CN110854983A - 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法 - Google Patents

一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法 Download PDF

Info

Publication number
CN110854983A
CN110854983A CN201911206661.9A CN201911206661A CN110854983A CN 110854983 A CN110854983 A CN 110854983A CN 201911206661 A CN201911206661 A CN 201911206661A CN 110854983 A CN110854983 A CN 110854983A
Authority
CN
China
Prior art keywords
voltage
bus
conversion circuit
super capacitor
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911206661.9A
Other languages
English (en)
Other versions
CN110854983B (zh
Inventor
蒋琪
蒋勃
郝伟
赵蕾
杨旭
张欣宜
薛倩楠
王刚
高传彬
李建兴
陈延枫
杨智
高家辉
薛军
贺军荪
靳媛
彭芳
薛晶
陈晓
贾静
寇磊
李尧
张睿喆
韩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an electric power college
State Grid Corp of China SGCC
Original Assignee
Xi'an electric power college
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an electric power college, State Grid Corp of China SGCC filed Critical Xi'an electric power college
Priority to CN201911206661.9A priority Critical patent/CN110854983B/zh
Publication of CN110854983A publication Critical patent/CN110854983A/zh
Application granted granted Critical
Publication of CN110854983B publication Critical patent/CN110854983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法,包括检测电路、控制电路、变换电路及混合储能模块,所述检测电路通过电压传感器、电流传感器连接在直流母线上;控制电路包括中央处理单元,所述中央处理单元根据检测到的直流母线上的电压值,控制电压补偿母线回路和电容充电回路的通断;变换电路采用双向DC/DC Buck‑Boost电路,用于对混合储能模块充电或使混合储能模块对直流电网进行补偿;所述混合储能模块包含超级电容组阵列和蓄电池组阵列;超级电容组阵列由若干单元超级电容采用串并联的形式组成,蓄电池组阵列由若干单元蓄电池采用串并联的形式组成。本发明能够改善智能园区内的数据中心电能质量,确保数据中心进线电压稳定。

