appb-000010
Figure PCTCN2020085070-appb-000011
而2FSK信号经过限幅、微分、整流后形成与频率变化相对应的尖脉冲序列,经过信号处理电路完成频率-幅度变换,可以还原出数字信号“1”和“0”。因此,将该列车通信信号施加到直线电机的定子段之后,在直线电机的转子按照以上理论进行解析,就能还原得到列车通信信号。
1903、利用直线电机结构构建的直线电机牵引功率信息的承载通道传输列车通信信号。
本实施例中,如果需要接收到列车通信信号,那么就需要专门用于解调信号的信号解调器,以及通信收发线圈,需要说明的是,通信收发线圈可以利用已有的车辆感应发电线圈进行复用,由于限定了车辆感应发电功率信息和列车通信信号是使用不同频段区间的,那么信号解调器只需要对列车通信信号对应的频段区间进行解调,就能得到列车通信信号。通信收发线圈可以安装在磁浮列车的车载运控主机和列车微波通信天线同一车辆上;也可以安装在磁浮列车的任意车辆上,根据需求接入列车控制网络,更具体的,可以安装在直线电机的转子的转子上、磁浮架或车体上。
需要说明的是,输出列车通信信号的通信变流组件接入到直线电机结构的定子段的方式,也具有三相方式、单相方式或双单相方式,具体到三相方式的连接方式可以参考以上(一)中,通过三相方式将车辆感应发电功率信息接入 直线电机结构的定子段的第(1.1)种、第(1.2)种和第(1.3)种,只需要将发电输出变流组件替换为通信变流组件;具体到单相方式的连接方式可以参考以上(一)中,通过三相方式将车辆感应发电功率信息接入直线电机结构的定子段的第(2.1)种、第(2.2)种和第(2.3)种,只需要将发电输出变流组件替换为通信变流组件;具体到双单相方式的连接方式可以参考以上(一)中,通过三相方式将车辆感应发电功率信息接入直线电机结构的定子段的第(3.1)种、第(3.2)种、第(3.3)种和第(3.4)种,只需要将发电输出变流组件替换为通信变流组件。即只需要将图8-图18中的发电输出变流组件替换为通信变流组件,将车辆感应发电功率替换为列车通信信号。
需要说明的是,通信感应线圈可以是单通道或者双通道的方式,单通道方式下,通信感应线圈只需要一个,具体连接方式如图21所示,通信收发线圈连接信号解调器的三相端子U、V、W中任意两个端子;双通道方式下,通信感应线圈有两个,具体连接方式如图22所示,将信号解调器的三相端子U、V、W中任意两个分别作为单个通信收发线圈①和通信收发线圈②的正线端子,另外一个作为共地端子。为了实现列车通信信号的接收和发送,在车载控制***和信号解调器还需要通信协议芯片的支持,而在直线电机的定子段的单级变换器、两级变换器及三级及以上的变换器的列车控制信息无线通信的调制解调的拓扑结构,所使用的高低压变换器的工作频率和带宽满足通信需求。这种结构支持以下但不限于FSK、Lonworks、RS485/232、MVB/WTB、以太网、CAN等通信制式。
在以上的(一)中具体说明了,直线电机其它承载信息为车辆感应发电功率信息的情况,并且直线电机牵引功率和车辆感应发电功率都是由牵引变流组件和发电输出变流组件独立输出的;在(二)中具体说明了,直线电机其它承载信息为列车通信信号,并且直线电机牵引功率和列车通信信号都是由牵引变流组件和通信变流组件独立输出的,以下(三)中还描述了牵引变流组件和发电输出变流组件进行集成的情况,牵引变流组件和通信变流组件进行集成的情况,及牵引变流组件、发电输出变流组件和通信变流组件三者进行集成的情况。
(三)、直线电机其它承载信息包括车辆感应发电功率信息和列车通信信号。
由于已经限定了直线电机牵引功率信息、车辆感应发电功率信息以及列车通信信号分别处于的不同频段区间,并且限定直线电机牵引功率信息所处的频段区间低于车辆感应发电功率信息所处的频段区间,车辆感应发电功率信息所处的频段区间低于列车通信信号所处的频段区间,具体的直线电机牵引功率从零到数十兆伏安,由车辆感应发电功率从零到数百千瓦,由双向传送的列车通信信号不以功率为衡量而是以信息的实时无误传送来衡量。
那么在进行集成的时候,只需要在直线电机牵引功率信息的作为基带的基础上,增加特定频率的谐波,作为车辆感应发电功率信息以及列车通信信号。具体的集成方式包括图23、图24、图25三种,分别进行说明:
如图23所示,牵引发电综合变流组件2501包含了牵引变流组件2502及发电输出变流组件2503的功能,对直线电机牵引功率信息与车辆感应发电功率信息进行合成处理得到第一合成信息,通过直线电机的定子段发送第一合成信息,并通过直线电机结构的转子的转子耦合接收到直线电机牵引功率,通过车辆感应发电线圈耦合接收到车辆感应发电功率;
或,
如图24所示,牵引通信综合变流组件2401包含了牵引变流组件2402及通信变流组件2403的功能,对直线电机牵引功率信息与列车通信信号进行合成处理得到第二合成信息,通过直线电机的定子段发送第二合成信息,并通过直线电机结构的转子的转子耦合接收到直线电机牵引功率,通过通信收发线圈耦合,信号解调器解调得到列车通信信号;
或,
如图25所示,牵引通信综合变流组件2501包含了牵引变流组件2502及发电输出变流组件2503及通信变流组件2504的功能,对直线电机牵引功率信息、车辆感应发电功率信息、列车通信信号进行合成处理得到第三合成信息,通过直线电机的定子段发送第三合成信息,并通过直线电机结构的转子的转子耦合接收到直线电机牵引功率,通过车辆感应发电线圈耦合接收到车辆感应发电功率,通过通信收发线圈耦合,信号解调器解调得到列车通信信号。
需要说明的是,在以上图23、图24及图25中均具有独立变压组件,在实际应用中也可以直接接入到直线电机的定子段,不需要图中的独立变压组件。
