CN110832269A - 回收式喷射驱动 - Google Patents

回收式喷射驱动 Download PDF

Info

Publication number
CN110832269A
CN110832269A CN201880035944.9A CN201880035944A CN110832269A CN 110832269 A CN110832269 A CN 110832269A CN 201880035944 A CN201880035944 A CN 201880035944A CN 110832269 A CN110832269 A CN 110832269A
Authority
CN
China
Prior art keywords
propeller
radial turbine
drive
blades
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880035944.9A
Other languages
English (en)
Other versions
CN110832269B (zh
Inventor
马丁.齐格勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN110832269A publication Critical patent/CN110832269A/zh
Application granted granted Critical
Publication of CN110832269B publication Critical patent/CN110832269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/103Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof having means to increase efficiency of propulsive fluid, e.g. discharge pipe provided with means to improve the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/22Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/16Propellers having a shrouding ring attached to blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K5/00Plants including an engine, other than a gas turbine, driving a compressor or a ducted fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/028Units comprising pumps and their driving means the driving means being a planetary gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/12Propulsion specially adapted for torpedoes
    • F42B19/24Propulsion specially adapted for torpedoes by electric motors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H29/00Drive mechanisms for toys in general
    • A63H29/10Driving mechanisms actuated by flowing media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • B63H2011/084Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with two or more pump stages
    • B63H2011/085Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with two or more pump stages having counter-rotating impellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

本发明包括一种用于通过从推进流动中回收使用功率提高喷射驱动的效率的方法和装置。在螺旋桨壳体(5)中的由驱动机(9)经由驱动轴(1)驱动的外罩螺旋桨(4)从径流式涡轮(6)的内部空间(Vi)输送用于喷射驱动的流体。流体轴向地加速且向后逆着行驶方向喷出。由此形成推力。因为在涡轮的内部空间中的压力降低,来自周围环境的新的流体直接经由旋转的径流式涡轮(6)的桨叶由外向内流动且由此驱动桨叶。没有导向器。径流式涡轮(6)的功率经由传动机构(2)传递到螺旋桨(4)的驱动轴(1)处,这减轻驱动机(9)的负担且提高喷射驱动的效率。本发明特别良好地适用于电驱动器。

Description

回收式喷射驱动
技术领域
本发明涉及一种用于通过从推进流动中回收使用功率来提高喷射驱动的效率的方法和装置。其描述为用于飞机的驱动器,但是可通常用于每种类型的交通工具的驱动器。其中包括飞机、陆上交通工具和船舶。
背景技术
根据现有技术的喷射驱动借助于推进器输送空气或水且生成较高速度的射流,其向后逆着行驶方向喷出。推进器以驱动机来驱动,其可为热力机或电马达。根据通常的喷射理论,推力由在喷射驱动的平衡极限处流动脉冲的差得出。该理论基于牛顿的力定律,且由此推力作为来自静止的流体的加速度的惯性力的产物(或称为反应,即Reaktion)出现。因此驱动交通工具。
喷射驱动的效率是推力功率与耗费的功率的比例。推力功率是推力与交通工具的速度相乘的乘积。其是需要的,以便使交通工具通过空气或水运动。耗费的功率是来自驱动机的用于推进器的机械轴功率。其中含有的是动能在喷射驱动的流出(Abstrom)中的损失。附加地存在来自驱动机的热损失。
喷射驱动的能量消耗的特征在于推力特定的功率(schubspezifischeLeistung),其是每推力F的驱动功率P。其以每牛顿瓦特来测量,这是一种速度。根据朗肯的理论,简单的喷射驱动的推力特定的功率作为螺旋桨的流入v和流出c的速度的算数平均数得出。其中含有在尾流中的喷射损失,但是没有驱动机的热损失。
Figure DEST_PATH_IMAGE001
根据朗肯的推力特定的功率 (G1)
为了提高喷射驱动的效率,必须降低其推力特定的功率。数学上意味着,减小分数的分子或增大其分母。根据朗肯的理论因此以附加功率ΔP和附加力ΔF扩展,且获得:
Figure DEST_PATH_IMAGE002
扩展后的推力特定的功率 (G2)
当附加功率ΔP是负的且附加力ΔF是正的时,商
Figure DEST_PATH_IMAGE003
始终小于根据朗肯的原始值
Figure DEST_PATH_IMAGE004
。然后准确地,驱动器比之前更有效率。热动力学上观察,当功率由机器给出且作为使用功率供驱动器使用时,功率是负的。当力沿运动方向作用时,力是正的。
使用功率可通过从推进流动中回收能量获得。在船舶的情形中,在此已知格林导引轮(Grimsche Leitrad),利用轴向流动机在船舶螺旋桨的尾流中取回能量且提高驱动器的效率。在此不利的是在螺旋桨和导引轮之间的干涉,带有所有的桨叶的较高动态负荷和在主螺旋桨处的推力损失。在飞机的情形中,从推进流动中回收使用功率并非已知。
发明内容
本发明的任务是,找到一种方法和一种装置,利用其可不仅在船舶的情形中而且在飞机的情形中通过从推进流动中回收使用功率提高喷射驱动的效率。在此,来自流动干涉的螺旋桨的动态负荷相比之前应更小。该任务通过根据权利要求1的方法和根据权利要求4的装置和如下内容来实现。
附图说明
本发明根据5幅图来描述:
1. 作为针对本发明的可能的实施例的带有所有主要构件的喷射驱动的视图,
2. 用于从推进流动中回收能量的作用原理的视图,
3. 在径流式涡轮的转子处的流动力的视图,
4. 针对驱动器的机身集成的示例。
5. 带有到开放式转子处的功率输出的示例。
具体实施方式
喷射驱动的螺旋桨生成推进流动。其在此用于驱动径流式涡轮,其附加功率经由传动机构传递到螺旋桨的驱动轴处。这减轻驱动马达的负担。径流式涡轮如此设计,以至于在其桨叶叶片处出现的流动力不仅具有沿转动方向的切向的力分量Ft,而且具有沿运动方向的轴向的力分量Fx。切向的分量引起在径流式涡轮处的转矩。由此形成附加功率ΔP。从轴向的力分量中形成附加推力ΔF。
图1示出了新的驱动器的实施例。在螺旋桨壳体(5)中的加外罩的螺旋桨(4)通过驱动机(9)经由在轴通道(3)中的驱动轴(1)驱动。驱动轴(1)经由传动机构(2)与径流式涡轮(3)联接。径流式涡轮(6)不具有导向器且经由球轴承(8)支承在轴通道(3)上。其在机身(7)和螺旋桨壳体(5)之间围绕纵向轴线转动。其桨叶轮廓遵循在机身(7)和螺旋桨壳体(5)之间的低阻力的流动体的形状,其中转子直径由前向后渐缩。螺旋桨(4)从径流式涡轮(6)的内部空间输送空气且生成向后的射流。由此形成用于前进的推力。因为由此在径流式涡轮的内部空间中的压力降低,空气由外流动穿过转动转子且促使在其桨叶处的局部有效的流动力。由此形成附加功率和附加推力,且由于
Figure DEST_PATH_IMAGE005
提高驱动器的效率。
图2示出了从推进流动中回收的原理。
在图2.1中呈现了主要的构件。螺旋桨(4)通过驱动轴(1)驱动。其经由传动机构(2)与径流式涡轮的转子(6)相联接。传动机构(2)通过呈现的齿轮符号化,其中传动机构可机械地(例如行星齿轮传动机构)或(电)磁地(例如磁体传动机构、沃德-伦纳德组、带有电子调节联合器的马达-发电机)或作为流动传动机构(带有转矩转换器的扩展的流动联合器)实施。流体从周围环境在没有涡旋的情况下流至转子。给出的涡轮功率减轻驱动机的负担。螺旋桨(4)和涡轮(6)相反转动,这补偿来自驱动器的转矩。
图2.2示出了出现的流动场。螺旋桨从转子内部空间的容积Vi输送空气。由此,在此内压力pi降低。因为外压力pa此时更高,空气强制地从外部流动且横跨径流式涡轮的旋转叶片。在此形成可使用的流动力。
图3示出了在涡轮转子的桨叶处的流动力。
图3.1示出了在转子的任意部位处的径向的桨叶截面(截面坐标xs),其由机身(纵坐标x0)延伸直至螺旋桨壳体(纵坐标x1)。图3.2示出了纵截面和来自图3.1的径向截面的位置。
在图3.1中,呈现了在径向的桨叶截面中的入流。至涡轮的流入c沿径向方向在没有涡旋的情况下实现。没有导向器。通过与来自周向速度的叶片流入u的叠加,在叶片处形成相关的入流w,其相对于带有半径ra的截面圆的切线倾斜。桨叶叶片成轮廓且相对于截面圆的切线扭曲。轮廓的扭曲由前向后增加。转子直径在此减少。此时从带有相对速度w的桨叶截面的入流形成偏心作用的升力Fa,其作用线相对于径向方向以角度ψ倾斜且以与转动轴线的间距ri伸延。由此,升力Fa以间距ri引起围绕纵轴线的转矩M。由此形成可使用的附加功率ΔP,其减轻驱动机的负担且减少方程(G2)中的分子。
利用倾斜角ψ,可将升力Fa分解成径向的分量Fr和切向的分量Ft。径向的分量Fr逆着来自旋转的离心力作用。其减轻桨叶叶片的负担。切向的分量Ft引起用于附加功率的转矩。
在根据图3.2的纵截面中,示出升力Fa沿飞行方向的倾斜。通过转子由前向后的渐缩,在局部的桨叶流动中形成沿运动方向的力分量Fx。这是附加力ΔF,其增大方程(G2)中的分母且进一步提高效率。
在图4中,驱动器示例性地呈现为飞机机身的组成部分。其位于机身的背风面中。螺旋桨始终从径流式涡轮的内部空间抽拉其流入。在此,维持在整个续航(或称为旅程,即Reise)期间的不均匀的势能降。其在每个空间点处具有局部压力和局部速度。由此形成流动力,其引起附加推力和附加功率。由此,从流入螺旋桨的推进流动中取回功率,这是回收。相比于根据朗肯的简单理论,此时适用方程(G2),且新的驱动器相比之前可能更有效。
在船舶的情形中,由螺旋桨的尾迹流动中的取回使用功率已知为格林导引轮。这是轴向的流动机。现在,来自流入的功率借助于径向的流动机取回。区别于已知的径流式涡轮缺少导向器。
从推进流动中功率的回收的新的原理可利用空气或利用水或利用另一流体实施。由此,驱动机(9)的所需的功率可显著地下降。本发明特别适用于带有电马达的驱动器。
对于较低的速度可为有利的是,径流式涡轮(6)的功率仅第一部分传递到螺旋桨轴(1)处。第二部分可直接给出到开放式转子(10)处,其螺旋桨叶片(11)与径流式涡轮(6)固定连接。在该情况中,开放式转子(10)直接由径流式涡轮(6)驱动。
图5示出了这样的构造的一个实施例。开放式转子(10)具有相比径流式涡轮(6)的更大的直径。其螺旋桨叶片(11)与径流式涡轮固定连接且生成轴向推力。在较小的速度的情形中,该布置是有利的,因为涡轮功率给出到带有较大直径的转子处,这减少了喷射损失。
参考符号
1 驱动轴
2 传动机构(机械的、磁的、流体的)
3 轴通道
4 螺旋桨
5 螺旋桨壳体
6 径流式涡轮
7 机身
8 球轴承
9 驱动机(热力机或电马达)
10 开放式转子(open rotor)
11 螺旋桨叶片
缩写和公式符号
c 喷射速度(朗肯的螺旋桨理论)
c 绝对流动速度(速度三角形)
F 推力
F0 根据朗肯的螺旋桨理论的推力
ΔF 附加力
Fa 升力
Fr 沿径向方向的力分量
Ft 沿切向方向的力分量
Fx 沿轴向方向的力分量
M 转矩
p 压力
pa 外压力,在径流式涡轮外部
pi 内压力,在径流式涡轮内部
P 驱动功率
P0 根据朗肯的螺旋桨理论的驱动功率
ΔP 附加功率
r 半径
ra 外半径
ri 内半径
u 周向速度(速度三角形)
v 续航速度(朗肯的螺旋桨理论)
Vi 在径流式涡轮的内部空间中的容积
w 相对的流动速度(速度三角形)
x 转子截面的纵坐标(xs=x0..x1)
ψ 桨叶力的径向倾斜角。

Claims (14)

1.一种用于通过从推进流动中回收使用功率提高喷射驱动的效率的方法,其特征在于,在螺旋桨壳体(5)中的由驱动机(9)经由驱动轴(1)驱动的外罩螺旋桨(4)从径流式涡轮(6)的内部空间Vi输送用于所述喷射驱动的流体,所述螺旋桨(4)轴向地加速所述流体且向后逆着行驶方向喷出,新的流体从周围环境直接经由没有导向器的旋转的径流式涡轮(6)的桨叶从外向内流动且由此驱动所述径流式涡轮(6),且所述径流式涡轮(6)的功率经由传动机构(2)传递到所述螺旋桨(4)的驱动轴(1)处,这减轻所述驱动机(9)的负担。
2.根据权利要求1所述的方法,其特征在于,所述流体是空气。
3.根据权利要求1所述的方法,其特征在于,所述流体是水。
4.根据权利要求1所述的方法,其特征在于,所述功率的一部分从所述径流式涡轮(6)直接给出到开放式转子(10)处,其螺旋桨叶片(11)与所述径流式涡轮固定连接,且来自所述周围环境的所述流体加速且由此生成轴向推力。
5.一种用于通过从推进流动中回收使用功率提高喷射驱动的效率的装置,其特征在于,其在螺旋桨壳体(5)中含有由驱动机(9)经由驱动轴(1)驱动的外罩螺旋桨(4),且其含有不带有导向器的由来自所述周围环境的流体穿流的径流式涡轮(6),其中所述流体首先流动穿过所述径流式涡轮(6)且然后流动穿过所述螺旋桨(4),且所述径流式涡轮(6)与传动机构(2)相连接,所述径流式涡轮的功率通过所述传动机构可传递到所述驱动轴(1)处。
6.根据权利要求5所述的装置,其特征在于,所述驱动机(9)是电马达。
7.根据权利要求5所述的装置,其特征在于,所述驱动机(9)是热力机(燃气涡轮、活塞马达)。
8.一种用于根据权利要求5所述的装置的径流式涡轮(6),其特征在于,其不具有导向器,其定位在机身(7)和螺旋桨壳体(5)之间,其转动轴线沿行驶方向指向,其桨叶遵循在机身(7)和螺旋桨壳体(5)之间的低阻力的流动体的轮廓,其桨叶如翼型件那样成轮廓,所述桨叶的轮廓沿纵向方向扭曲,所述轮廓的扭曲由前向后增加,且桨叶长度相对于平均的轮廓深度的比例大于4(所述桨叶显著长于宽度)。
9.根据权利要求8所述的径流式涡轮(6),其特征在于,所述涡轮转子的直径由前向后降低。
10.根据权利要求8所述的径流式涡轮(6),其特征在于,其转动轴线共轴于所述螺旋桨(4)定位。
11.根据权利要求8所述的径流式涡轮(6),其特征在于,其转动方向与所述螺旋桨(4)的转动方向相反。
12.根据权利要求8所述的径流式涡轮(6),其特征在于,其包括开放式转子(10),所述开放式转子的螺旋桨叶片(11)与所述径流式涡轮(6)固定连接。
13.根据权利要求5所述的装置,其特征在于,所述传动机构(2)包括直接的力传递部,其中所述直接的力传递部包括齿轮传动机构或行星齿轮传动机构。
14.根据权利要求5所述的装置,其特征在于,所述传动机构(2)包括间接的力传递部,其中所述间接的力传递部包括磁的、电磁的或流动技术上的力传递部,其中所述磁的力传递部包括永磁体,其中所述电磁的力传递部包括沃德-伦纳德组或电子调节的电马达/发电机联合器且其中所述流动技术上的力传递部包括带有转矩转换器的扩展的流动联合器。
CN201880035944.9A 2017-05-29 2018-05-28 回收式喷射驱动 Expired - Fee Related CN110832269B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH00692/17 2017-05-29
CH00692/17A CH713816A1 (de) 2017-05-29 2017-05-29 Rekuperativer Propellerantrieb mit gegenläufiger Turbine.
PCT/EP2018/063914 WO2018219856A1 (de) 2017-05-29 2018-05-28 Rekuperativer strahlantrieb

Publications (2)

Publication Number Publication Date
CN110832269A true CN110832269A (zh) 2020-02-21
CN110832269B CN110832269B (zh) 2022-06-03

Family

ID=62486566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880035944.9A Expired - Fee Related CN110832269B (zh) 2017-05-29 2018-05-28 回收式喷射驱动

Country Status (6)

Country Link
US (1) US11530020B2 (zh)
EP (1) EP3631349B1 (zh)
CN (1) CN110832269B (zh)
BR (1) BR112019025081B1 (zh)
CH (1) CH713816A1 (zh)
WO (1) WO2018219856A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113374629A (zh) * 2021-06-16 2021-09-10 上海汉未科技有限公司 一种弹载惯性控制风能采集转换装置及弹载电源
WO2024021318A1 (zh) * 2022-07-25 2024-02-01 易元明 航空飞机采用相对运动空气动能的方法与装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200140062A1 (en) * 2018-11-01 2020-05-07 Eviation Tech Ltd Electric propeller and ducted fan propulsion unit
CN110143270B (zh) * 2019-03-29 2020-11-10 武汉船用机械有限责任公司 喷水推进装置及其液压泵的安装装置
CN112874744A (zh) * 2021-01-19 2021-06-01 武汉波依迈科技有限公司 一种转轴结构及采用该转轴的轮缘推进器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2381456A (en) * 1941-09-20 1945-08-07 Jesse D Langdon Airship
US4931026A (en) * 1989-04-24 1990-06-05 Woodland Sylvester L Jet propeller
JPH03287488A (ja) * 1990-04-04 1991-12-18 Mitsubishi Heavy Ind Ltd 遊転プロペラ付き舶用プロペラ装置
DE102004008805A1 (de) * 2004-02-20 2005-09-22 Siemens Ag Zweipropellerantrieb für Schiffe
US20090194997A1 (en) * 2006-04-12 2009-08-06 Peter Andrew Stabins Darrieus water wheel turbine
US20090293795A1 (en) * 2008-05-27 2009-12-03 Schroeder Dierk Submarine with a propulsion drive with an electric motor ring
CN104061112A (zh) * 2014-05-29 2014-09-24 哈尔滨工程大学 轮缘发电喷水推进器
GB2530324A (en) * 2014-09-19 2016-03-23 Mark Edward Campbell-Roddis 'Barrel propeller' and the associated concept of a 'barrel jet' engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796005A (en) * 1973-02-23 1974-03-12 Mattel Inc Simulated jet airplane toy
US5642984A (en) * 1994-01-11 1997-07-01 Northeastern University Helical turbine assembly operable under multidirectional fluid flow for power and propulsion systems
KR100874046B1 (ko) * 1999-12-29 2008-12-12 쥐씨케이 테크놀로지, 인코포레이티드 자유 흐름수 터빈
US9476385B2 (en) 2012-11-12 2016-10-25 The Boeing Company Rotational annular airscrew with integrated acoustic arrester
EP3214290A1 (de) * 2016-03-03 2017-09-06 Alpha Velorum AG Effizienter strahlantrieb

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2381456A (en) * 1941-09-20 1945-08-07 Jesse D Langdon Airship
US4931026A (en) * 1989-04-24 1990-06-05 Woodland Sylvester L Jet propeller
JPH03287488A (ja) * 1990-04-04 1991-12-18 Mitsubishi Heavy Ind Ltd 遊転プロペラ付き舶用プロペラ装置
DE102004008805A1 (de) * 2004-02-20 2005-09-22 Siemens Ag Zweipropellerantrieb für Schiffe
US20090194997A1 (en) * 2006-04-12 2009-08-06 Peter Andrew Stabins Darrieus water wheel turbine
US20090293795A1 (en) * 2008-05-27 2009-12-03 Schroeder Dierk Submarine with a propulsion drive with an electric motor ring
CN104061112A (zh) * 2014-05-29 2014-09-24 哈尔滨工程大学 轮缘发电喷水推进器
GB2530324A (en) * 2014-09-19 2016-03-23 Mark Edward Campbell-Roddis 'Barrel propeller' and the associated concept of a 'barrel jet' engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113374629A (zh) * 2021-06-16 2021-09-10 上海汉未科技有限公司 一种弹载惯性控制风能采集转换装置及弹载电源
WO2024021318A1 (zh) * 2022-07-25 2024-02-01 易元明 航空飞机采用相对运动空气动能的方法与装置

Also Published As

Publication number Publication date
BR112019025081B1 (pt) 2023-02-28
CN110832269B (zh) 2022-06-03
US20200156750A1 (en) 2020-05-21
EP3631349B1 (de) 2022-12-21
BR112019025081A2 (pt) 2020-06-16
CH713816A1 (de) 2018-11-30
EP3631349A1 (de) 2020-04-08
US11530020B2 (en) 2022-12-20
WO2018219856A1 (de) 2018-12-06

Similar Documents

Publication Publication Date Title
CN110832269B (zh) 回收式喷射驱动
CN109279002B (zh) 带有排放流动路径外部的风扇叶片的vtol交通工具
EP3964438B1 (en) Hybrid aircraft propulsion system
EP3569857B1 (en) Electric ducted fan
JP2003049796A (ja) 推進性スラストリングシステム
GB2565886B (en) Electric engine
SE462660B (sv) Gasturbinmotor med motroterande propellrar
EP3588750A1 (en) Electric fan
US3441088A (en) Hydraulic propeller by compound reaction
EP2412628A2 (en) Aerospace vehicle yaw generating tail section
CN103786853A (zh) 水下航行体的扭矩自平衡组合推进器
US11511837B2 (en) Hybrid propulsor for watercraft
EP0429640B1 (en) Water jet propulsion module
CN109515693A (zh) 飞机用电动助推轮和起落架
US10099761B2 (en) Water turbine propeller
US20060228957A1 (en) Turbo-jet pump and water jet engine
EP3623283A1 (en) Turbomachine
CA2300714A1 (en) Vertical wings on fluid vehicule with stabilizing torque system of jets to utilize fluid energy for forward motion, that is, sailing in fluid like air or water
US2561303A (en) Reduction of drag of and propulsion of aerodynamic or hydrodynamic bodies
GB2145774A (en) Bladed rotors and ducts associated therewith
EP3366571B1 (en) Passive boundary layer propulsor
RU125159U1 (ru) Устройство судовое водометное
EP3623285A1 (en) Turbomachine
EP3623284A1 (en) Turbomachine
EP3617059A1 (en) Turbomachine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220603