Description

一种基于超级电容平抑直流母线电压突变的电压稳定装置及 其方法
技术领域
本发明属于直流电网技术领域,具体涉及一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法。
背景技术
随着分布式电源的发展,直流微网作为一种高效利用的***被广泛应用。直流微电网一般由多个电源、恒功率负载等功率模块组成,当分布式电源或者负载投切进直流电网时会导致母线电压的突变,而且由于微电网中的分布式能源容易受环境因素影响,导致输出的功率具有波动性和随机性,这样更加导致电压突变。电压突变具体包含两种表现形式:一是电压跌落,二是电压过冲。
数据中心是智能园区的典型负荷之一,当母线电压发生突变时,将对数据中心设备安全造成很大的威胁。可能会导致***振荡,过压或欠压保护误动作,轻则降低数据中心内的设备运行效率和寿命,重则会导致数据中心大量使用的开关电源退出运行,严重时还将烧毁设备。
现有的技术中,平抑母线电压波动只有在交流***中有,随着直流配电网的发展,当直流配电网发生电压突变的时候需要一种用于直流配电网的母线电压平抑设备,保证负载的稳定运行。
发明内容
本发明的目的在于提供一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法,以克服现有技术的缺陷,本发明能够改善智能园区内的数据中心电能质量,确保数据中心进线电压稳定。
为达到上述目的,本发明采用如下技术方案:
一种基于超级电容平抑直流母线电压突变的电压稳定装置,包括检测电路、控制电路、变换电路及混合储能模块,所述检测电路通过电压传感器并联连接在直流母线上;控制电路用于根据检测到的直流母线上的电压值,控制变换电路的通断;所述变换电路采用双向DC/DC Buck-Boost电路,用于对混合储能模块充电或使混合储能模块对直流电网进行补偿;所述混合储能模块包含超级电容组阵列和蓄电池组阵列;所述超级电容组阵列由n组超级电容器组并联组成,且n为偶数,所述超级电容器组由若干单元超级电容串联组成,所述蓄电池组阵列由n组蓄电池组并联组成,且n为偶数,所述蓄电池组由m个单元蓄电池串联组成。
一种基于超级电容平抑直流母线电压突变的电压稳定方法,包括以下步骤:
步骤A:检测电路通过电压传感器测量直流母线电压,并把数据发送到控制单元,经过计算电压变化率和电压值,并与预设值作比较;
步骤B:控制电路对电压变化率和电压值进行判断,决定混合储能如何参与变换电路运行;
步骤C:经过步骤B判断后,控制电路开始控制变换电路的运行,确定变换电路如何工作;
步骤D:设定直流母线额定电压为UN,再次检测母线电压,判断稳态电压值是否在0.995UN到1.005UN内且电压变化率是否低于预设值,若达到要求,则结束平抑母线电压平抑,若未达到要求,重复步骤A到D。
进一步地,步骤A中:当检测到的电压值超过额定电压且电压变换率达到每秒0.2%,则定义为电压过冲,当电压低于额定值且电压变化率达到每秒0.2%,则定义为电压跌落;另外当电压值在0.975UN到0.995UN,1.005UN到1.025UN,定义为Ⅰ区,当电压值在1.005UN到1.05UN和0.995UN到0.975UN定义为Ⅱ区。
进一步地,步骤B具体包括:
步骤B1:判断电压变化率是否达到预设值,若没有达到预设值再判断稳态电压值是否发生变化,若稳定电压值发生变化,当若电压值高于UN,则经过计算补偿电压后,使变换电路工作在Buck模式,这时再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使组蓄电池组工作在充电状态,若是在Ⅱ区则使n组蓄电池组工作在充电状态;当电压值低于UN,则经过计算补偿电压后,使变换电路工作在Boost模式,这时再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使组蓄电池组工作在放电状态,若是在Ⅱ区则使n组蓄电池组工作在放电状态;
步骤B2:当电压变化率达到预设值且稳态电压在0.995UN到1.005UN内,只控制超级电容组阵列进行平抑母线电压突变,当电压高于UN时,经过计算补偿电压后,使变换电路工作在Boost模式,超级电容组阵列工作在充电状态;当电压低于UN时,经过计算补偿电压后,使变换电路工作在Buck模式,超级电容组阵列工作在放电状态;
步骤B3:当电压变化率达到预设值且稳态电压发生变化在Ⅰ区或Ⅱ区时,当电压高于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure BDA0002297074160000033
组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制
Figure BDA0002297074160000034
组蓄电池组平抑母线电压;当电压高于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制n组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure BDA0002297074160000041
组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制
Figure BDA0002297074160000042
组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制n组蓄电池组平抑母线电压;
步骤B4:若电压变化率和稳态电压值均为发生变化,则结束平抑母线电压程序。
进一步地,步骤C具体包括:
步骤C1:经过步骤B的判断,需要变换电路工作,变换电路中开关管V1、开关管V2均采用全控型开关管IGBT,变换电路的结构是混合储能与大电感串联后并联在开关管V2上,开关管V2反并联一个二极管,开关管V1的发射极与开关管V2集电极相连,开关管V1反并联一个二极管,开关管V1、开关管V2与大电容并联后接在直流母线上,若变换电路工作在Buck模式,这时开关管V1开通,开关管V2完全关断,在开关管V1导通期间,由于直流侧电压大于混合储能电压,因此直流电网内能量会经过电感吸收后对混合储能模块进行充电;在开关管V1关断期间,电感中储存的电磁能经由开关管V2的反并联二极管D2续流继续向混合储能充电,同样通过控制开关管V1的开关工作周期和占空比改变混合储能的充电电压;
步骤C2:经过步骤B的判断,若变换电路工作在Boost模式,这时开关管V2开通,开关管V1完全关断,设开关周期为Ts,在开关管V2导通期间Ton=D Ts,其中D为占空比,Ton为导通时间,混合储能模块通过开关管V2将能量储存在电感L中;在开关管V2关断期间Toff=(1-D)Ts,电感L中储存的电磁能经过开关管V1的反并联二极管D1释放至直流侧,通过控制开关管V2的工作周期和占空比调节直流侧电压大小。
与现有技术相比,本发明具有以下有益的技术效果:
本发明基于超级电容器平抑直流母线电压突变的装置中超级电容具有功率密度大、循环寿命长、充放电速度快、动态响应快的优点,能够快速的平抑直流母线电压突变;蓄电池具有能量密度大、功率密度小等特点,能够持续稳定的平抑直流母线电压波动。本发明的储能装置结合了超级电容和蓄电池,当单独出现直流母线电压的突变或电压波动时,本发明能够进行快速高效的平抑,而且当直流母线同时出现电压突变和电压波动时,本发明能够快速的平抑直流母线电压的突变和波动。
当直流母线电压不管发生电压过冲或者电压跌落时,本装置能对直流母线电压进行快速补偿,保证负载持续稳定运行。在数据中心进线前安装配套的平抑电压突变的设备,采取一定的控制策略,可以有效平抑电压波动,提升微电网供电质量,保证数据中心可靠运行。
综合来看,数据中心用户安装本装置是抑制电压突变的最可行方式。
附图说明
图1是本发明的安装位置示意图;
图2是本发明的结构图;
图3是超级电容和蓄电池的阵列示意图;
图4是双向DC/DC变换器电路原理图;
图5是变换器控制策略控制框图;
图6是平抑母线电压突变的流程图;
图7是电压分区。
具体实施方式
下面对本发明作进一步详细描述:
一种基于超级电容平抑直流母线电压突变的电压稳定装置,包含检测电路、控制电路、变换电路、混合储能模块,其中检测电路通过电压传感器并联连接在直流母线上;控制电路根据检测到的直流母线上的电压值,控制电压补偿母线回路和电容充电回路的通断。其中控制电路包括中央处理单元,还包含辅助中央处理单元的周边电路,所述中央处理单元根据检测到的直流母线上的电压值,控制变换电路的通断;变换电路是采用双向DC-DC变换器,既可以实现对混合储能模块的充电又能使混合储能模块对直流电网进行补偿;混合储能模块包含超级电容组阵列和蓄电池组阵列。超级电容组阵列由很多单元超级电容采用串并联的形式组成,蓄电池组阵列也由单元蓄电池采用串并联的形式组成。
本发明的检测电压包含两种电压检测方式,一是检测电压变化率,当电压超过额定电压且变换率达到每秒0.2%,则定义为电压过冲,当电压低于额定值且电压变化率达到每秒0.2%,则定义为电压跌落;二是检测稳态电压值,设定母线额定电压为UN,当电压值在0.975UN到0.995UN,1.005UN到1.025UN,定义为Ⅰ区,当电压值在1.005UN到1.05UN和0.995UN到0.975UN定义为Ⅱ区。检测电路采用电压霍尔传感器,将直流母线电压信号实时发送到控制单元,优先计算电压变化率,再判断稳态的电压值。电压数据经过处理,计算补偿电压值。
变换电路采用双向DC/DC Buck-Boost电路,可以实现功率的双向流动,对混合储能进行充放电。混合储能与大电感串联后并联在全控性开关管V2上,开关管V2需要反并联一个二极管,开关管V1的发射极与开关管V2集电极相连,开关管V1也需反并联一个二极管,开关管V1、开关管V2与大电容并联后接在直流母线上。电路如图4。控制策略采用电压下垂控制和电压外环电流内环控制,基于常用的电压电流环,另加一个电压下垂控制环,可以使变换器控制更加准确,控制策略如图5。当采集到的直流母线电压值高于母线电压额定值时,变换电路工作在Buck模式,能量由直流电网流向储能模块,以此平抑直流母线的电压波动和降低直流母线电压,维持直流母线电压在额定范围内,使得数据中心进线电压不产生较大波动;当采集的直流母线电压值低于母线电压额定值时,变换电路工作在Boost模式,能量由混合储能模块流向直流电网,以此平抑直流母线电压波动和提高直流母线电压。
混合储能模块包含超级电容组阵列和蓄电池组阵列,超级电容具有能量密度小、功率密度大、循环寿命长、充放电速度快、动态响应快等特点当发生电压过冲和电压跌落时能快速平抑直流母线电压突变;蓄电池具有能量密度大、功率密度小、循环寿命短、充放电速度慢、动态响应慢等特点,适合平抑母线电压值稳定在Ⅰ区和Ⅱ区时的电压波动。其中超级电容组阵列并不是单一的电容,而是由单元电容串并联组成电容组。超级电容有三种组成方式:串联,并联,串并混联。单个电容工作电压不高,无法满足实际工况需求,所以需要电容串联。但是电容串联也存在问题,由于电容存在固有差异,在电路里将会存在电压不均衡问题,严重时会影响电容器,导致整体性能受到影响。并联的电容可以输入输出很大的电流,但是由于充放电电阻的存在导致调整电阻的控制电路及其复杂,难以控制。串并混联的超级电容电池组具有串联和并联的优点,而且避免了两种方式的不足。蓄电池也存在上述串并联方式带来的问题,故本发明的超级电容组和蓄电池组均采用串并联的方式。混合储能模块中,超级电容组阵列由n组超级电容器组并联组成,且n为偶数,所述超级电容器组由若干单元超级电容串联组成,所述蓄电池组阵列由n组蓄电池组并联组成,且n为偶数,所述蓄电池组由m个单元蓄电池串联组成。
混合储能的能量管理策略为:当只有母线电压变换率发生变化时,经过控制单元计算补偿电压后,只让超级电容进行充放电,能快速平抑母线电压的突变。当只发生稳态电压超过额定电压时,记过控制单元计算补偿电压后,只让蓄电池充放电,因为当母线电压稳定在一定值时,电容的功率不够补偿,这是利用蓄电池的能量密度大的优点,可以平稳平抑母线电压的波动。当同时母线电压变换率发生变化和稳态电压越限超过Ⅱ区时,经过控制单元计算补偿电压后,先使超级电容组平抑母线电压,把母线电压拉回到Ⅱ区,再使用蓄电池对母线电压进行补偿。补偿过后检测直流母线电压是否达到额定范围内及0.995UN到1.005UN,若到到预设范围则不在进行补偿,若未达到预设范围则继续补偿。
本发明还提供一种基于超级电容平抑直流母线电压突变的电压稳定方法,本发明方法有良好的动态响应,能够快速平抑电压突变,维持***电压稳定。由于数据中心对电能质量要求较高,常见的电能质量问题如电压跌落、电压过冲十分影响数据中心的正常运行。故数据中心入户线前端安装平抑装置抑制电压突变是最可行的方式。
结合附图6对如何平抑母线电压突变进一步说明。
步骤A:检测电路通过电压传感器测量直流母线电压,并把数据发送到控制单元,经过计算电压变化率和电压值,并与预设值作比较。当电压超过额定电压且变换率达到每秒0.2%,则定义为电压过冲,当电压低于额定值且电压变化率达到每秒0.2%,则定义为电压跌落;二是检测稳态电压值,当电压值在0.975UN到0.995UN,1.005UN到1.025UN,定义为Ⅰ区,当电压值在1.005UN到1.05UN和0.995UN到0.975UN定义为Ⅱ区。经过处理后进行下一步骤。
步骤B:控制电路对电压变化率和电压值进行判断,决定混合储能如何参与变换电路运行。
(B1)判断电压变化率是否达到预设值,若没有达到预设值再判断稳态电压值是否发生变化,若稳定电压值发生变化,当发生电压值高于UN,则经过计算补偿电压后,使变换电路工作在Buck模式,这时需要再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使
Figure BDA0002297074160000091
组蓄电池组工作在充电状态。若是在Ⅱ区则使n组蓄电池组工作在充电状态;当电压值低于UN,则经过计算补偿电压后,使变换电路工作在Boost模式,这时需要再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使
Figure BDA0002297074160000092
组蓄电池组工作在放电状态。若是在Ⅱ区则使n组蓄电池工作在放电状态;
(B2)当电压变化率达到预设值且稳态电压在0.995UN到1.005UN内,只控制超级电容组进行平抑母线电压突变,因为结合超级电容的特点,能快速充放电,可以达到很好的平抑直流母线电压突变的效果。当电压高于UN时,经过计算补偿电压后,使变换电路工作在Boost模式,超级电容组工作在充电状态;当电压低于UN时,经过计算补偿电压后,使变换电路工作在Buck模式,超级电容组工作在放电状态。
(B3)当电压变化率达到预设值且稳态电压发生变化在Ⅰ区或Ⅱ区时,当电压高于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure BDA0002297074160000093
组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制
Figure BDA0002297074160000094
组蓄电池组平抑母线电压;当电压高于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制n组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure BDA0002297074160000101
组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制
Figure BDA0002297074160000102
组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制n组蓄电池组平抑母线电压。
(B4)若电压变化率和稳态电压值均为发生变化,则结束平抑母线电压程序。
步骤C:经过步骤B判断后,控制电路开始控制变换电路的运行,确定变换电路如何工作。
(C1)经过步骤B的判断,若变换电路工作在Buck模式,这时开关管V1开通,开关管V2完全关断,在开关管V1导通期间,由于直流侧电压大于混合储能电压,因此直流电网内能量会经过电感吸收后对混合储能模块进行充电;在开关管V1关断期间,电感中储存的电磁能经由开关管V2的反并联二极管D2续流继续向混合储能充电,同样通过控制开关管V1的开关工作周期和占空比改变混合储能的充电电压;
(C2)经过步骤B的判断,若变换电路工作在Boost模式,这时开关管V2开通,开关管V1完全关断,设开关周期为Ts,在开关管V2导通期间Ton=D Ts,其中D为占空比,Ton为导通时间,混合储能模块通过开关管V2将能量储存在电感L中;在开关管V2关断期间Toff=(1-D)Ts,电感L中储存的电磁能经过开关管V1的反并联二极管D1释放至直流侧,通过控制开关管V2的工作周期和占空比调节直流侧电压大小。
步骤D:设定直流母线额定电压为UN,再次检测母线电压,判断稳态电压值是否在0.995UN到1.005UN内且电压变化率是否低于预设值,若达到要求,则结束平抑母线电压平抑,若未达到要求,重复步骤A到D。
本发明当直流母线电压发生突变时,***产生一个合适的补偿电压注入直流电网***,保证数据中心电压稳定,确保受保护的设备不受电压变化的影响,直至直流母线电压恢复正常。该***在直流母线电压正常时处于待机状态,发生电压过冲时为储能充电,发生电压跌落时储能放电。

Claims (5)

1.一种基于超级电容平抑直流母线电压突变的电压稳定装置,其特征在于,包括检测电路、控制电路、变换电路及混合储能模块,所述检测电路通过电压传感器并联连接在直流母线上;控制电路用于根据检测到的直流母线上的电压值,控制变换电路的通断;所述变换电路采用双向DC/DC Buck-Boost电路,用于对混合储能模块充电或使混合储能模块对直流电网进行补偿;所述混合储能模块包含超级电容组阵列和蓄电池组阵列;所述超级电容组阵列由n组超级电容器组并联组成,且n为偶数,所述超级电容器组由若干单元超级电容串联组成,所述蓄电池组阵列由n组蓄电池组并联组成,且n为偶数,所述蓄电池组由m个单元蓄电池串联组成。
2.一种基于超级电容平抑直流母线电压突变的电压稳定方法,采用权利要求1所述的一种基于超级电容平抑直流母线电压突变的电压稳定装置,其特征在于,包括以下步骤:
步骤A:检测电路通过电压传感器测量直流母线电压,并把数据发送到控制单元,经过计算电压变化率和电压值,并与预设值作比较;
步骤B:控制电路对电压变化率和电压值进行判断,决定混合储能如何参与变换电路运行;
步骤C:经过步骤B判断后,控制电路开始控制变换电路的运行,确定变换电路如何工作;
步骤D:设定直流母线额定电压为UN,再次检测母线电压,判断稳态电压值是否在0.995UN到1.005UN内且电压变化率是否低于预设值,若达到要求,则结束平抑母线电压平抑,若未达到要求,重复步骤A到D。
3.根据权利要求2所述的一种基于超级电容平抑直流母线电压突变的电压稳定方法,其特征在于,步骤A中:当检测到的电压值超过额定电压且电压变换率达到每秒0.2%,则定义为电压过冲,当电压低于额定值且电压变化率达到每秒0.2%,则定义为电压跌落;另外当电压值在0.975UN到0.995UN,1.005UN到1.025UN,定义为Ⅰ区,当电压值在1.005UN到1.05UN和0.995UN到0.975UN定义为Ⅱ区。
4.根据权利要求3所述的一种基于超级电容平抑直流母线电压突变的电压稳定方法,其特征在于,步骤B具体包括:
步骤B1:判断电压变化率是否达到预设值,若没有达到预设值再判断稳态电压值是否发生变化,若稳定电压值发生变化,当若电压值高于UN,则经过计算补偿电压后,使变换电路工作在Buck模式,这时再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使
Figure FDA0002297074150000022
组蓄电池组工作在充电状态,若是在Ⅱ区则使n组蓄电池组工作在充电状态;当电压值低于UN,则经过计算补偿电压后,使变换电路工作在Boost模式,这时再次判断检测到的电压值在Ⅰ区还是Ⅱ区,若是在Ⅰ区,则使
Figure FDA0002297074150000021
组蓄电池组工作在放电状态,若是在Ⅱ区则使n组蓄电池组工作在放电状态;
步骤B2:当电压变化率达到预设值且稳态电压在0.995UN到1.005UN内,只控制超级电容组阵列进行平抑母线电压突变,当电压高于UN时,经过计算补偿电压后,使变换电路工作在Boost模式,超级电容组阵列工作在充电状态;当电压低于UN时,经过计算补偿电压后,使变换电路工作在Buck模式,超级电容组阵列工作在放电状态;
步骤B3:当电压变化率达到预设值且稳态电压发生变化在Ⅰ区或Ⅱ区时,当电压高于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure FDA0002297074150000024
组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制
Figure FDA0002297074150000023
组蓄电池组平抑母线电压;当电压高于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压降到稳定状态,再控制n组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅰ区,经过计算补偿电压,先控制
Figure FDA0002297074150000031
组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制组蓄电池组平抑母线电压;当电压低于UN且稳态电压稳定在Ⅱ区,经过计算补偿电压,先控制n组超级电容组进行母线电压平抑,把母线电压升到稳定状态,再控制n组蓄电池组平抑母线电压;
步骤B4:若电压变化率和稳态电压值均为发生变化,则结束平抑母线电压程序。
5.根据权利要求3所述的一种基于超级电容平抑直流母线电压突变的电压稳定方法,其特征在于,步骤C具体包括:
步骤C1:经过步骤B的判断,需要变换电路工作,变换电路中开关管V1、开关管V2均采用全控型开关管IGBT,变换电路的结构是混合储能与大电感串联后并联在开关管V2上,开关管V2反并联一个二极管,开关管V1的发射极与开关管V2集电极相连,开关管V1反并联一个二极管,开关管V1、开关管V2与大电容并联后接在直流母线上,若变换电路工作在Buck模式,这时开关管V1开通,开关管V2完全关断,在开关管V1导通期间,由于直流侧电压大于混合储能电压,因此直流电网内能量会经过电感吸收后对混合储能模块进行充电;在开关管V1关断期间,电感中储存的电磁能经由开关管V2的反并联二极管D2续流继续向混合储能充电,同样通过控制开关管V1的开关工作周期和占空比改变混合储能的充电电压;
步骤C2:经过步骤B的判断,若变换电路工作在Boost模式,这时开关管V2开通,开关管V1完全关断,设开关周期为Ts,在开关管V2导通期间Ton=D Ts,其中D为占空比,Ton为导通时间,混合储能模块通过开关管V2将能量储存在电感L中;在开关管V2关断期间Toff=(1-D)Ts,电感L中储存的电磁能经过开关管V1的反并联二极管D1释放至直流侧,通过控制开关管V2的工作周期和占空比调节直流侧电压大小。
CN201911206661.9A 2019-11-29 2019-11-29 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法 Active CN110854983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911206661.9A CN110854983B (zh) 2019-11-29 2019-11-29 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911206661.9A CN110854983B (zh) 2019-11-29 2019-11-29 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法

Publications (2)

Publication Number Publication Date
CN110854983A true CN110854983A (zh) 2020-02-28
CN110854983B CN110854983B (zh) 2021-05-25

Family

ID=69606698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911206661.9A Active CN110854983B (zh) 2019-11-29 2019-11-29 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法

Country Status (1)

Country Link
CN (1) CN110854983B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421135A (zh) * 2020-11-20 2021-02-26 四川长虹电器股份有限公司 一种串联式储能电池直流转换***及其控制方法
CN112671007A (zh) * 2020-12-28 2021-04-16 浙江朗普电气科技有限公司 一种变频抗扰动智能调节装置
CN113285518A (zh) * 2021-04-12 2021-08-20 中广核研究院有限公司 直流电源***
CN113328450A (zh) * 2020-12-28 2021-08-31 青岛鼎信通讯股份有限公司 一种末端低电压治理装置启停式母线补偿方法
WO2022012427A1 (zh) * 2020-07-14 2022-01-20 珠海格力电器股份有限公司 直流供配电控制方法、***及直流微数据中心

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185329A (zh) * 2011-05-04 2011-09-14 华北电力大学 基于超级电容的直流方式电压暂降抑制装置及其抑制方法
CN104218658A (zh) * 2014-09-18 2014-12-17 上海电力学院 一种微电网混合储能***控制方法
CN105429128A (zh) * 2016-01-08 2016-03-23 江苏省电力公司电力科学研究院 基于混合储能的直流微网母线电压控制策略
US20160118799A1 (en) * 2014-10-22 2016-04-28 SEWW Energy Inc. Apparatuses, Methods, and Systems for Sustainable Energy Microgrid Mobile Medical Solutions
CN110445120A (zh) * 2019-08-06 2019-11-12 太原科技大学 基于混合储能的直流微电网母线电压控制策略

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185329A (zh) * 2011-05-04 2011-09-14 华北电力大学 基于超级电容的直流方式电压暂降抑制装置及其抑制方法
CN104218658A (zh) * 2014-09-18 2014-12-17 上海电力学院 一种微电网混合储能***控制方法
US20160118799A1 (en) * 2014-10-22 2016-04-28 SEWW Energy Inc. Apparatuses, Methods, and Systems for Sustainable Energy Microgrid Mobile Medical Solutions
CN105429128A (zh) * 2016-01-08 2016-03-23 江苏省电力公司电力科学研究院 基于混合储能的直流微网母线电压控制策略
CN110445120A (zh) * 2019-08-06 2019-11-12 太原科技大学 基于混合储能的直流微电网母线电压控制策略

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XINBO LIU等: "Control Strategy of Super Capacitor-Battery Hybrid Energy Storage System Considering Constant Power Loads Characteristics", 《2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS)》 *
常晓勇等: "基于超级电容的直流微电网电压波动抑制研究", 《电力电子技术》 *
王海波等: "平抑光伏***波动的混合储能控制策略", 《电网技术》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012427A1 (zh) * 2020-07-14 2022-01-20 珠海格力电器股份有限公司 直流供配电控制方法、***及直流微数据中心
CN112421135A (zh) * 2020-11-20 2021-02-26 四川长虹电器股份有限公司 一种串联式储能电池直流转换***及其控制方法
CN112671007A (zh) * 2020-12-28 2021-04-16 浙江朗普电气科技有限公司 一种变频抗扰动智能调节装置
CN113328450A (zh) * 2020-12-28 2021-08-31 青岛鼎信通讯股份有限公司 一种末端低电压治理装置启停式母线补偿方法
CN113285518A (zh) * 2021-04-12 2021-08-20 中广核研究院有限公司 直流电源***

Also Published As

Publication number Publication date
CN110854983B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN110854983B (zh) 一种基于超级电容平抑直流母线电压突变的电压稳定装置及其方法
CN106786490A (zh) 分布式直流微电网能量控制方法
CN113690873A (zh) 一种含混合储能的光伏直流微电网协调控制方法
US10790769B2 (en) Control method and control system for enhancing endurance to anomalous voltage for doubly-fed induction generator
WO2017148251A1 (zh) 提升风电机组频率支撑能力的控制***
US20040207366A1 (en) Multi-mode renewable power converter system
US20110210694A1 (en) Power storage system
CN203586455U (zh) 光伏空调***
CN102088190A (zh) 并网电力存储***和控制并网电力存储***的方法
CN101673963A (zh) 基于两重直流母线控制的通信基站用风光互补发电***
CN108054826B (zh) 一种防冲击电流蓄电池保护的光储***
CN110120679B (zh) 一种与光伏逆变器直流侧耦合的户用光伏储能变换器
CN109888845B (zh) 一种交直流混合微电网
CN105576685A (zh) 新能源微电网储能***
JP4566658B2 (ja) 電源装置
CN116054237A (zh) 一种基于光储共直流母线***的功率限制方法
CN108879783B (zh) 一种电力弹簧能源消纳***
CN112104306B (zh) 一种混合型柔性合环装置及光储共享接口控制方法
CN106026174B (zh) 一种具有智能化功率分配功能的光伏并网发电***
CN205724935U (zh) 一种具有智能化功率分配功能的光伏并网发电***
CN215322084U (zh) 一种储能式直流充电桩
JP4337687B2 (ja) 電源装置
JP4569223B2 (ja) 電源装置
CN112564082B (zh) 一种将蓄电池单元分组优化的直流微电网能量调控方法
CN113890156A (zh) 结合多种取能方式的电缆监测设备供电***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant