CN110880538A - 用于基于SiC的保护器件的结构和方法 - Google Patents

用于基于SiC的保护器件的结构和方法 Download PDF

Info

Publication number
CN110880538A
CN110880538A CN201910831358.1A CN201910831358A CN110880538A CN 110880538 A CN110880538 A CN 110880538A CN 201910831358 A CN201910831358 A CN 201910831358A CN 110880538 A CN110880538 A CN 110880538A
Authority
CN
China
Prior art keywords
type
region
layer
type region
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910831358.1A
Other languages
English (en)
Inventor
凯文·马蒂卡
基兰·查蒂
布莱克·鲍威尔
苏吉特·班纳吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monolith Semiconductor Inc
Original Assignee
Monolith Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolith Semiconductor Inc filed Critical Monolith Semiconductor Inc
Publication of CN110880538A publication Critical patent/CN110880538A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

本发明题为“用于基于SiC的保护器件的结构和方法”。本发明提供了一种器件,所述器件可以包括形成在SiC衬底内的P‑N二极管。所述器件可以包括形成在所述SiC衬底内的N型区、形成在所述N型区的上部部分中的P型区;以及注入的N型层,所述注入的N型层设置在所述P型区和所述N型区之间。

Description

用于基于SiC的保护器件的结构和方法
技术领域
关于联邦资助研究的声明
本发明是根据国防部授予的W911NF-15-2-0088号合同在政府支持下完成的。政府对这项发明有一定的权利。
本公开的实施方案整体涉及保护器件,特别地涉及基于SiC的TVS二极管。
背景技术
瞬态电压抑制器(TVS)二极管是设计成保护电子电路免受电压瞬变的影响的保护二极管。电压瞬变是具有短持续时间的电能中的浪涌。在正常操作期间,TVS二极管设计成使泄漏电流和电容最小化。在电压瞬变期间,TVS二极管操作被触发,以安全地释放浪涌电流。TVS二极管的峰值功率(PP)针对不同的脉冲宽度(td)进行表征,并且在产品数据表中报告。市售TVS二极管基于硅(Si)技术。Si TVS二极管设计有不同的击穿电压和额定功率,以满足不同应用的保护需求。对于给定的击穿电压,TVS二极管的峰值功率额定值通过增加管芯尺寸而增加。管芯尺寸较大的TVS二极管具有较高的电流处理能力,因此具有较高的峰值功率额定值。
对于一些应用,TVS二极管预计在高环境温度下操作。在高温下,Si TVS二极管具有高泄漏电流,限制了其最大操作温度。在高温下,Si二极管的峰值功率处理能力降低。在一些实施方式中,多个Si TVS二极管可以串联连接,以最小化每个Si TVS二极管的功率处理。使用多个Si TVS二极管需要更高的电路保护成本。市售Si TVS二极管的击穿电压被限制在从几伏特到大约600V或更低。对于需要较高击穿电压的应用,多个Si TVS二极管被串联使用,这种配置降低了二极管的峰值功率额定值。
鉴于上述情况,已经探索了作为Si TVS二极管的替代物的基于碳化硅(SiC)的TVS二极管。基于碳化硅(SiC)的TVS二极管的使用有望解决Si TVS二极管的一些缺点。首先,由于SiC的大带隙(3.26eV,而Si为1.1eV),与Si相比,SiC具有更低的本征载流子浓度。与具有较低泄漏电流的Si二极管相比,较低的本征载流子浓度允许SiC二极管在较高的温度下操作。由于其优越的材料特性,与Si TVS二极管相比,SiC TVS二极管预计具有更高的峰值功率额定值。
已知的基于SiC的TVS二极管可以采用类似于硅TVS二极管的架构。N型衬底可以与TVS二极管的本体一起形成,而N型外延层(外延层)形成在N型衬底上。然后,可以在N型外延层上形成高掺杂的P型区,其中在N型外延层和P型区之间形成限定TVS二极管的特性的P/N结。在一些实施方式中,结终端区可以围绕P型区的周边形成。值得注意的是,SiC TVS二极管的进一步改进可能有助于实现该技术的商业化。鉴于以上所述,提供了本公开。
发明内容
提供本发明内容是为了以简化的形式介绍一些概念,这些概念将在下面的具体实施方式中进一步描述。本发明内容不旨在识别所要求保护的主题的关键或基本特征,也不旨在帮助确定所要求保护的主题的范围。
在一个实施方案中,提供了器件。该器件可以包括形成在SiC衬底内的P-N二极管。该器件可以包括形成在SiC衬底内的N型区、形成在N型区的上部部分中的P型区;以及注入的N型层,该注入的N型层设置在P型区和N型区之间。
在另一个实施方案中,形成SiC TVS二极管的方法可以包括在SiC衬底中提供N型区。该方法可以包括注入P型离子以形成从N型区的第一表面延伸的P型区。该方法可还包括通过在P型区下方注入N型离子来形成注入的N型层,其中注入的N型层设置在P型区和N型区之间。
在附加的实施方案中,提供了SiC TVS器件。SiC TVS器件可以包括体衬底区,体衬底区包括具有第一掺杂剂水平的N型SiC。SiC TVS器件可以包括外延SiC层,外延SiC层设置在体衬底区上,并且包括具有第二掺杂剂水平的N型SiC材料。SiC TVS器件可以包括形成在外延SiC层的上部部分中的P型区;以及注入的N型层,该注入的N型层设置在P型区下方的外延SiC层内,该注入的N型层包括大于第二掺杂剂水平的第三掺杂剂水平。
附图说明
图1示出了根据本公开的实施方案的单向SiC TVS二极管;
图2示出了根据本公开的附加实施方案布置的TVS二极管的实施方案;
图3示出了根据本公开的另外的实施方案的TVS二极管;
图4示出了根据本公开的另外的实施方案的另一个TVS二极管;
图5示出了根据本公开的又一些实施方案的TVS二极管;
图6示出了根据本公开的附加实施方案的TVS二极管;
图7A至图7J示出了根据本公开的实施方案的用于组装TVS二极管的过程流程;并且
图8示出了根据本公开的实施方案的示例性过程流程800。
具体实施方式
现在将在下文中参考附图更完整地描述示例性实施方案,其中示出了实施方案。然而,示例性实施方案可以许多不同形式体现并且不应理解为限于本文提出的实施方案。在整个附图中,类似的数字是指类似的元件。
各种实施方案提供了新颖的SiC器件,诸如TVS二极管。
图1示出了根据本公开的实施方案的单向SiC TVS二极管,其被示出为TVS二极管100。TVS二极管100的这种结构对应于形成在SiC衬底101内的P/N二极管。值得注意的是,TVS二极管100的各个部分未必按比例绘制,包括沿着所示笛卡尔坐标系的Z轴线的各个区的厚度。TVS二极管可以基于厚度在100μm至375μm的范围内的体SiC衬底形成。在这种情况下,这些实施方案不受限制。在图1的示例中,TVS二极管100包括N型区103,其包括体衬底区102,其中体衬底区102可以具有例如100μm至375μm的厚度。N型区103可也包括设置在体衬底区102上的外延SiC层104。外延SiC层104可以由与体衬底区102相似或相同的N型SiC材料形成。例如,体衬底区102可以由已知的六边形SiC多型形成,该多型具有诸如~3.2eV的高带隙。外延SiC层104可以生长为六边形多型,其中外延SiC层104和体衬底区102之间的差异是N型掺杂剂的水平。在其他实施方案中,外延SiC层104可以省略,如下文进一步讨论的。在各种实施方案中,外延SiC层104的厚度可以被调节以调节TVS二极管100的电气特性,而代表性的厚度范围在1μm和10μm之间。在这种情况下,这些实施方案不受限制。