可选的,在以上实施例的基础上,本发明还提供一种对磁浮列车进行充电的方法,即当磁浮列车落车停站或检修时,使用充电桩进行充电。因为,当磁浮列车长时间落车停站时,或者车辆停在检修库时,水平铺设的直线电机定子与车辆感应发电线圈的耦合距离显著变大(例如,从10mm增大到25mm),此时车辆感应发电线圈能够发生耦合的磁通面变小,发电效率变低,可以暂停以上的车辆感应发电,改用更为高效的充电桩充电模式。如图26所示,具有充电桩,充电桩通过电缆与磁浮列车的车体连接,具体的连接方式是通过车载外部电源输入端口,车载外部电源输入端口一般是磁浮列车的首尾都要设置,于此同时,为了保证磁浮列车的可靠控制,列车通信信号的通道必须保证正常。
可选的,在以上实施例中,直线电机结构的类型包括单边直线电机、双边直线和多边直线电机,直线电机的转子的磁性类型包括永磁转子、电励磁转子和永磁与电励磁混合型的转子。
可选的,在以上实施例的基础上,为了保证直线电机所承载的牵引功率、发电功率和列车通信信号都是独立的,还需要针对每一个信息设置对应的带通滤波器,从而保证三者独立控制。
如图27所示,第一带通滤波器对直线电机牵引功率信息及直线电机其它承载信息进行第一带通滤波处理,允许直线电机牵引功率信息及制动和牵引控制相关的信号的通过,具体可以是直线电机牵引功率的基波及其有效谐波、列车制动能量及信息、牵引控制开关频率的信号,实现在多重承载条件下对直线电机控制反馈信号的解耦,对多重承载的其它信号的去耦,以保证直线电机牵引的控制质量,此处能量及信息经滤波器由在地面变流器和车载设备间传双向传递,需要说明的是,由车载设备向地面的变流器回传的主要是制动能量以及控制信息;
如图28所示,第二带通滤波器对直线电机牵引功率信息及直线电机其它承载信息进行第二带通滤波处理,允许车辆感应发电功率信息及发电控制相关的信号的通过,具体可以是车辆感应发电功率的基波及其有效谐波、发电控制的开关频率的信号,实现在多重承载条件下对车辆发电控制反馈信号的解耦;对多重承载的其它信号的去耦,以保证车辆发电的控制质量;
如图29所示,第三带通滤波器对直线电机牵引功率信息及直线电机其它承载信息进行第三带通滤波处理,允许列车通信信号及列车控制相关的信号的通过,具体可以是列车通信信号的调制波及其有效谐波、开关频率的信号,实现在多重承载条件下对列车通信信号的解耦,对多重承载的其它信号的去耦,以保证列车通信信号的传送质量。此处列车通信信号经滤波器由在地面变流器和车载设备间传双向传递。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (51)

  1. 一种磁浮交通直线电机多重承载的方法,其特征在于,包括:
    生成直线电机牵引功率信息及直线电机其它承载信息;
    利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息。
  2. 根据权利要求1所述的方法,其特征在于,所述直线电机其它承载信息包括车辆感应发电功率信息和/或列车通信信号,
    所述生成直线电机牵引功率信息及直线电机其它承载信息,包括:
    根据磁浮列车的牵引需求生成直线电机牵引功率信息;
    根据发电控制函数生成车辆感应发电功率信息;
    和/或,
    根据通信控制函数生成列车通信信号;
    所述车辆感应发电功率信息、所述列车通信信号及所述直线电机牵引功率信息分别处于不同的频段区间。
  3. 根据权利要求2所述的方法,其特征在于,所述根据发电控制函数生成车辆感应发电功率信息,包括:
    根据发电控制函数的输出端电压公式
    Figure PCTCN2020085070-appb-100001
    计算得到输出端电压U,所述m表示所述直线电机的定子段的由m段长定子段组成,所述L表示所述直线电机的定子段的总电感,所述L n表示第n段长定子段的电感,1≤n≤m,所述R n表示所述L n对应的第n段长定子段的定子绕组电阻,所述i表示定子电流,所述
    Figure PCTCN2020085070-appb-100002
    为所述磁浮列车在定子绕组上产生的反电动势;
    根据所述磁浮列车的牵引需求和所述发电控制函数构造出输出牵引力公式
    F traction(t)=A*K V+B*(1-K V)
    计算得到输出牵引力F traction(t),所述A和所述B为与所述定子电流i及所述磁浮列车的车辆结构相关的参数,所述K v表示速度因子;
    根据所述发电控制函数构造输出电压公式
    U generation=C*(1-K V)+D*V*K V
    计算得到输出电压U generation,所述C为与所述定子电流i及所述磁浮列车的车辆结构相关的参数,所述D为与所述磁浮列车的车辆结构相关的参数,所述V表示所述磁浮列车的车辆速度;
    根据所述输出牵引力F traction(t)及所述V的乘积计算得到牵引功率f(t) traction
    将所述输出电压U generation乘以车辆感应发电线圈的电流,计算得到车辆感应发电功率f(t) generation
    或,
    将所述输出电压U generation进行平方之后,除以车辆感应发电线圈接收回路的等效电阻,计算得到车辆感应发电功率f(t) generation
    所述车辆感应发电功率f(t) generation不影响所述磁浮列车的正常牵引功能。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    根据预设的控制策略设定所述磁浮列车的车辆速度临界值及所述速度因子K v的加权系数值,所述车辆速度临界值不小于零且不大于车辆速度最大值;
    根据所述车辆速度临界值,确定所述磁浮列车当前车辆速度的所述速度因子K v
    根据所述当前车辆速度与所述车辆速度临界值的比较判断是否满足齿槽发电需求;
    当不满足齿槽发电需求时,通过所述车辆感应发电功率信息进行发电;
    当满足齿槽发电需求时,切除所述车辆感应发电功率信息的发电,改为现有的齿槽发电。
  5. 根据权利要求2所述的方法,其特征在于,所述根据通信控制函数生成列车通信信号,包括:
    获取数字化通信信息;
    通过通信控制函数对所述数字化通信信息进行数模转换,得到模拟化的列车通信信号,所述列车通信信号不影响所述磁浮列车的正常牵引功能及车辆感应发电功能。
  6. 根据权利要求1所述的方法,其特征在于,所述利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息,包括:
    通过三相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段;
    通过所述直线电机结构的转子或另设的通信收发线圈,接收所述车辆感应发电功率信息和/或所述列车通信信号。
  7. 根据权利要求1所述的方法,其特征在于,所述利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息,包括:
    通过单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段;
    通过所述直线电机结构的转子或另设的通信收发线圈,接收所述车辆感应发电功率信息和/或所述列车通信信号。
  8. 根据权利要求1所述的方法,其特征在于,所述利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息,包括:
    通过双单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段;
    通过所述直线电机结构的转子或另设的通信收发线圈,接收所述车辆感应发电功率信息和/或所述列车通信信号。
  9. 根据权利要求6所述的方法,其特征在于,所述通过三相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    将所述车辆感应发电功率信息和/或所述列车通信信号通过三相方式直接接入所述直线电机结构的定子段。
  10. 根据权利要求6所述的方法,其特征在于,所述通过三相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号通过三相方式接入所述直线电机结构的定子段。
  11. 根据权利要求6所述的方法,其特征在于,所述通过三相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对所述车辆感应发电功率信息和/或所述列车通信信号进行独立原边绕组变压处理;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号通过三相方式接入所述直线电机结构的定子段。
  12. 根据权利要求7所述的方法,其特征在于,所述通过单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    将所述车辆感应发电功率信息和/或所述列车通信信号通过单相方式直接接入所述直线电机结构的定子段的三相端子中的任意两个端子。
  13. 根据权利要求7所述的方法,其特征在于,所述通过单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号通过单相方式接入所述直线电机的定子段的三相端子中的任意两个端子。
  14. 根据权利要求7所述的方法,其特征在于,所述通过单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对单相方式的所述车辆感应发电功率信息和/或所述列车通信信号和进行独立原边绕组变压处理,将所述车辆感应发电功率信息和/或所述列车通信信号增加到所述直线电机牵引功率信息的三相中的任意两相上;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段。
  15. 根据权利要求8所述的方法,其特征在于,所述通过双单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    将所述车辆感应发电功率信息和/或所述列车通信信号通过双单相方式直接接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端。
  16. 根据权利要求8所述的方法,其特征在于,所述通过双单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端。
  17. 根据权利要求8所述的方法,其特征在于,所述通过双单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行独立原边绕组变压处理;
    将处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端。
  18. 根据权利要求8所述的方法,其特征在于,所述通过双单相方式将所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,包括:
    对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行串联处理;
    将串联处理后的所述车辆感应发电功率信息和/或所述列车通信信号直接接入所述直线电机结构的定子段的三相端子中的任意两个端子;
    或,
    将串联处理后的所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理,将处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段的三相端子中的任意两个端子。
  19. 根据权利要求1所述的方法,其特征在于,所述利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息,包括:
    对所述直线电机牵引功率信息与所述车辆感应发电功率信息进行合成处理得到第一合成信息,通过所述直线电机的定子段发送所述第一合成信息,并通过所述直线电机结构的转子接收到所述第一合成信息;
    或,
    对所述直线电机牵引功率信息与所述列车通信信号进行合成处理得到第二合成信息,通过所述直线电机的定子段发送所述第二合成信息,并通过所述直线电机结构的转子接收到所述第二合成信息;
    或,
    对所述直线电机牵引功率信息、所述车辆感应发电功率信息、所述列车通信信号进行合成处理得到第三合成信息,通过所述直线电机的定子段发送所述第三合成信息,并通过所述直线电机结构的转子接收到所述第三合成信息。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    对所述第一合成信息进行变压处理后,通过所述直线电机的定子段发送所述第一合成信息;
    或,
    对所述第二合成信息进行变压处理后,通过所述直线电机的定子段发送所述第二合成信息;
    或,
    对所述第三合成信息进行变压处理后,通过所述直线电机的定子段发送所述第三合成信息。
  21. 根据权利要求1所述的方法,其特征在于,当所述直线电机其它承载信息包括列车通信信号时,
    所述利用直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息,包括:
    通过三相方式、单相方式或双单相方式将所述列车通信信号接入所述直线电机结构的定子段,通过所述直线电机结构的转子,以双通道或者单通道的方式接收所述列车通信信号;
    通过双通道或者单通道的方式将所述列车通信信号接入所述直线电机结构的转子,通过所述直线电机结构的定子段接收到所述列车通信信号。
  22. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述磁浮列车落车停站或检修时,使用充电桩进行充电。
  23. 根据权利要求1所述的方法,其特征在于,
    所述直线电机结构的类型包括单边直线电机、双边直线和多边直线电机;
    所述直线电机的转子的磁性类型包括永磁转子、电励磁转子和永磁与电励磁混合型的转子。
  24. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第一带通滤波处理,允许所述直线电机牵引功率信息及制动和牵引控制相关的信号的通过。
  25. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第二带通滤波处理,允许所述车辆感应发电功率信息及发电控制相关的信号的通过。
  26. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第三带通滤波处理,允许所述列车通信信号及列车控制相关的信号的通过。
  27. 一种磁浮交通直线电机多重承载的***装置,其特征在于,包括:
    直线电机结构及配套的变流模块;
    所述直线电机结构包括设置于地面轨道的定子段及安装于磁浮列车的转子;
    所述变流模块生成直线电机牵引功率信息及直线电机其它承载信息,利用所述直线电机结构构建的所述直线电机牵引功率信息的承载通道传输所述直线电机其它承载信息。
  28. 根据权利要求27所述的***装置,其特征在于,所述直线电机其它承载信息包括车辆感应发电功率信息和/或列车通信信号,所述变流模块包括:
    牵引变流组件,用于根据所述磁浮列车的牵引需求生成直线电机牵引功率信息;
    发电输出变流组件,用于根据发电控制函数生成车辆感应发电功率信息;
    和/或,
    通信变流组件,用于根据通信控制函数生成列车通信信号;
    所述车辆感应发电功率信息、所述列车通信信号及所述直线电机牵引功率信息分别处于不同的频段区间。
  29. 根据权利要求28所述的***装置,其特征在于,
    所述发电输出变流组件,具体用于根据发电控制函数的输出端电压公式
    Figure PCTCN2020085070-appb-100003
    计算得到输出端电压U,所述m表示所述直线电机的定子段的由m段长定子段组成,所述L表示所述直线电机的定子段的总电感,所述L n表示第n段长定子段的电感,1≤n≤m,所述R n表示所述L n对应的第n段长定子段的定 子绕组电阻,所述i表示定子电流,所述
    Figure PCTCN2020085070-appb-100004
    为所述磁浮列车在定子绕组上产生的反电动势;
    所述发电输出变流组件,还用于根据所述磁浮列车的牵引需求和所述发电控制函数构造出输出牵引力公式
    F traction(t)=A*K V+B*(1-K V)
    计算得到输出牵引力F traction(t),所述A和所述B为与所述定子电流i及所述磁浮列车的车辆结构相关的参数,所述K v表示速度因子;
    所述发电输出变流组件,还用于根据所述发电控制函数构造输出电压公式
    U generation=C*(1-K V)+D*V*K V
    计算得到输出电压U generation,所述C为与所述定子电流i及所述磁浮列车的车辆结构相关的参数,所述D为与所述磁浮列车的车辆结构相关的参数,所述V表示所述磁浮列车的车辆速度;
    根据所述输出牵引力F traction(t)及所述V的乘积计算得到牵引功率f(t) traction
    将所述输出电压U generation乘以车辆感应发电线圈的电流,计算得到车辆感应发电功率f(t) generation
    或,
    将所述输出电压U generation进行平方之后,除以车辆感应发电线圈接收回路的等效电阻,计算得到车辆感应发电功率f(t) generation,所述车辆感应发电功率f(t) generation不影响所述磁浮列车的正常牵引功能。
  30. 根据权利要求29所述的***装置,其特征在于,所述***装置还包括:
    发电切换交接控制模块,用于根据预设的控制策略设定所述磁浮列车的车辆速度临界值及所述速度因子K v的加权系数值,所述车辆速度临界值不小于零且不大于车辆速度最大值;
    所述发电切换交接控制模块,还用于根据所述车辆速度临界值,确定所述磁浮列车当前车辆速度的所述速度因子K v
    所述发电切换交接控制模块,还用于根据所述当前车辆速度与所述车辆速度临界值的比较判断是否满足齿槽发电需求;
    所述发电切换交接控制模块,还用于当不满足齿槽发电需求时,通过所述车辆感应发电功率信息进行发电;
    所述发电切换交接控制模块,还用于当满足齿槽发电需求时,切除所述车辆感应发电功率信息的发电,改为现有的齿槽发电。
  31. 根据权利要求28所述的***装置,其特征在于,
    所述通信变流组件,具体用于获取数字化通信信息;
    所述通信变流组件,还用于通过通信控制函数对所述数字化通信信息进行数模转换,得到模拟化的列车通信信号,所述列车通信信号不影响所述磁浮列车的正常牵引功能及车辆感应发电功能。
  32. 根据权利要求28所述的***装置,其特征在于,
    所述发电输出变流组件和/或所述通信变流组件为三相变流器、单相变流器或者双单相变流器。
  33. 根据权利要求27所述的***装置,其特征在于,
    所述直线电机结构的转子包括直线电机转子、车辆感应发电线圈;
    所述车辆感应发电线圈,用于与所述直线电机结构的定子段的所述车辆感应发电功率信息耦合产生发电功率;
    所述车辆感应发电线圈,还可用于与所述直线电机结构的定子段的所述列车通信信号耦合后,将耦合信号传输至信号解调器,使得所述信号解调器解调得到所述列车通信信号;还可用于将车载信号向定子段传递。
    所述车辆感应发电线圈,还可用于将车载信号传输至所述直线电机结构的定子段。
  34. 根据权利要求27所述的***装置,其特征在于,所述***装置还包括:通信收发线圈;
    所述直线电机结构的转子包括直线电机转子、车辆感应发电线圈;
    所述车辆感应发电线圈,用于与所述直线电机结构的定子段的所述车辆感应发电功率信息耦合产生发电功率;
    所述通信收发线圈,用于与所述直线电机结构的定子段的所述列车通信信号耦合后,将耦合信号传输至信号解调器,使得所述信号解调器解调得到所述列车通信信号;
    所述通信收发线圈,还可用于将车载信号传输至所述直线电机结构的定子段;
    当通信通道为单通道时,所述通信收发线圈连接所述信号解调器的三相端子中任意两个端子;
    当通信通道为双通道时,将所述信号解调器的三相端子中任意两个分别作为单个所述通信收发线圈的正线端子,另外一个作为共地端子。
  35. 根据权利要求28所述的***装置,其特征在于,
    所述发电输出变流组件和/或所述通信变流组件,还用于将所述车辆感应发电功率信息和/或所述列车通信信号通过三相方式直接接入所述直线电机结构的定子段;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  36. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:发电和/或通信独立变压组件;
    所述发电和/或通信独立变压组件,用于对所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理后,通过三相方式接入所述直线电机结构的定子段;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  37. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:独立原边绕组变压组件;
    所述独立原边绕组变压组件,用于对所述车辆感应发电功率信息和/或所述列车通信信号进行独立原边绕组变压处理;
    所述独立原边绕组变压组件,还用于将处理后的所述车辆感应发电功率信息和/或所述列车通信信号通过三相方式接入所述直线电机结构的定子段;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  38. 根据权利要求28所述的***装置,其特征在于,
    所述发电输出变流组件和/或所述通信变流组件,还用于将所述车辆感应发电功率信息和/或所述列车通信信号通过单相方式直接接入所述直线电机结构的定子段的三相端子中的任意两个端子;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  39. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:发电和/或通信独立变压组件;
    所述发电和/或通信独立变压组件,用于对所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理后,通过单相方式接入所述直线电机的定子段的三相端子中的任意两个端子;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  40. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:独立原边绕组变压组件;
    所述独立原边绕组变压组件,用于对单相方式的所述车辆感应发电功率信息和/或列车通信信号和进行独立原边绕组变压处理,将所述车辆感应发电功率信息和/或所述列车通信信号增加到所述直线电机牵引功率信息的三相中的任意两相上;
    所述独立原边绕组变压组件,还用于将处理后的所述直线电机牵引功率信息及所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  41. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:
    所述发电输出变流组件和/或所述通信变流组件,用于将所述车辆感应发电功率信息和/或所述列车通信信号通过双单相方式直接接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  42. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:发电和/或通信独立变压组件;
    所述发电和/或通信独立变压组件,用于对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行独立变压处理后接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  43. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:独立原边绕组变压组件;
    所述独立原边绕组变压组件,用于对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行独立原边绕组变压处理;
    所述独立原边绕组变压组件,还用于将处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段,所述直线电机结构的定子段的三相端子中的任意两个端子作为共输入端,另一个端子作为共地端;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  44. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:发电和/或通信独立变压组件;
    双单相的所述发电输出变流组件和/或所述通信变流组件进行串联,对双单相方式的所述车辆感应发电功率信息和/或所述列车通信信号进行串联处理;
    所述发电输出变流组件和/或所述通信变流组件,用于将串联处理后的所述车辆感应发电功率信息和/或所述列车通信信号直接接入所述直线电机结构的定子段的三相端子中的任意两个端子;
    或,
    所述发电和/或通信独立变压组件,用于对串联处理后的所述车辆感应发电功率信息和/或所述列车通信信号进行变压处理;
    所述发电和/或通信独立变压组件,还用于将变压处理后的所述车辆感应发电功率信息和/或所述列车通信信号接入所述直线电机结构的定子段的三相端子中的任意两个端子;
    所述直线电机结构的转子,用于接收所述车辆感应发电功率信息和/或所述列车通信信号。
  45. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:牵引发电综合变流组件、牵引通信综合变流组件及牵引发电通信综合变流组件;
    所述牵引发电综合变流组件,包含所述牵引变流组件及所述发电输出变流组件的功能;
    所述牵引通信综合变流组件,包含所述牵引变流组件及所述通信变流组件的功能;
    所述牵引发电通信综合变流组件,包含所述牵引变流组件、所述发电输出变流组件及所述通信变流组件的功能;
    所述牵引发电综合变流组件,用于对所述直线电机牵引功率信息与所述车辆感应发电功率信息进行合成处理得到第一合成信息,通过所述直线电机的定子段发送所述第一合成信息,并通过所述直线电机结构的转子接收到所述第一合成信息;
    或,
    所述牵引通信综合变流组件,用于对所述直线电机牵引功率信息与所述列车通信信号进行合成处理得到第二合成信息,通过所述直线电机的定子段发送所述第二合成信息,并通过所述直线电机结构的转子接收到所述第二合成信息;
    或,
    所述牵引发电通信综合变流组件,用于对所述直线电机牵引功率信息、所述车辆感应发电功率信息、所述列车通信信号进行合成处理得到第三合成信息,通过所述直线电机的定子段发送所述第三合成信息,并通过所述直线电机结构的转子接收到所述第三合成信息。
  46. 根据权利要求45所述的***装置,其特征在于,所述***装置还包括:独立变压组件;
    所述独立变压组件,用于对所述第一合成信息进行独立变压处理后,通过所述直线电机的定子段发送所述第一合成信息;
    或,
    所述独立变压组件,用于对所述第二合成信息进行独立变压处理后,通过所述直线电机的定子段发送所述第二合成信息;
    或,
    所述独立变压组件,用于对所述第三合成信息进行独立变压处理后,通过所述直线电机的定子段发送所述第三合成信息。
  47. 根据权利要求27所述的***装置,其特征在于,所述***装置还包括:
    充电桩,所述充电桩通过电缆与所述磁浮列车的车体连接;
    当所述磁浮列车落车停站或检修时,使用所述充电桩进行充电。
  48. 根据权利要求27所述的***装置,其特征在于,
    所述直线电机结构的类型包括单边直线电机、双边直线和多边直线电机;
    所述直线电机结构的转子的磁性类型包括永磁转子、电励磁转子和永磁与电励磁混合型的转子。
  49. 根据权利要求28所述的***装置,其特征在于,所述***装置还包括:
    第一带通滤波器,用于对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第一带通滤波处理,允许所述直线电机牵引功率信息及制动和牵引控制相关的信号的通过;
    第二带通滤波器,用于对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第二带通滤波处理,允许所述车辆感应发电功率信息及发电控制相关的信号的通过;
    第三带通滤波器,用于对所述直线电机牵引功率信息及所述直线电机其它承载信息进行第三带通滤波处理,允许所述列车通信信号及列车控制相关的信号的通过。
  50. 根据权利要求34所述的***装置,其特征在于,
    所述通信收发线圈安装在所述磁浮列车任意位置上,根据需求接入列车控制网络。
  51. 根据权利要求50所述的***装置,其特征在于,
    所述通信收发线圈与车载运控主机和列车微波通信天线位于同一车辆上;
    或,
    所述通信收发线圈安装在所述直线电机的转子、磁浮架或车体上。
PCT/CN2020/085070 2020-04-16 2020-04-16 一种磁浮交通直线电机多重承载的方法及***装置 WO2021208002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085070 WO2021208002A1 (zh) 2020-04-16 2020-04-16 一种磁浮交通直线电机多重承载的方法及***装置
US17/912,884 US20230147692A1 (en) 2020-04-16 2020-04-16 Method and system device for multiple load-bearing of linear motor for magnetic levitation transportation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085070 WO2021208002A1 (zh) 2020-04-16 2020-04-16 一种磁浮交通直线电机多重承载的方法及***装置

Publications (1)

Publication Number Publication Date
WO2021208002A1 true WO2021208002A1 (zh) 2021-10-21

Family

ID=78083542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085070 WO2021208002A1 (zh) 2020-04-16 2020-04-16 一种磁浮交通直线电机多重承载的方法及***装置

Country Status (2)

Country Link
US (1) US20230147692A1 (zh)
WO (1) WO2021208002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117621844A (zh) * 2024-01-25 2024-03-01 江西理工大学 牵引、悬浮、导向一体化的电磁悬浮装置及其优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863001A (ja) * 1981-10-09 1983-04-14 Japanese National Railways<Jnr> 浮上式鉄道の非接触集電装置用誘導コイル
CN1426919A (zh) * 2001-12-21 2003-07-02 伊兹德国有限公司 用于磁悬浮轨道的信号传输方法
CN102931735A (zh) * 2012-11-07 2013-02-13 湖南银河电气有限公司 用于沿轨道运行的移动装置的非接触供电***及方法
CN105691234A (zh) * 2016-04-13 2016-06-22 中国人民解放军国防科学技术大学 一种磁浮列车非接触供电耦合装置及磁浮列车
CN110549855A (zh) * 2019-09-16 2019-12-10 中车株洲电力机车有限公司 磁浮列车的无接触感应供电***
CN110962634A (zh) * 2019-12-18 2020-04-07 西南交通大学 基于高频电流注入的磁浮列车非接触辅助供电装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863001A (ja) * 1981-10-09 1983-04-14 Japanese National Railways<Jnr> 浮上式鉄道の非接触集電装置用誘導コイル
CN1426919A (zh) * 2001-12-21 2003-07-02 伊兹德国有限公司 用于磁悬浮轨道的信号传输方法
CN102931735A (zh) * 2012-11-07 2013-02-13 湖南银河电气有限公司 用于沿轨道运行的移动装置的非接触供电***及方法
CN105691234A (zh) * 2016-04-13 2016-06-22 中国人民解放军国防科学技术大学 一种磁浮列车非接触供电耦合装置及磁浮列车
CN110549855A (zh) * 2019-09-16 2019-12-10 中车株洲电力机车有限公司 磁浮列车的无接触感应供电***
CN110962634A (zh) * 2019-12-18 2020-04-07 西南交通大学 基于高频电流注入的磁浮列车非接触辅助供电装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117621844A (zh) * 2024-01-25 2024-03-01 江西理工大学 牵引、悬浮、导向一体化的电磁悬浮装置及其优化方法
CN117621844B (zh) * 2024-01-25 2024-04-30 江西理工大学 牵引、悬浮、导向一体化的电磁悬浮装置及其优化方法

Also Published As

Publication number Publication date
US20230147692A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
Miller et al. Demonstrating dynamic wireless charging of an electric vehicle: The benefit of electrochemical capacitor smoothing
KR101536492B1 (ko) 구동 시스템, 철도 차량용 구동 시스템 및 이것을 탑재한 철도 차량, 편성 열차
US20120055751A1 (en) Inductively receiving electric energy for a vehicle
CN104691343B (zh) 基于大功率逆变器的电力机车制动***
KR101606152B1 (ko) 무선충전 림 방식의 자기부상 하이브리드 차량에 전력 및 추진력을 제공하기 위한 장치 및 방법
JP2010215014A (ja) 鉄道車両システム
JP7416806B2 (ja) ショートステータタイプ磁気浮上式鉄道の4本レール給電制御システム
Song et al. A review of dynamic wireless power transfer for in-motion electric vehicles
CN102963262B (zh) 城市交通车辆供电***
CN108808873B (zh) 一种非接触式轨道交通供电***
WO2021208002A1 (zh) 一种磁浮交通直线电机多重承载的方法及***装置
Chymera et al. Overview of electric railway systems and the calculation of train performance
CN110789544A (zh) 一种储能式车辆非接触供电***及方法
WO2020143189A1 (zh) 一种电气化铁路列车三轨供电控制***
Schmid et al. Overview of electric railway systems
CN111181156A (zh) 一种有轨电车非接触供电和接触供电共存的供电***
CN205311365U (zh) 一种列车过分相能量再利用装置
CN112208346A (zh) 一种动车组牵引传动供电***
Schmid et al. Electric railway systems in common use
CN113580949B (zh) 一种磁浮交通直线电机多重承载的方法及***装置
Xu et al. Design considerations of an inductive power transfer system for rail application
CN104118333B (zh) 一种磁浮列车用直线感应电机牵引力提升方法
CN104953922A (zh) 驱动***
Zhiwei et al. A 600kW wireless power system for the modern tram
Reatti et al. Wireless power transfer for static railway applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931490

Country of ref document: EP

Kind code of ref document: A1