CN110783578B - 一种燃料电池催化剂浆料的预分散方法 - Google Patents

一种燃料电池催化剂浆料的预分散方法 Download PDF

Info

Publication number
CN110783578B
CN110783578B CN201910961193.XA CN201910961193A CN110783578B CN 110783578 B CN110783578 B CN 110783578B CN 201910961193 A CN201910961193 A CN 201910961193A CN 110783578 B CN110783578 B CN 110783578B
Authority
CN
China
Prior art keywords
agent
fuel cell
parts
starch
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910961193.XA
Other languages
English (en)
Other versions
CN110783578A (zh
Inventor
陈庆
廖健淞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU XINGBANG ENERGY TECHNOLOGY Co.,Ltd.
Original Assignee
Chengdu New Keli Chemical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu New Keli Chemical Science Co Ltd filed Critical Chengdu New Keli Chemical Science Co Ltd
Priority to CN201910961193.XA priority Critical patent/CN110783578B/zh
Publication of CN110783578A publication Critical patent/CN110783578A/zh
Application granted granted Critical
Publication of CN110783578B publication Critical patent/CN110783578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及燃料电池的技术领域,公开了一种燃料电池催化剂浆料的预分散方法。包括如下制备过程:(1)先将淀粉加入酸液中,水浴加热搅拌后静置,再调节pH值,然后混合均匀后加入碳载铂颗粒,继续调节pH值后搅拌加入三氯氧磷和酯化剂,搅拌反应后过滤,烘干,获得预处理催化剂颗粒;(2)将预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料。本发明的方法通过简单的酸、碱、助剂对含淀粉和酯化剂等的溶液的pH值控制调节预处理过程中的粘度,在碳载铂颗粒表面完成预包覆,在后续的浆料配置中具有更好的分散性,降低碳载铂颗粒在催化剂浆料配置过程中的团聚和沉降。

Description

一种燃料电池催化剂浆料的预分散方法
技术领域
本发明涉及燃料电池的技术领域,公开了一种燃料电池催化剂浆料的预分散方法。
背景技术
燃料电池是一种能够将燃料和氧化剂中的化学能通过电化学反应转变为电能的连续发电装置。和现有的燃油类引擎(汽油和柴油发动机)相比,燃料电池具有环境友好的特点,能源效率高、功率范围广,在车用发电机、固定电站、移动电源等各个领域都有着广泛的应用前景,因此受到世界各个国家和地区的普遍重视。燃料电池技术主要根据电解质不同分为几种类型:碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、质子交换膜燃料电池和固体氧化物燃料电池等。其中质子交换膜燃料电池的发展相对成熟,市场应用前景广泛。
作为质子交换膜燃料电池的核心部件,膜电极不仅是电子产生和分离的重要场所,同时承载了气体和产物水的传输,对质子交换膜燃料电池的电化学性能有十分重要的影响。其中膜电极主要由质子交换膜、催化剂和扩散层构成,作为影响膜电极电化学性能的关键,催化剂浆料的配制工艺至关重要,其性能的好坏,直接影响到所制备出的膜电极的性能,并最终影响到燃料电池的发电性能。
催化剂浆料的状态对所形成催化剂层的微观结构有着重要影响,根据有机溶剂的介电常数及其与质子导体聚合物的相互作用,当采用不同有机溶剂配制催化剂浆料时,浆料会呈现出不同的状态(溶液态、胶体态、共沉物),进而呈现出不同的催化特性。例如当浆料呈溶液状态时所形成的催化层性能一般不理想,而当浆料呈胶体状态时催化剂的利用率往往会得到提高,进而提高电池性能。除了有机溶剂种类之外,浆料中其它成分的配比、浆料分散方式等因素也会对膜电极的催化性能造成较大影响。因此,浆料制备的工艺控制是直接影响其性能的关键。
中国发明专利申请号201611063880.2公开了一种燃料电池膜电极催化剂浆料的制备方法。该方法包括如下步骤:(1)依次加入催化剂颗粒、水、高分子聚合物质子导体溶液、Teflon溶液,醇和增稠剂,使其混合;(2)先用磁力搅拌器搅拌;然后用剪切乳化机或均质机继续搅拌;最后用超声波震荡;得到催化剂浆料。
中国发明专利申请号201811066591.7公开了一种燃料电池涂布用催化剂浆料的制备方法,往容器中依次加入催化剂颗粒、去离子水、质子交换膜溶液、醇和稳定剂,之后将各物质混合分散均匀制得催化剂浆料,所述催化剂浆料的固含量控制为8~28%,所述催化剂浆料的粘度控制为50~500mPa·s,所述催化剂颗粒的质量占比为6~21%,稳定剂的质量占比为0.5~5%。
根据上述,现有方案中用于燃料电池的催化剂浆料大多为通过Pt/C颗粒在有机溶剂中进行搅拌,在制备过程中难以避免会出现催化剂颗粒团聚的现象。浆料配置过程往往比较复杂,而且由于Pt/C颗粒粒度较小,在浆料配置过程中极易出现团聚,导致催化性能不佳和对Pt的浪费,本发明提出了一种燃料电池催化剂浆料的预分散方法,可有效解决上述技术问题。
发明内容
目前应用较广的用于燃料电池的催化剂浆料存在容易团聚、沉降的问题,影响了催化剂的性能,而传统的高速搅拌的工艺存在耗时长、能耗高、经济性差的缺陷。
本发明通过以下技术方案达到上述目的:
一种燃料电池催化剂浆料的预分散方法,所述预分散方法的具体过程为:
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以600~900r/min的转速磁力搅拌2h,过滤,110~130℃下烘干8~12h,获得的固体颗粒即为预处理催化剂颗粒;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以300~500r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料。
优选的,步骤(1)所述淀粉为支链淀粉,可为木薯淀粉、甘薯淀粉、马铃薯淀粉、紫薯淀粉、小麦淀粉、玉米淀粉、大米淀粉中的至少一种。
进一步优选的,所述淀粉为木薯淀粉。
酸改性淀粉是指用酸处理的改性淀粉,它是一种可溶性淀粉,溶解后仍保留淀粉的颗粒状态,溶液的透明性和流动性良好,因此又称为可溶性改性淀粉。酸处理淀粉过程中会发生淀粉的解聚,为了控制解聚程度,在控制加酸的前提下,处理温度一般不超过糊化温度。在质子作用下,糖苷键断裂,并伴随着低相对分子质量的多聚物片断的出现。酸的用量取决于所欲达到的转化程度,在反应过程中,首先对支链淀粉部分降解,然后质子再进攻直链淀粉。反应初期的水解效率较高。将淀粉悬浮液进行酸改性后,产物的碱值、氢氧化钠临界吸附值、持水性和糊化温度增大,热糊粘度、特性粘数、碘亲合能力降低。作为本发明的优选,步骤(1)所述酸液为质量浓度36.5%的盐酸溶液。
本发明通过加入少量无机酸使淀粉的分子键断裂形成低粘度淀粉,而未破坏淀粉分子上用以乙酰化的活泼羟基,经过淀粉降粘后与酯化剂交联,交联过程中在Pt/C颗粒表面交联形成网状结构的包覆,从而提高催化剂颗粒在浆料配置过程中的分散性。作为本发明的优选,步骤(1)所述碳载铂颗粒的颗粒粒度小于50nm,颗粒中铂的质量分数为20~30%;所述酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;所述各原料配比为,按重量份计,淀粉100重量份、酸液160~200重量份、碳载铂颗粒10~20重量份、三氯氧磷1~2重量份、酯化剂2~3重量份。
优选的,步骤(2)所述增稠剂为黄原胶、明胶、瓜尔胶、甲壳胺、海藻酸钠、干酪素、大豆蛋白胶、***树胶、羊毛脂、琼脂中的至少一种。
进一步优选的,所述增稠剂为黄原胶。
优选的,步骤(2)所述分散剂为六偏磷酸钠、焦磷酸钠、三聚磷酸钠中的至少一种。
进一步优选的,所述分散剂为六偏磷酸钠。
优选的,步骤(2)所述消泡剂为聚二甲基硅氧烷消泡剂、聚氧丙烯聚氧乙烯甘油醚消泡剂、聚氧乙烯聚氧丙醇胺醚消泡剂、聚氧丙烯甘油醚消泡剂中的至少一种。
进一步优选的,所述消泡剂为聚二甲基硅氧烷消泡剂。
本发明通过简单的酸、碱、助剂对溶液的pH值控制调节预处理过程中的粘度以形成预包覆处理,使预包覆的颗粒在后续的浆料配置中具有更好的分散性,降低颗粒在浆料配置过程中的团聚和沉降。作为本发明的优选,步骤(2)所述各原料配比为,按重量份计,预处理催化剂颗粒20~30重量份、增稠剂0.5~2重量份、分散剂1~2重量份、消泡剂0.1~0.5重量份、水40~60重量份、乙二醇10~15重量份。
由上述预分散方法得到的一种燃料电池催化剂浆料,其中的颗粒材料具有良好分散性和抗沉降性能。通过测试,制备的燃料电池催化剂浆料的Zeta电位为-48±14~-50±15mV,沉降时间大于20d。
本发明提供的一种燃料电池催化剂浆料的预分散方法。将淀粉加入酸液中,水浴加热搅拌分散,静置后使用氢氧化钠溶液调节pH值以终止反应,搅拌混合均匀后静置,之后加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值,磁力搅拌,加入三氯氧磷和酯化剂,磁力搅拌后,过滤烘干获得固体颗粒,即为预处理催化剂颗粒;将预处理颗粒与增稠剂、分散剂、消泡剂和水、乙二醇进行混合机械搅拌,即可获得具有优异分散性能的燃料电池催化剂浆料。
测试本发明的方法获得的燃料电池催化剂浆料的Zeta电位及沉降时间,并与市售燃料电池催化剂浆料相对比,本发明的方法具有明显优势,如表1所示。
表1:
Figure 977703DEST_PATH_IMAGE002
本发明提供了一种燃料电池催化剂浆料的预分散方法,与现有技术相比,其突出的特点和优异的效果在于:
1、提出了淀粉降粘后交联包覆Pt/C颗粒实现燃料电池催化剂浆料的预分散的方法。
2、通过淀粉降粘后与酯化剂交联,在Pt/C颗粒表面交联形成网状结构的包覆,从而提高催化剂颗粒在浆料配置过程中的分散性。
3、通过简单的酸、碱、助剂对溶液的pH值控制调节预处理过程中的粘度以形成预包覆处理,使预包覆的颗粒在后续的浆料配置中具有更好的分散性,降低Pt/C颗粒在催化剂浆料配置过程中的团聚和沉降。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以600r/min的转速磁力搅拌2h,过滤,130℃下烘干8h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为20%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液170重量份、碳载铂颗粒16重量份、三氯氧磷2重量份、酯化剂2重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以500r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒30重量份、增稠剂1重量份、分散剂1重量份、消泡剂0.1重量份、水60重量份、乙二醇10重量份。
实施例1的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
实施例2
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以900r/min的转速磁力搅拌2h,过滤,110℃下烘干12h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为22%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液200重量份、碳载铂颗粒20重量份、三氯氧磷2重量份、酯化剂3重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以500r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒20重量份、增稠剂0.5重量份、分散剂1重量份、消泡剂0.4重量份、水40重量份、乙二醇15重量份。
实施例2的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
实施例3
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以700r/min的转速磁力搅拌2h,过滤,120℃下烘干11h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为22%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液180重量份、碳载铂颗粒13重量份、三氯氧磷1重量份、酯化剂3重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以400r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒25重量份、增稠剂2重量份、分散剂1重量份、消泡剂0.4重量份、水52重量份、乙二醇11重量份。
实施例3的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
实施例4
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以800r/min的转速磁力搅拌2h,过滤,115℃下烘干9h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为30%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液180重量份、碳载铂颗粒18重量份、三氯氧磷1.5重量份、酯化剂2重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以500r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒25重量份、增稠剂1.5重量份、分散剂1.5重量份、消泡剂0.3重量份、水55重量份、乙二醇13重量份。
实施例4的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
实施例5
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以800r/min的转速磁力搅拌2h,过滤,125℃下烘干10h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为26%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液160重量份、碳载铂颗粒16重量份、三氯氧磷2重量份、酯化剂2.5重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以450r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒22重量份、增稠剂1重量份、分散剂2重量份、消泡剂0.15重量份、水40重量份、乙二醇12重量份。
实施例5的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
实施例6
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以700r/min的转速磁力搅拌2h,过滤,110℃下烘干12h,获得的固体颗粒即为预处理催化剂颗粒;
淀粉为木薯淀粉;酸液为质量浓度36.5%的盐酸溶液;碳载铂颗粒中铂的质量分数为20%;酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
各原料配比为,按重量份计,淀粉100重量份、酸液200重量份、碳载铂颗粒10重量份、三氯氧磷2重量份、酯化剂2重量份;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以400r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料;
增稠剂为黄原胶;分散剂为六偏磷酸钠;消泡剂为聚二甲基硅氧烷消泡剂;
各原料配比为,按重量份计,预处理催化剂颗粒20重量份、增稠剂2重量份、分散剂1重量份、消泡剂0.2重量份、水50重量份、乙二醇12重量份。
实施例6的方法获得的燃料电池催化剂浆料,其Zeta电位及沉降时间如表2所示。
对比例1
对比例1使用与实施例6相同的淀粉,但不加入三氯氧磷和酯化剂,直接与碳载铂颗粒、增稠剂、分散剂、消泡剂和水、乙二醇配置为浆料,测试其粘度和沉降时间,测试结果如表2。
实施例与对比例中使用的Pt/C颗粒为武汉喜马拉雅光电的70wt%型催化剂颗粒。
上述性能指标的测试方法为:
(1)分散性能测试:使用Zeta电位仪测试本发明的方法获得的催化剂浆料的电位,其绝对值越大代表分散性能越好;
(2)沉降时间测试:将本发明的方法得到的浆料配置完成后置于锥形瓶中密封,每24h观察浆料是否分层。
表2:
Figure 707893DEST_PATH_IMAGE004
通过检测,本发明的产品与对比例相比,经过淀粉降粘后与酯化剂交联,Pt/C纳米颗粒被网格包覆实现其高分散性能,然而由于其部分活性表面被有机相包覆导致Zeta电位测试结果与对比例较为接近。但改性后的催化剂浆料由于其固相颗粒被有机相包覆形成单个颗粒,其表面能相对较小,难以团聚形成大颗粒并沉降,因此其沉降时间远大于对比例。故而使用改性淀粉形成网格包覆催化剂可以有效提高其分散性和抗沉降性能。

Claims (9)

1.一种燃料电池催化剂浆料的预分散方法,其特征在于,所述预分散方法的具体过程为:
(1)先将淀粉加入酸液中,在45℃下水浴加热并搅拌分散10min,然后静置2h,再使用氢氧化钠溶液调节pH值至6.5以终止反应,然后搅拌混合均匀并静置10min,再加入碳载铂颗粒,继续加入氢氧化钠溶液调节pH值至11,磁力搅拌2h,再加入三氯氧磷和酯化剂,以600~900r/min的转速磁力搅拌2h,过滤,110~130℃下烘干8~12h,获得的固体颗粒即为预处理催化剂颗粒;所述酯化剂为醋酸酐与丁二酸酐按照质量比1:1混合所得的混合溶液;
(2)将步骤(1)制得的预处理催化剂颗粒与增稠剂、分散剂、消泡剂、水、乙二醇混合,以300~500r/min的转速进行机械搅拌,搅拌时间不低于30min,使各物料混合均匀,即可制得具有优异分散性能的燃料电池催化剂浆料。
2.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(1)所述淀粉为支链淀粉,选用木薯淀粉、甘薯淀粉、马铃薯淀粉、紫薯淀粉、小麦淀粉、玉米淀粉、大米淀粉中的至少一种。
3.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(1)所述酸液为质量浓度36.5%的盐酸溶液。
4.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(1)所述碳载铂颗粒的颗粒粒度小于50nm,颗粒中铂的质量分数为20~30%。
5.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:所述步骤(1)中各原料配比为,按重量份计,淀粉100重量份、酸液160~200重量份、碳载铂颗粒10~20重量份、三氯氧磷1~2重量份、酯化剂2~3重量份。
6.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(2)所述增稠剂为黄原胶、明胶、瓜尔胶、甲壳胺、海藻酸钠、干酪素、大豆蛋白胶、***树胶、羊毛脂、琼脂中的至少一种。
7.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(2)所述分散剂为六偏磷酸钠、焦磷酸钠、三聚磷酸钠中的至少一种。
8.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:步骤(2)所述消泡剂为聚二甲基硅氧烷消泡剂、聚氧丙烯聚氧乙烯甘油醚消泡剂、聚氧乙烯聚氧丙醇胺醚消泡剂、聚氧丙烯甘油醚消泡剂中的至少一种。
9.根据权利要求1所述一种燃料电池催化剂浆料的预分散方法,其特征在于:所述步骤(2)中各原料配比为,按重量份计,预处理催化剂颗粒20~30重量份、增稠剂0.5~2重量份、分散剂1~2重量份、消泡剂0.1~0.5重量份、水40~60重量份、乙二醇10~15重量份。
CN201910961193.XA 2019-10-11 2019-10-11 一种燃料电池催化剂浆料的预分散方法 Active CN110783578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910961193.XA CN110783578B (zh) 2019-10-11 2019-10-11 一种燃料电池催化剂浆料的预分散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910961193.XA CN110783578B (zh) 2019-10-11 2019-10-11 一种燃料电池催化剂浆料的预分散方法

Publications (2)

Publication Number Publication Date
CN110783578A CN110783578A (zh) 2020-02-11
CN110783578B true CN110783578B (zh) 2021-03-02

Family

ID=69385124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910961193.XA Active CN110783578B (zh) 2019-10-11 2019-10-11 一种燃料电池催化剂浆料的预分散方法

Country Status (1)

Country Link
CN (1) CN110783578B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366318A (zh) * 2020-11-02 2021-02-12 横店集团东磁股份有限公司 一种负极浆料及其制备方法和用途
CN114725402A (zh) * 2022-04-08 2022-07-08 安徽枡水新能源科技有限公司 一种制备燃料电池催化剂涂布浆料的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483241A (zh) * 2008-01-09 2009-07-15 汉能科技有限公司 一种质子交换膜燃料电池膜电极的制备方法
WO2011062998A2 (en) * 2009-11-18 2011-05-26 Battelle Memorial Institute Anodes for lithium ion batteries
CN102142563A (zh) * 2011-03-01 2011-08-03 新源动力股份有限公司 一种质子交换膜燃料电池催化剂涂层膜电极浆料制备方法
CN103515622A (zh) * 2013-08-02 2014-01-15 清华大学 用于燃料电池的膜电极及其制备方法
CN106654305A (zh) * 2016-10-21 2017-05-10 成都新柯力化工科技有限公司 一种用于燃料电池的石墨烯复合催化剂及其制备方法
CN107437628A (zh) * 2017-07-20 2017-12-05 上海亮仓能源科技有限公司 一种燃料电池膜电极组件的制备方法
CN108110261A (zh) * 2017-12-29 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池用金属粒子-液态金属催化剂及制备方法
CN108615959A (zh) * 2016-12-09 2018-10-02 中国科学院大连化学物理研究所 一种溶解氧海水电池的亲水阴极及其制备和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894002B2 (ja) * 2002-03-07 2007-03-14 株式会社豊田中央研究所 膜電極接合体並びにこれを備える燃料電池及び電気分解セル
CN101306366A (zh) * 2008-07-03 2008-11-19 上海交通大学 碳载铂改进型氧化铈复合阳极催化剂的制备方法
CN102709570B (zh) * 2012-06-13 2014-08-13 上海空间电源研究所 一种燃料电池催化剂浆料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483241A (zh) * 2008-01-09 2009-07-15 汉能科技有限公司 一种质子交换膜燃料电池膜电极的制备方法
WO2011062998A2 (en) * 2009-11-18 2011-05-26 Battelle Memorial Institute Anodes for lithium ion batteries
CN102142563A (zh) * 2011-03-01 2011-08-03 新源动力股份有限公司 一种质子交换膜燃料电池催化剂涂层膜电极浆料制备方法
CN103515622A (zh) * 2013-08-02 2014-01-15 清华大学 用于燃料电池的膜电极及其制备方法
CN106654305A (zh) * 2016-10-21 2017-05-10 成都新柯力化工科技有限公司 一种用于燃料电池的石墨烯复合催化剂及其制备方法
CN108615959A (zh) * 2016-12-09 2018-10-02 中国科学院大连化学物理研究所 一种溶解氧海水电池的亲水阴极及其制备和应用
CN107437628A (zh) * 2017-07-20 2017-12-05 上海亮仓能源科技有限公司 一种燃料电池膜电极组件的制备方法
CN108110261A (zh) * 2017-12-29 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池用金属粒子-液态金属催化剂及制备方法

Also Published As

Publication number Publication date
CN110783578A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
CN113488668B (zh) 一种改善离聚物在催化剂浆料中分散性的质子交换膜燃料电池浆料及其制备方法
CN112133928B (zh) 一种稳定且高性能的质子交换膜燃料电池催化剂浆料及其制备方法
CN110783578B (zh) 一种燃料电池催化剂浆料的预分散方法
CN106784865B (zh) 一种铁氮共掺杂碳微球及制备方法、用途和氧还原电极
CN106654309A (zh) 一种燃料电池膜电极催化剂浆料的制备方法
KR102519907B1 (ko) 고점도 리튬 카르복시메틸 셀룰로오스 및 그 제조방법과 응용
CN111135761A (zh) 一种抗沉降的燃料电池催化剂浆料的制备方法
CN111982748A (zh) 一种质子交换膜燃料电池催化剂浆料的性能检测方法
CN108579818B (zh) 固体聚合物电解质水电解膜电极催化剂浆料的制备方法
CN113488669B (zh) 一种质子交换膜燃料电池无杂质匀浆工艺
CN112599792A (zh) 一种燃料电池膜电极催化层的制备方法
CN115188972A (zh) 一种催化剂浆料及其制备方法和应用及膜电极和燃料电池
CN109273732A (zh) 一种具有质子传输功能的钴包覆碳载铂催化剂及其制备方法
CN114243034A (zh) 一种抗沉淀催化剂浆料及其制备方法
CN115939420A (zh) 一种高稳定的质子交换膜燃料电池催化剂浆料的制备方法
CN109390593A (zh) 一种燃料电池膜电极浆料的制备方法
CN114196967B (zh) 一种高传质pem水电解用膜电极批量制备方法
CN112349918B (zh) 一种热解壳聚糖制备氮掺杂铂碳催化剂的方法及应用
CN114808000A (zh) 一种高效稳定的pem电解水阳极催化层的构筑方法
CN114373951A (zh) 一种高固含量高分散性质子交换膜燃料电池催化剂墨水及其制备方法
CN110491685B (zh) 一种石墨烯超级电容器浆料的制备方法及应用
CN114188582A (zh) 一种燃料电池膜电极离聚物预处理方法
CN111276704B (zh) 一种燃料电池电极催化层浆液制备方法、催化剂浆液及其应用
CN114232021B (zh) 一种磷化钼纳米微球复合材料的制备方法
CN112993271B (zh) 一种催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211110

Address after: 102200 423, floor 4, block a, Xinhua future city building, 175 Litang Road, Changping District, Beijing

Patentee after: Li Qiannan

Address before: 610091 block 4, Donghai Road, Jiaolong industrial port, Qingyang District, Chengdu, Sichuan

Patentee before: Chengdu Xinkeli Chemical Technology Co., Ltd

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211123

Address after: 224014 intersection of weiqi road and Fenghuang South Road, Yanlong sub district office, Yandu District, Yancheng City, Jiangsu Province (d)

Patentee after: JIANGSU XINGBANG ENERGY TECHNOLOGY Co.,Ltd.

Address before: 102200 423, 4 / F, block a, Xinhua future city building, 175 Litang Road, Changping District, Beijing

Patentee before: Li Qiannan