TVS二极管100还包括形成在外延SiC层104的上部部分中的P型区106。P型区106可以通过掩模方法来限定,以占据上表面105的选定部分,并且可以延伸到SiC衬底101中几微米。TVS二极管100可还包括注入的N型层108,该注入的N型层设置在P型区下方的外延SiC层内,该注入的N型层包括大于第二掺杂剂水平的第三掺杂剂水平。
TVS二极管100可还包括设置在P型区106上的阳极触点110以及设置在SiC衬底101的背表面112上与N型区103接触的背面触点114。
如图1所示,P型区106包括下表面107,其中下表面107在第一端109和第二端111之间延伸第一距离D1。下表面107可以用于在P型区106和N型区103之间限定P/N结。TVS二极管100的击穿电压由形成在P型区106和注入的N型层108之间的P-N二极管的击穿电压来限定。在各种实施方式中,可以固定P型区106的掺杂浓度,同时通过改变形成N型层108的注入剂量和因此注入的N型层108的掺杂浓度,可以调制击穿电压。
作为背景,当P-N结两端的电场超过临界击穿电场时,P-N结二极管的击穿电压出现。P-N结两端的电场由P型区和N型区的掺杂浓度来确定。在TVS二极管100中,击穿电压可以由P型区106和注入的N型层108的掺杂浓度来确定。对于给定的P型区掺杂浓度,随着注入的N型层108的掺杂浓度增加,TVS二极管的击穿电压降低。外延SiC层104的掺杂浓度低于注入的N型层108的掺杂浓度。结果,外延SiC层104不影响低电压TVS二极管结构的击穿电压。
值得注意的是,对于具有低击穿电压的TVS二极管结构,其中N注入区的掺杂浓度需要大于N衬底区的掺杂浓度,TVS二极管可以在不具有N型外延区的晶圆(衬底)上制造。这后一种方法可能有利于降低低电压TVS二极管结构的制造成本。
为了确保适当的器件击穿,注入的N型层108可以不沿着整个下表面107延伸。在图1的示例中,注入的N型层108沿着下表面107延伸小于第一距离D1的第二距离D2。值得注意的是,注入的N型层108从第一端109和第二端111偏移。
在各种实施方案中,体衬底区102的掺杂浓度为大约1018cm-3,而外延SiC层104的掺杂浓度在1014cm-3至1017cm-3的范围内。
外延SiC层104的掺杂浓度可以被选择为使得形成在P型区106和外延SiC层之间的P-N二极管的击穿电压高于形成在P型区106和注入的N型层108之间的P-N二极管。可以使用欧姆金属化来接触P型区106,如由阳极触点110所表示的。在各种实施方案中,金属化方案可以包括镍(Ni)或钛(Ti)基触点。在一个示例中,可以使用Ni触点在SiC衬底102的表面112上接触N型区103。
在用于实现具有30V的击穿电压的低电压SiC TVS的一些实施方案中,例如,P型区106的峰值掺杂浓度可以为大约1020cm-3。注入的N型层108的掺杂浓度可以为大约1018cm-3。为了TVS二极管100的正确操作,外延SiC层104的掺杂浓度被布置为低于注入的N型层108的掺杂浓度。例如,外延SiC层104的掺杂浓度可以为大约1016cm-3
现在转向图2,示出了根据本公开的附加实施方案布置的TVS二极管120的实施方案。TVS二极管120可以共享TVS二极管100的相同部件,不同之处在于增加了结终端扩展区(JTE区),如JTE区116所示。JTE区116设置在外延SiC层104内,围绕P型区106,并且与外延SiC层104的一部分形成界面区。值得注意的是,P型区106可以具有第一P掺杂水平,其中JTE区116由具有小于第一P掺杂水平的第二P掺杂水平的P型掺杂剂形成。根据本公开的实施方案,可以通过离子注入操作来限定JTE区116,以建立用于围绕P型区106的具有较低掺杂浓度的P掺杂剂的区。在一些实施方案中,JTE区116的掺杂浓度为大约1017cm-3。这样,JTE区116可以减小在器件边缘处的表面电场,以确保TVS二极管120不会在目标值以下击穿。
现在转向图3,示出了根据本公开的另外的实施方案的TVS二极管130。图3的实施方案共享与图2的TVS二极管120的特征类似的特征,附加特征不存在于TVS二极管120中,包括任选的阻挡层,示出为金属层结构,表示为阻挡金属层122,设置在阳极触点110上方。TVS二极管130还包括金属化区126,该金属化区形成在由场氧化物区限定的窗口内,示出为场氧化物层124。根据一些实施方案,阻挡金属层122可以是Ti或Ti与氮化钛(TiN)的组合。金属化区126在一些实施方案中可以是铝铜合金材料,并且可以具有大于1微米的厚度,诸如在特定实施方案中为4微米。TVS二极管130可还包括设置在金属化区126上方的钝化层128。钝化层128的合适材料***的示例是磷硅酸盐玻璃(PSG)和氮化硅(SiNx)。在一个示例中,PSG的厚度可以是500nm,而SiNx的厚度可以是850nm。在这种情况下,这些实施方案不受限制。如图3所示,诸如聚酰亚胺的聚合物层132设置在钝化层128上方。聚合物层132和钝化层128可以随后设置有开口(未示出),以允许与TVS二极管130电接触和组装。包含镍/金或镍/钯/金的可焊接正面金属化层可也存在于金属化区126上方。值得注意的是,在图1和图2的实施方案中,类似的金属化和钝化方案可以被添加到相应的TVS二极管,或者另一个已知的合适的金属化方案,以有助于接触TVS二极管。
在上面讨论的实施方案中,在提供外延SiC层104的情况下,可以容易地调节各个区的掺杂水平和厚度,以产生大于20V而小于650V的目标击穿电压。在特定实施方案中,外延SiC层104区的掺杂浓度小于注入的N型层108的掺杂浓度。注入的N型层108的掺杂浓度和厚度可以分别为>1016cm-3和小于10μm。P型区106的掺杂水平可以大于1018cm-3,并且在特定实施方案中为大约1020cm-3。同样,注入的N型层的掺杂水平可以为1018cm-3,其中精确值由SiC P-N二极管的目标击穿电压确定。此外,根据一些实施方案,体衬底区102的厚度可以是350μm或更小。值得注意的是,注入的N型层108可以被限定在P型区106内。在一个实施方式中,注入的N型层108与P型区106的边缘间隔10μm。在其他实施方案中,注入的N型层108可以与P型区106的边缘间隔5μm。在这种情况下,这些实施方案不受限制。通常,N型层与P型区106的边缘间隔开,以确保N型注入层108包含在P型区106内。
现在转向图4,示出了根据本公开的另外的实施方案的TVS二极管140。图4的实施方案共享与图3的TVS二极管130的特征相似的特征,而TVS二极管140不包括JTE区116。
现在转向图5,示出了根据本公开的另外的实施方案的TVS二极管150。图4的实施方案共享与图4的TVS二极管140的特征相似的特征,而TVS二极管150不包括SiC外延层104。注入的N型层108的掺杂浓度可以调节,以考虑SiC外延层104的不存在。
作为示例,对于体衬底区102中电阻率为0.02欧姆-厘米的衬底,N型掺杂剂的对应掺杂剂浓度为大约1.6×1018cm-3。因此,注入的N型层108的掺杂浓度可以大于1.6×1018cm-3。根据一些实施方案,具有图5结构的所得的P/N二极管可以表现出大于20V且小于100V的击穿电压。
现在转向图6,示出了根据本公开的另外的实施方案的TVS二极管160。图6的实施方案共享与图5的TVS二极管150的特征相似的特征,增加了上面讨论的JTE区116。可以考虑到P型区106的掺杂浓度以及体衬底区102的掺杂浓度来调节JTE区116的掺杂过程。值得注意的是,JTE区116中的P型掺杂剂的浓度被设定为小于P型区106中的P型掺杂剂的浓度。此外,因为JTE区116可以通过离子注入形成,所以可以调节用于形成JTE区116的注入时间表,以补偿体衬底区102中预先存在的N型掺杂剂的掺杂浓度。因为体衬底区102中的N型掺杂剂的浓度相对较高,诸如1.6×1018cm-3,所以用于形成JTE区116的P型离子的注入剂量将被调节以产生大约1017cm-3的净P型掺杂剂浓度。因此,P型离子的注入可以引入大于1.6×1018的总掺杂剂浓度,以补偿体衬底区102中的N型掺杂剂中的活性N型掺杂剂浓度。作为比较,在图2的实施方案中,其中JTE区形成通过注入SiC外延层104中来进行,在注入有P型离子的SiC衬底101的区中,N型掺杂剂浓度可以为大约1016cm-3。因此,为了在JTE区116中产生大约1017cm-3的净P型掺杂剂浓度,图2的实施方案中的P型物质的总掺杂剂浓度可以略高,诸如1.5×1017cm-3,以补偿1016cm-3的N型掺杂剂浓度。
现在转向图7A至图7J,示出了根据本公开的实施方案的用于组装TVS二极管的过程流程。过程流程可以特别应用于上述TVS二极管130的形成。在图7A中,如图所示提供SiC衬底101,其包括体衬底区102和SiC外延层104。
在图7B中,提供了第一注入掩模180,其中第一注入掩模限定了第一孔口181,该孔口暴露了N型区103的第一部分,特别是SiC外延层104的第一部分。在图7B的实例中,已经发生了P型掺杂剂物质的注入,导致形成P型区106。用于注入P型掺杂剂离子的离子能量可以针对P型区106的目标厚度定制,诸如几微米的深度。P型区106的位置和横向尺寸由第一孔口181限定。用于第一注入掩模180的合适材料是氧化硅,同时氧化硅的厚度可以被定制为包含离子,以防止注入到第一注入掩模180下面的外延SiC层104中。
在图7C的实例中,第一注入掩模180可以被移除,并且提供第二注入掩模182,其中第二注入掩模182限定第二孔口183,该孔口暴露了N型区103的第二部分,特别是SiC外延层104的第二部分。在图7C的实例中,已经发生了N型掺杂剂物质的注入,导致形成注入的N型区108。用于注入N型掺杂剂离子的离子能量可以针对注入的N型区108的目标深度和厚度定制,诸如在上表面105下几微米。P型区106的位置和横向尺寸由第二孔口183限定。用于第二注入掩模182的合适材料是氧化硅,同时氧化硅的厚度可以被定制为包含离子,以防止注入到第二注入掩模182下面的外延SiC层104中。值得注意的是,第二孔口183可以布置成具有小于第一孔口181的尺寸D1的尺寸D2。第二孔口183可也被对准以沿着X轴线和Y轴线两者落入第一孔口181内,因此注入的N型层108在X-Y平面中不延伸超过P型区106。
在图7D的实例中,第二注入掩模182可以被移除,并且提供第三注入掩模184,其中第三注入掩模184充当JTE掩模并且限定第三孔口185,该孔口暴露了N型区103的第三部分,特别是SiC外延层104的第三部分。在图7D的实例中,已经发生了P型掺杂剂物质的注入,导致形成JTE区116。如图所示,第三注入掩模184可以被对准以覆盖P型区106。用于注入P型掺杂剂离子的离子能量可以针对JTE区116的目标深度定制,诸如在上表面105下几微米。JTE区116的位置和横向尺寸由孔口185限定。用于第三注入掩模184的合适材料是氧化硅,同时氧化硅的厚度可以被定制为包含离子,以防止注入到第三注入掩模184下面的外延SiC层104中。值得注意的是,在图7D的实例之后,可以执行激活退火程序以激活由图7B至图7D的程序限定的各个区中的N掺杂剂和P掺杂剂。
在各种非限制性实施方案中,P型区106的深度DP可以是0.5μm至2μm,而P型区106的宽度WP可以根据二极管应用而变化,诸如在几百微米至几毫米之间。较大的P+宽度将导致较大的总体TVS二极管管芯尺寸,有助于TVS具有某些应用所需的较高功率能力。在各种其他非限制性实施方案中,具有宽度WN的注入的N型层108可以从P型区106的边缘偏移5μm至10μm(参见示出偏移的虚线区域)。偏移确保击穿电压得到控制,并且器件不会在P+结角处过早击穿。
在图7E所示的后续实例中,已经沉积了由场氧化物层124表示的氧化物层。场氧化物可以经受已知的致密化退火和图案化,以在P型区106上方形成孔口185,如图所示。
在图7F所示的后续实例中,阳极触点110和背面触点114已经被沉积和退火,以与TVS二极管的半导体区形成欧姆接触。
在图7G所示的后续实例中,阻挡金属层122和金属化区126已经被沉积、图案化和蚀刻,以形成所示的触点结构。在图7H所示的后续实例中,钝化层128已经被沉积、图案化和蚀刻,以形成所示的结构。在图7I所示的后续实例中,聚合物层132已经被沉积、显影和固化。在图7J所示的后续实例中,如图所示,最终金属层134已经沉积在背表面上。
在各种附加实施方案中,任何前述的TVS器件都可以根据以下规格制造:A)P型区106的净掺杂浓度:1018cm-3至1020cm-3;B)P型JTE区116的净掺杂浓度:1×1017cm-3至5×1017cm-3;C)N外延层的净掺杂浓度:1×1014cm-3至5×1017cm-3;和D)注入的N区的净掺杂浓度:1×1016cm-3至5×1018cm-3。该掺杂浓度的范围将产生击穿电压范围从15V到600V的器件。
总之,本实施方案提供了优于基于Si的TVS器件的各种优点。本实施方案的基于SiC的TVS二极管提供了在诸如大于15V直至600V的电压的范围内设计半导体管芯中的击穿电压的能力,同时避免了串联连接多个管芯的需要,如在用于更高电压的Si二极管的情况下。本实施方案还提供了用于高温操作的更鲁棒的二极管,其中与Si TVS二极管相比,泄漏减少。
图8示出了根据本公开的实施方案的示例性过程流程800。在框802处,在SiC衬底中提供N型区。该N型区可以包括体衬底区和外延SiC层,体衬底区具有第一掺杂水平,外延SiC层具有小于第一掺杂水平的第二掺杂水平。
在框804处,执行注入P型离子以形成从N型区的第一表面延伸的P型区的操作。在框806处,通过在P型区下方注入N型离子来形成注入的N型层。注入的N型层可以相应地设置在P型区和N型区之间。
虽然已经参考某些实施方案描述了与TVS二极管相关联的器件和方法,但是本领域技术人员将理解,在不脱离本申请的权利要求书的精神和范围的情况下,可以进行各种改变,并且等同物可以被替代。在不脱离权利要求书的范围的情况下,可以进行其他修改以使特定的情况或材料适应上面公开的教导。因此,权利要求书不应被解释为限于所公开的任何一个特定实施方案,而是限于落入权利要求书的范围内的任何实施方案。

Claims (19)

1.一种器件,包括:
P-N二极管,所述P-N二极管形成在SiC衬底内,并且包括:
N型区,所述N型区形成在所述SiC衬底内;
P型区,所述P型区形成在所述N型区的上部部分中;和
注入的N型层,所述注入的N型层设置在所述P型区和所述N型区之间。
2.根据权利要求1所述的器件,其中,所述N型区包括:
体衬底区,所述体衬底区具有第一掺杂水平;和
外延SiC层,所述外延SiC层设置在所述体衬底区和所述注入的N型层之间,并且具有小于所述第一掺杂水平的第二掺杂水平。
3.根据权利要求2所述的器件,还包括结终端扩展区(JTE区),所述JTE区设置在所述外延SiC层内,围绕所述P型区,并且与所述外延SiC层的一部分形成界面区,其中所述P型区包括第一P掺杂水平,所述JTE区包括具有小于所述第一P掺杂水平的第二P掺杂水平的P型掺杂剂。
4.根据权利要求1所述的器件,还包括结终端扩展区(JTE区),所述JTE区设置在所述P型区周围,并且与所述N型区形成界面区,其中所述P型区包括第一P掺杂水平,所述JTE区包括具有小于所述第一P掺杂水平的第二P掺杂水平的P型掺杂剂。
5.根据权利要求1所述的器件,其中所述P型区包括下表面,所述下表面在第一端和第二端之间延伸第一距离,其中所述注入的N型层沿着所述下表面延伸小于所述第一距离的第二距离,并且与所述第一端和所述第二端偏移。
6.根据权利要求4所述的器件,其中,所述P型区包括下表面,其中所述注入的N型层沿着所述下表面延伸,并且与所述结终端扩展区偏移。
7.根据权利要求1所述的器件,包括大于20V且小于650V的击穿电压。
8.根据权利要求1所述的器件,其中所述N型区包括体衬底区,其中所述注入的N型层形成在所述体衬底区内。
9.根据权利要求8所述的器件,其中所述P-N二极管包括大于20V且小于100V的击穿电压。
10.根据权利要求1所述的器件,还包括:
阳极触点,所述阳极触点设置在所述P型区上;和
背面触点,所述背面触点设置在所述SiC衬底的背表面上,与所述N型区接触。
11.根据权利要求10所述的器件,还包括:
场氧化物区,所述场氧化物区在所述P型区上方限定窗口;
金属层结构,所述金属层结构设置成与所述阳极触点接触;
钝化层,所述钝化层设置在所述金属层结构上方;和
聚合物层,所述聚合物层设置在金属层结构上方,其中所述聚合物层和所述金属层结构限定用于接触所述金属层结构的开口。
12.一种形成SiC TVS二极管的方法,包括:
在SiC衬底中提供N型区;
注入P型离子以形成从所述N型区的第一表面延伸的P型区;以及
通过在所述P型区下方注入N型离子来形成注入的N型层,其中所述注入的N型层设置在所述P型区和所述N型区之间。
13.根据权利要求12所述的方法,其中所述提供所述N型区包括:
提供包括体衬底区的SiC衬底,所述体衬底区具有第一掺杂水平的N型掺杂剂;以及
在所述体衬底区上生长外延SiC层,所述外延SiC层包括N型掺杂剂,并且具有小于所述第一掺杂水平的第二掺杂水平。
14.根据权利要求13所述的方法,还包括注入P型掺杂剂以在所述外延SiC层内围绕所述P型区形成结终端扩展区(JTE区),其中所述P型区包括第一P掺杂水平,所述JTE区的所述P型掺杂剂包括小于所述第一P掺杂水平的第二P掺杂水平。
15.根据权利要求12所述的方法,还包括通过在所述N型区内围绕所述P型区注入P型掺杂剂来形成结终端扩展区(JTE区),其中所述P型区包括第一P掺杂水平,所述P型掺杂剂具有小于所述第一P掺杂水平的第二P掺杂水平。
16.根据权利要求12所述的方法,其中,所述形成所述注入的N型层包括通过第一注入掩模注入所述N型离子,其中所述形成所述P型区包括通过第二注入掩模注入所述P型离子,其中所述第二注入掩模被布置成使得所述P型区在第一端和第二端之间延伸第一距离,并且其中所述第一注入掩模被布置成使得所述注入的N型层延伸小于所述第一距离的第二距离,并且与所述第一端和所述第二端偏移。
17.根据权利要求15所述的方法,其中所述形成所述注入的N型层包括通过第一注入掩模注入所述N型离子,其中所述形成所述JTE区包括通过JTE掩模注入所述P型离子,其中所述JTE掩模被布置成使得所述P型区在第一端和第二端之间延伸第一距离,并且其中所述第一注入掩模被布置成使得所述注入的N型层延伸小于所述第一距离的第二距离,并且与所述第一端和所述第二端偏移。
18.一种SiC TVS器件,包括:
体衬底区,所述体衬底区包括具有第一掺杂剂水平的N型SiC;
外延SiC层,所述外延SiC层设置在所述体衬底区上,并且包括具有第二掺杂剂水平的N型SiC材料;
P型区,所述P型区形成在所述外延SiC层的上部部分中;和
注入的N型层,所述注入的N型层设置在所述P型区下方的所述外延SiC层内,所述注入的N型层包括大于所述第二掺杂剂水平的第三掺杂剂水平。
19.根据权利要求18所述的SiC TVS器件,包括大于20V且小于650V的击穿电压。
CN201910831358.1A 2018-09-05 2019-09-03 用于基于SiC的保护器件的结构和方法 Pending CN110880538A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/121,916 US10910501B2 (en) 2018-09-05 2018-09-05 Stucture and method for SIC based protection device
US16/121,916 2018-09-05

Publications (1)

Publication Number Publication Date
CN110880538A true CN110880538A (zh) 2020-03-13

Family

ID=67875262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910831358.1A Pending CN110880538A (zh) 2018-09-05 2019-09-03 用于基于SiC的保护器件的结构和方法

Country Status (5)

Country Link
US (1) US10910501B2 (zh)
EP (2) EP3621121A1 (zh)
KR (2) KR102670357B1 (zh)
CN (1) CN110880538A (zh)
TW (1) TWI809185B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928168A (zh) * 2019-12-06 2021-06-08 力特半导体(无锡)有限公司 具有不对称击穿电压的tvs二极管和组件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7907680A (nl) 1979-10-18 1981-04-22 Philips Nv Zenerdiode.
GB2388259B (en) 2002-04-30 2006-03-29 Zarlink Semiconductor Inc Compact high voltage ESD protection diode
US20070090360A1 (en) * 2005-10-20 2007-04-26 Vishay General Semiconductors, Llc Blanket implant diode
US8431958B2 (en) * 2006-11-16 2013-04-30 Alpha And Omega Semiconductor Ltd Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS)
US8445917B2 (en) * 2009-03-20 2013-05-21 Cree, Inc. Bidirectional silicon carbide transient voltage suppression devices
EP2677540A1 (en) * 2012-06-19 2013-12-25 Nxp B.V. Electronic device and method of manufacturing the same
US9048106B2 (en) * 2012-12-13 2015-06-02 Diodes Incorporated Semiconductor diode assembly
US9425153B2 (en) * 2013-04-04 2016-08-23 Monolith Semiconductor Inc. Semiconductor devices comprising getter layers and methods of making and using the same
US9478606B2 (en) 2014-02-13 2016-10-25 Microsemi Corporation SiC transient voltage suppressor
DE102015118165A1 (de) * 2015-10-23 2017-04-27 Infineon Technologies Ag Elektrische baugruppe, umfassend eine halbleiterschaltvorrichtung und eine klemmdiode
JP6705155B2 (ja) * 2015-11-13 2020-06-03 富士電機株式会社 半導体装置および半導体装置の製造方法
KR102518650B1 (ko) * 2016-04-15 2023-04-06 리텔퓨즈 세미컨덕터 (우시) 씨오., 엘티디. 과전압 보호 및 선형 레귤레이터 디바이스 모듈
JP6855793B2 (ja) * 2016-12-28 2021-04-07 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
KR20200027902A (ko) 2020-03-13
US20200075780A1 (en) 2020-03-05
EP3621121A1 (en) 2020-03-11
US10910501B2 (en) 2021-02-02
KR102670357B1 (ko) 2024-05-30
KR20240078639A (ko) 2024-06-04
TW202013672A (zh) 2020-04-01
EP4075517A1 (en) 2022-10-19
TWI809185B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US8952481B2 (en) Super surge diodes
US6673662B2 (en) Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
JP2008177537A (ja) 小さな寄生抵抗を有する低電圧ダイオードおよび製造方法
EP2710635A1 (en) Sic devices with high blocking voltage terminated by a negative bevel
KR20240078639A (ko) SiC 기반 보호 디바이스를 위한 구조 및 방법
EP1905089A1 (en) Semiconductor device and a method for production thereof
CN108140676B (zh) 碳化硅半导体器件
Lynch et al. Design considerations for high voltage SiC power devices: An experimental investigation into channel pinching of 10kV SiC junction barrier schottky (JBS) diodes
US10325904B2 (en) Transient overvoltage protection device
CN107293533B (zh) 瞬态电压抑制器及其制造方法
US7709864B2 (en) High-efficiency Schottky rectifier and method of manufacturing same
CN105576041B (zh) 用于具有双区基极的瞬时电压抑制设备的结构和方法
US9831327B2 (en) Electrostatic discharge protection devices and methods of forming the same
CN107301996B (zh) 瞬态电压抑制器及其制造方法
KR101800331B1 (ko) 개선된 역서지 내량 및 감소된 누설 전류를 위한 폴리실리콘 층을 갖는 제너 다이오드
CN219017660U (zh) 高电压半导体器件
US7528459B2 (en) Punch-through diode and method of processing the same
CN219040487U (zh) 非对称双向瞬态电压抑制器件
CN107301997B (zh) 瞬态电压抑制器及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination