CN110757454A - 一种双机器人协同旋转的路径规划方法和装置 - Google Patents

一种双机器人协同旋转的路径规划方法和装置 Download PDF

Info

Publication number
CN110757454A
CN110757454A CN201910967429.0A CN201910967429A CN110757454A CN 110757454 A CN110757454 A CN 110757454A CN 201910967429 A CN201910967429 A CN 201910967429A CN 110757454 A CN110757454 A CN 110757454A
Authority
CN
China
Prior art keywords
coordinate
path
control point
rotation
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910967429.0A
Other languages
English (en)
Other versions
CN110757454B (zh
Inventor
张弓
包翔宇
候至丞
杨文林
王建
徐征
冯伟
王卫军
韩彰秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Advanced Technology of CAS
Original Assignee
Guangzhou Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Advanced Technology of CAS filed Critical Guangzhou Institute of Advanced Technology of CAS
Priority to CN201910967429.0A priority Critical patent/CN110757454B/zh
Publication of CN110757454A publication Critical patent/CN110757454A/zh
Application granted granted Critical
Publication of CN110757454B publication Critical patent/CN110757454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明涉及一种双机器人协同旋转的路径规划方法和装置,所述方法用于对所述机器人末端六轴相对于所述工件的圆弧路径插补方法;包括二机器人相对世界坐标z轴对立放置,依据夹持工件的尺寸设定路径圆弧半径,设置路径偏转角,执行协同旋转工况;依据机器人平台布置的相对关系及机器人标准D‑H参数,获取二机器人末端基坐标的齐次变换矩阵;分别对二机器人进行坐标旋转插补和基于空间几何的控制点坐标向量插补,生成控制点关于机器人基坐标的齐次变换矩阵;依据逆动力学,求解控制点齐次变换矩阵对应的关节坐标角度变量。本发明能够精确控制双机器人末端执行器参照待加工工件尺寸执行各偏转角度下的圆弧路径,轨迹圆度误差小,具有普遍适用性。

Description

一种双机器人协同旋转的路径规划方法和装置
技术领域
本发明涉及多机器人协同的路径规划技术领域,尤其是涉及一种双机器人协同旋转的路径规划方法和装置。
背景技术
多机器人***是机器人学研究的一个重要方向,相比单机器人***能实现更复杂工况且鲁棒性更强。双机器人协同作业是多机器人***的一个重要分支,作为双机器人协同的重要运动工况,双机器人绕中心点协同旋转可实现工件在空间中的灵巧多姿态变换,满足各种复杂作业需求。如钢板弧形弯折加工,空间三维复杂焊缝的焊接加工等。
串联机器人路径规划包含大量机器人末端执行器的姿态变换,机器人姿态描述有四元数,旋转矩阵和欧拉角三种,使用四元数表示旋转可灵活匹配标定坐标系内的任意旋转轴和旋转角度,有效避免万向节锁问题。旋转矩阵与四元数之间存在简洁的等效变换关系,在插补计算中广泛应用。
发明内容
有鉴于此,有必要针对上述的问题,提供一种无差别适用的双机器人协同旋转的路径规划方法和装置,能够在双机器人协同作业的实际工况下,精确控制双机器人末端执行器相对于路径圆弧中心点执行协调旋转工况,且具有普遍适用性。
一种双机器人协同旋转的路径规划方法,应用于一双机器人协同***,所述***包括二机器人,所述二机器人均包含用以共同夹持待加工工件的末端执行器,所述方法用于对所述机器人末端第六轴进行空间中多角度绕中心点协同旋转运动的路径规划,所述方法包括:
在单个机器人独立建模的基础上,建立机器人平台的相互位置关系,构造具有相对坐标变换的运动学***;
依据机器人平台布置策略,设置世界坐标系,标定两机器人的基坐标系与末端坐标系;
以两机器人各基坐标系为中心坐标,依据标准D-H参数为基本运动学参数,求取机器人末端坐标的齐次变换矩阵基本形式;
在所述机器人***协同旋转工况上建立路径圆弧模型,设对称中心坐标系为路径基作为原点;
依据已知路径偏转角和路径圆弧半径,计算路径初始控制点的齐次变换矩阵;
在所述路径初始控制点的齐次变换矩阵中,提取三维旋转矩阵进行基于四元数的坐标旋转插补;
在所述路径初始控制点的齐次变换矩阵中,提取初始坐标向量进行基于空间几何的控制点坐标向量插补;
基于逆动力学的齐次变换矩阵转换,获取最终控制点的关节控制角度。
进一步地,在三位旋转坐标的插补过程中考虑圆弧轴向偏移量的影响,依据圆弧轴向偏移量的限制求解控制点的最大间隔角度值。
进一步地,由初始控制点的齐次变换矩阵提取三维旋转矩阵
Figure BDA0002230953970000021
Figure BDA0002230953970000022
记cos=c,sin=s,与控制点相对点P坐标系坐标向量的一般形式为
Figure BDA0002230953970000023
r为路径圆弧半径;路径圆弧插补可表述为旋转与坐标向量两个插补环节:
(1)将T3转化为四元数形式的Q0=q0+q1i+q2j+q3k,其中i、j、k为虚数单位,q0、q1、q2、q3是具体变量值,设置控制点的四元数表达式为Qi=[wi,(xi,yi,zi)]T,wi是实部变量值,xi,yi,zi是虚部变量值,依据Qi=Q′*Q0*Q′-1及四元数乘法的计算公式,代入控制点的最大圆弧最大角度,得到各旋转后控制点的四元数,转化为任意控制点处的旋转矩阵;
(2)控制点相对坐标系P的坐标偏移量同样可由各坐标轴方向上的偏移向量px,py,pz表示,将控制点的坐标向量表示为
Figure BDA0002230953970000031
的一般形式。
进一步地,初始控制齐次变换矩阵的求解方法为:旋转路径相对xpzp平面偏转角度为α,路径圆弧半径为r,路径起始点坐标P0先由yp顺时针旋转90°,然后相对z轴顺时针旋转(α+90°),再沿z轴轴向平移-r m,(0≤m<360);P0相对P点坐标系的齐次变换矩阵矩阵表示为:
Figure BDA0002230953970000032
Figure BDA0002230953970000033
进一步地,圆弧控制点的最大角度值满足:
Figure BDA0002230953970000034
Figure BDA0002230953970000035
所取两控制点间隔角度应小于
Figure BDA0002230953970000036
据此,取一具体n值,满足表示相邻控制点间隔为n,控制点旋转角度应设置为n,2n,…kn。
进一步地,初始控制点Q0的四元数表示一般形式为:
Figure BDA0002230953970000038
四元数绕轴旋转角度为n,旋转轴的相关四元数表示为:
Figure BDA0002230953970000039
Figure BDA00022309539700000310
四元数Qi=[wi,(xi,yi,zi)]T姿态旋转的一般形式表示为:
四元数转换为旋转矩阵的公式为:
Figure BDA0002230953970000042
进一步地,控制点相对点P坐标系坐标向量的各元素满足关系:
Figure BDA0002230953970000043
v为路径控制点个数。
进一步地,两机器人控制点关于机器人基座标的齐次变换矩阵表示为:
Figure BDA0002230953970000044
L为两机器人x轴方向相距,b为y轴方向相距,h1为左侧机器人的底座高度为,h2为右侧机器人的底座高度。
一种双机器人协同旋转的路径规划装置,包括机器人坐标标定模块、控制点插补模块以及逆动力学求解模块;
所述机器人坐标标定模块,用于标定单位机器人的基坐标与末端轴坐标属性,并在机器人协同***中建立相对坐标关系;
所述控制点插补模块,用于依据机器人末端齐次变换矩阵,针对路径圆弧的插补需求,执行对二机器人的圆弧路径插补;
逆动力学求解模块,用于合并各控制点的齐次变换矩阵,求解对应六轴的关节角度变化量。
进一步地,所述控制点插补模块包括初始控制点单元、坐标旋转插补单元以及坐标向量位置插补单元;
所述初始控制点单元包括路径圆弧建模模块和初始控制点坐标系的齐次变换矩阵矩阵求解模块,用于对路径圆弧进行建模并求解初始控制点的齐次变换矩阵;
所述坐标旋转插补求单元包括圆弧轴向偏差求解模块、旋转矩阵绕轴旋转的四元数插补模块,用于计算满足圆弧轴向偏差要求的最大控制点间隔角,并据此求解控制点的坐标旋转矩阵;
所述坐标向量位置插补单元包括控制点各轴向偏移量求解模块、控制点位置插补模块,用于计算控制点相对旋转中心的轴向偏移量并生成控制点的位置向量。
本发明的双机器人协同旋转的路径规划方法和装置,有基于四元数与旋转矩阵的路径圆弧插补方法及其装置,该路径规划方法能计算出路径圆弧轨迹的插补控制点,插补路径平滑,符合关节角限制,圆度误差低。可实现双机器人协调搬运工件在空间中的多角度对中心旋转,具有普遍适用性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的双机器人***的平台示意图;
图2是本发明的双机器人协同平台的简化结构示意图;
图3是本发明的路径圆弧插补流程图;
图4是本发明的路径圆弧轴向偏移量图;
图5是本发明的路径圆弧插补的控制点示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种双机器人协同旋转的路径规划方法,应用于一双机器人协同***,该***包括二机器人,二机器人均包含用以共同夹持代加工工件的末端执行器,所述方法用于对机器人末端六轴进行圆弧运动的控制点坐标插补,以实现双机器人协调夹持工件在空间中的多角度对中心旋转。具体的,本发明提供的方法包括:
二机器人相对世界坐标z轴对立放置,依据夹持工件的尺寸设定路径圆弧半径,设置路径偏转角,执行协同旋转工况。
依据机器人平台布置的相对关系及机器人标准D-H参数,获取二机器人末端基坐标的齐次变换矩阵。
分别对二机器人进行坐标旋转插补和基于空间几何的控制点坐标向量插补,生成控制点关于机器人基坐标的齐次变换矩阵。
依据逆动力学,求解控制点齐次变换矩阵对应的关节坐标角度变量。
具体的,在本方法中,将末端基坐标齐次变换矩阵拆分为三维旋转坐标与位置向量两部分。对三维旋转坐标采用基于四元数的旋转插补,对位置向量采用基于空间几何的坐标插补,并整合为控制点关于对应机器人基坐标的齐次变换矩阵。对齐次变换矩阵进行逆动力学求解,输出机器人在控制点处的各轴关节角度值。
更进一步的,在三位旋转坐标的插补过程中考虑圆弧轴向偏移量的影响,依据圆弧轴向偏移量的限制求解控制点的最大间隔角度值。
参见图1至图5,是本发明的方法应用的一个优选实施例。
图1为本发明的协同***平台示意图,主从机器人(图中示意为主机器人1和从机器人2)分别为负载20kg与5kg的工业机器人。两机器人在空间上参照世界坐标系z轴对立布置,机器人末端装载末端执行器(本实施例中具体为气动吸盘),同时夹持工件执行工况。
图2示出了双机器人协同平台的简化结构示意图。平面简化结构主要描述双机器人在世界坐标系中的相对位置关系及D-H参数属性。存在x轴间距l与y轴间距b。机器人1底座高度为h1,机器人2底座高度为h2;左右两侧机器人的关节连杆长度分别为ai和a’i,偏移量分别为di和d’i
图3示出了本发明的路径圆弧插补流程图,由既定路径偏转角与工件尺寸决定的路径圆弧半径,计算初始控制点的齐次变换矩阵。
图4为路径圆弧的最大轴向偏移量示意图。当采用movej直线运动指令进行圆弧路径规划时,存在路径圆弧轴向偏差。实验平台末端采用柔性弹性气爪,弹性极限为0.01m。路径圆弧的最大轴向偏移量设置为0.005m。控制点等分路径圆弧,最大轴向偏移量产生在两个相邻控制点的中心线上。
图5为路径圆弧插补的控制点示意图。由初始控制点的齐次变换矩阵提取三维旋转矩阵
Figure BDA0002230953970000071
记cos=c,sin=s,与控制点相对点P坐标系坐标向量的一般形式为
Figure BDA0002230953970000072
r为路径圆弧半径。路径圆弧插补可表述为旋转与坐标向量两个插补环节:
(1)将T3转化为四元数形式的Q0=q0+q1i+q2j+q3k,其中i、j、k为虚数单位,q0、q1、q2、q3是具体变量值,设置控制点的四元数表达式为Qi=[wi,(xi,yi,zi)]T,wi是实部变量值,xi,yi,zi是虚部变量值,依据Qi=Q′*Q0*Q′-1及四元数乘法的计算公式,代入控制点的最大圆弧最大角度,得到各旋转后控制点的四元数,转化为任意控制点处的旋转矩阵。
(2)控制点相对坐标系P的坐标偏移量同样可由各坐标轴方向上的偏移向量px,py,pz表示,将控制点的坐标向量表示为
Figure BDA0002230953970000081
的一般形式。
优选的,初始控制齐次变换矩阵的求解方法为:旋转路径相对xpzp平面偏转角度为α,路径圆弧半径为r,路径起始点坐标P0先由yp顺时针旋转90°,然后相对z轴顺时针旋转(α+90°),再沿z轴轴向平移-r m,(0≤m<360)。P0相对P点坐标系的齐次变换矩阵矩阵表示为:
Figure BDA0002230953970000082
优选的,圆弧控制点的最大角度值满足:
Figure BDA0002230953970000084
所取两控制点间隔角度应小于
Figure BDA0002230953970000085
据此,取一具体n值,满足
Figure BDA0002230953970000086
表示相邻控制点间隔为n,控制点旋转角度应设置为n,2n,…kn。
优选的,初始控制点Q0的四元数表示一般形式为:
Figure BDA0002230953970000087
优选的,四元数绕轴旋转角度为n,旋转轴的相关四元数表示为:
优选的,四元数Qi=[wi,(xi,yi,zi)]T姿态旋转的一般形式表示为:
Figure BDA0002230953970000089
四元数转换为旋转矩阵的公式为:
Figure BDA0002230953970000091
优选的,控制点相对点P坐标系坐标向量的各元素满足关系:
Figure BDA0002230953970000092
v为路径控制点个数。
优选的,两机器人控制点关于机器人基座标的齐次变换矩阵可表示为:
Figure BDA0002230953970000093
L为两机器人x轴方向相距,b为y轴方向相距,h1为左侧机器人的底座高度为,h2为右侧机器人的底座高度。
本发明相应提供了一种双机器人协同旋转的路径规划装置,包括机器人坐标标定模块、控制点插补模块以及逆动力学求解模块;
所述机器人坐标标定模块,用于标定单位机器人的基坐标与末端轴坐标属性,并在机器人协同***中建立相对坐标关系;
控制点插补模块,用于依据机器人末端齐次变换矩阵,针对路径圆弧的插补需求,执行对二机器人的圆弧路径插补;
所述控制点插补模块,包括初始控制点单元、坐标旋转插补单元、坐标向量位置插补单元。
所述初始控制点求解器包括路径圆弧建模模块和初始控制点坐标系的齐次变换矩阵矩阵求解模块。用于对路径圆弧进行建模并求解初始控制点的齐次变换矩阵。
所述坐标旋转插补求单元包括圆弧轴向偏差求解模块、旋转矩阵绕轴旋转的四元数插补模块。用于计算满足圆弧轴向偏差要求的最大控制点间隔角,并据此求解控制点的坐标旋转矩阵。
所述坐标向量位置插补单元包括,控制点各轴向偏移量求解模块,控制点位置插补模块。用于计算控制点相对旋转中心的轴向偏移量并生成控制点的位置向量。
逆动力学求解模块,用于合并各控制点的齐次变换矩阵,求解对应六轴的关节角度变化量。
本发明的双机器人协同旋转的路径规划方法和装置,有无差别适用于多种机器人的四元数与旋转矩阵的路径圆弧插补方法,该方法可计算出路径圆弧轨迹的插补控制点,插补路径较平滑,符合关节角限制,圆度误差低。实现了双机器人协同搬运工件在空间中多角度对中心旋转,具有普遍适用性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种双机器人协同旋转的路径规划方法,应用于一双机器人协同***,所述***包括二机器人,所述二机器人均包含用以共同夹持待加工工件的末端执行器,所述方法用于对所述机器人末端第六轴进行空间中多角度绕中心点协同旋转运动的路径规划,其特征在于,所述方法包括:
在单个机器人独立建模的基础上,建立机器人平台的相互位置关系,构造具有相对坐标变换的运动学***;
依据机器人平台布置策略,设置世界坐标系,标定两机器人的基坐标系与末端坐标系;
以两机器人各基坐标系为中心坐标,依据标准D-H参数为基本运动学参数,求取机器人末端坐标的齐次变换矩阵基本形式;
在所述机器人***协同旋转工况上建立路径圆弧模型,设对称中心坐标系为路径基作为原点;
依据已知路径偏转角和路径圆弧半径,计算路径初始控制点的齐次变换矩阵;
在所述路径初始控制点的齐次变换矩阵中,提取三维旋转矩阵进行基于四元数的坐标旋转插补;
在所述路径初始控制点的齐次变换矩阵中,提取初始坐标向量进行基于空间几何的控制点坐标向量插补;
基于逆动力学的齐次变换矩阵转换,获取最终控制点的关节控制角度。
2.根据权利要求1所述的双机器人协同旋转的路径规划方法,其特征在于,在三位旋转坐标的插补过程中考虑圆弧轴向偏移量的影响,依据圆弧轴向偏移量的限制求解控制点的最大间隔角度值。
3.根据权利要求1所述的双机器人协同旋转的路径规划方法,其特征在于,由初始控制点的齐次变换矩阵提取三维旋转矩阵
Figure FDA0002230953960000021
记cos=c,sin=s,与控制点相对点P坐标系坐标向量的一般形式为
Figure FDA0002230953960000022
r为路径圆弧半径;路径圆弧插补可表述为旋转与坐标向量两个插补环节:
(1)将T3转化为四元数形式的Q0=q0+q1i+q2j+q3k,其中i、j、k为虚数单位,q0、q1、q2、q3是具体变量值,设置控制点的四元数表达式为Qi=[wi,(xi,yi,zi)]T,wi是实部变量值,xi,yi,zi是虚部变量值,依据Qi=Q′*Q0*Q′-1及四元数乘法的计算公式,代入控制点的最大圆弧最大角度,得到各旋转后控制点的四元数,转化为任意控制点处的旋转矩阵;
(2)控制点相对坐标系P的坐标偏移量同样可由各坐标轴方向上的偏移向量px,py,pz表示,将控制点的坐标向量表示为
Figure FDA0002230953960000023
的一般形式。
4.根据权利要求3所述的双机器人协同旋转的路径规划方法,其特征在于,初始控制齐次变换矩阵的求解方法为:旋转路径相对xpzp平面偏转角度为α,路径圆弧半径为r,路径起始点坐标P0先由yp顺时针旋转90°,然后相对z轴顺时针旋转(α+90°),再沿z轴轴向平移-rm,(0≤m<360);P0相对P点坐标系的齐次变换矩阵矩阵表示为:
Figure FDA0002230953960000024
Figure FDA0002230953960000025
5.根据权利要求4所述的双机器人协同旋转的路径规划方法,其特征在于,圆弧控制点的最大角度值满足:
Figure FDA0002230953960000026
所取两控制点间隔角度应小于
Figure FDA0002230953960000027
据此,取一具体n值,满足
Figure FDA0002230953960000028
表示相邻控制点间隔为n,控制点旋转角度应设置为n,2n,…kn。
6.根据权利要求5所述的双机器人协同旋转的路径规划方法,其特征在于,初始控制点Q0的四元数表示一般形式为:
Figure FDA0002230953960000031
四元数绕轴旋转角度为n,旋转轴的相关四元数表示为:
Figure FDA0002230953960000032
Figure FDA0002230953960000033
四元数Qi=[wi,(xi,yi,zi)]T姿态旋转的一般形式表示为:
四元数转换为旋转矩阵的公式为:
Figure FDA0002230953960000035
7.根据权利要求6所述的双机器人协同旋转的路径规划方法,其特征在于,控制点相对点P坐标系坐标向量的各元素满足关系:
Figure FDA0002230953960000036
v为路径控制点个数。
8.根据权利要求7所述的双机器人协同旋转的路径规划方法,其特征在于,两机器人控制点关于机器人基座标的齐次变换矩阵表示为:
Figure FDA0002230953960000037
L为两机器人x轴方向相距,b为y轴方向相距,h1为左侧机器人的底座高度为,h2为右侧机器人的底座高度。
9.一种双机器人协同旋转的路径规划装置,其特征在于,包括机器人坐标标定模块、控制点插补模块以及逆动力学求解模块;
所述机器人坐标标定模块,用于标定单位机器人的基坐标与末端轴坐标属性,并在机器人协同***中建立相对坐标关系;
所述控制点插补模块,用于依据机器人末端齐次变换矩阵,针对路径圆弧的插补需求,执行对二机器人的圆弧路径插补;
逆动力学求解模块,用于合并各控制点的齐次变换矩阵,求解对应六轴的关节角度变化量。
10.根据权利要求9所述的双机器人协同旋转的路径规划装置,其特征在于,所述控制点插补模块包括初始控制点单元、坐标旋转插补单元以及坐标向量位置插补单元;
所述初始控制点单元包括路径圆弧建模模块和初始控制点坐标系的齐次变换矩阵矩阵求解模块,用于对路径圆弧进行建模并求解初始控制点的齐次变换矩阵;
所述坐标旋转插补求单元包括圆弧轴向偏差求解模块、旋转矩阵绕轴旋转的四元数插补模块,用于计算满足圆弧轴向偏差要求的最大控制点间隔角,并据此求解控制点的坐标旋转矩阵;
所述坐标向量位置插补单元包括控制点各轴向偏移量求解模块、控制点位置插补模块,用于计算控制点相对旋转中心的轴向偏移量并生成控制点的位置向量。
CN201910967429.0A 2019-10-12 2019-10-12 一种双机器人协同旋转的路径规划方法和装置 Active CN110757454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910967429.0A CN110757454B (zh) 2019-10-12 2019-10-12 一种双机器人协同旋转的路径规划方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910967429.0A CN110757454B (zh) 2019-10-12 2019-10-12 一种双机器人协同旋转的路径规划方法和装置

Publications (2)

Publication Number Publication Date
CN110757454A true CN110757454A (zh) 2020-02-07
CN110757454B CN110757454B (zh) 2022-08-16

Family

ID=69331650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910967429.0A Active CN110757454B (zh) 2019-10-12 2019-10-12 一种双机器人协同旋转的路径规划方法和装置

Country Status (1)

Country Link
CN (1) CN110757454B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111844045A (zh) * 2020-08-03 2020-10-30 许昌学院 一种双机协同重载码垛机器人
CN112496582A (zh) * 2020-11-23 2021-03-16 博迈科海洋工程股份有限公司 一种海洋工程复杂节点多机器人焊接协同控制方法
CN113524183A (zh) * 2021-07-14 2021-10-22 广东智源机器人科技有限公司 相对位置获得方法、机械臂控制方法以及机械臂***
CN113733038A (zh) * 2021-11-02 2021-12-03 季华科技有限公司 一种机器人协同动作控制方法、装置、***及存储介质
CN114115113A (zh) * 2021-10-15 2022-03-01 上海发那科机器人有限公司 一种基于双机器人弯管***的智能弯管轨迹的生成方法
CN114193450A (zh) * 2021-12-10 2022-03-18 南京我乐家居智能制造有限公司 一种基于人工智能的双工位机器人送料作业精准性智能分析调控方法
WO2022068926A1 (zh) * 2020-09-30 2022-04-07 杭州海康机器人技术有限公司 用于多机器人混行的方法、装置及存储介质
CN114310877A (zh) * 2021-03-09 2022-04-12 香港科能有限公司 机器人协同***及其应用和加工精度评价方法
CN114454155A (zh) * 2020-11-10 2022-05-10 广东博智林机器人有限公司 机器人控制方法、装置、计算机设备、介质及机器人
WO2022241806A1 (zh) * 2021-05-19 2022-11-24 广州先进技术研究所 一种基于强化学习的双机器人力/位多元数据驱动方法
CN115890653A (zh) * 2022-09-28 2023-04-04 华中科技大学 基于多通道的双臂机器人协同控制方法、装置及可读介质
CN117428791A (zh) * 2023-12-21 2024-01-23 江西求是高等研究院 一种用于肩部四轴康复机器人的逆运动学求解方法及***
CN117601137A (zh) * 2024-01-24 2024-02-27 海克斯康软件技术(青岛)有限公司 一种多机器人的联合控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331855A1 (en) * 2005-05-16 2010-12-30 Intuitive Surgical, Inc. Efficient Vision and Kinematic Data Fusion For Robotic Surgical Instruments and Other Applications
CN103568012A (zh) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 一种弧焊机器人双平面摆弧轨迹的规划方法
CN103901898A (zh) * 2014-03-28 2014-07-02 哈尔滨工程大学 一种多自由度机器人的逆运动学通用求解方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
US20160221189A1 (en) * 2013-08-27 2016-08-04 Cognibotics Ab Method and system for determination of at least one property of a manipulator
CN106671079A (zh) * 2015-11-06 2017-05-17 中国科学院沈阳计算技术研究所有限公司 一种实现变位机协同的焊接机器人运动控制方法
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN106926241A (zh) * 2017-03-20 2017-07-07 深圳市智能机器人研究院 一种基于视觉引导的双臂机器人装配方法及***
CN107253191A (zh) * 2017-05-22 2017-10-17 广州中国科学院先进技术研究所 一种双机械臂***及其协调控制方法
US20190358817A1 (en) * 2016-11-10 2019-11-28 Cognibotics Ab System and method for instructing a robot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331855A1 (en) * 2005-05-16 2010-12-30 Intuitive Surgical, Inc. Efficient Vision and Kinematic Data Fusion For Robotic Surgical Instruments and Other Applications
US20160221189A1 (en) * 2013-08-27 2016-08-04 Cognibotics Ab Method and system for determination of at least one property of a manipulator
CN103568012A (zh) * 2013-10-24 2014-02-12 安徽埃夫特智能装备有限公司 一种弧焊机器人双平面摆弧轨迹的规划方法
CN103901898A (zh) * 2014-03-28 2014-07-02 哈尔滨工程大学 一种多自由度机器人的逆运动学通用求解方法
CN106671079A (zh) * 2015-11-06 2017-05-17 中国科学院沈阳计算技术研究所有限公司 一种实现变位机协同的焊接机器人运动控制方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
US20190358817A1 (en) * 2016-11-10 2019-11-28 Cognibotics Ab System and method for instructing a robot
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN106926241A (zh) * 2017-03-20 2017-07-07 深圳市智能机器人研究院 一种基于视觉引导的双臂机器人装配方法及***
CN107253191A (zh) * 2017-05-22 2017-10-17 广州中国科学院先进技术研究所 一种双机械臂***及其协调控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIN-XIU KONG: "Application of orientation interpolation of robot using unit quaternion", 《APPLICATION OF ORIENTATION INTERPOLATION OF ROBOT USING UNIT QUATERNION》 *
任秉银: "机械手空间圆弧位姿轨迹规划算法的实现", 《机械手空间圆弧位姿轨迹规划算法的实现 *
包翔宇: "双机器人协同旋转过程中的四元数插补路径规划", 《双机器人协同旋转过程中的四元数插补路径规划 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111844045A (zh) * 2020-08-03 2020-10-30 许昌学院 一种双机协同重载码垛机器人
CN111844045B (zh) * 2020-08-03 2023-01-24 许昌学院 一种双机协同重载码垛机器人
WO2022068926A1 (zh) * 2020-09-30 2022-04-07 杭州海康机器人技术有限公司 用于多机器人混行的方法、装置及存储介质
CN114454155A (zh) * 2020-11-10 2022-05-10 广东博智林机器人有限公司 机器人控制方法、装置、计算机设备、介质及机器人
CN112496582A (zh) * 2020-11-23 2021-03-16 博迈科海洋工程股份有限公司 一种海洋工程复杂节点多机器人焊接协同控制方法
CN114310877B (zh) * 2021-03-09 2024-05-07 香港科能有限公司 机器人协同***及其应用和加工精度评价方法
CN114310877A (zh) * 2021-03-09 2022-04-12 香港科能有限公司 机器人协同***及其应用和加工精度评价方法
WO2022241806A1 (zh) * 2021-05-19 2022-11-24 广州先进技术研究所 一种基于强化学习的双机器人力/位多元数据驱动方法
CN113524183A (zh) * 2021-07-14 2021-10-22 广东智源机器人科技有限公司 相对位置获得方法、机械臂控制方法以及机械臂***
CN114115113A (zh) * 2021-10-15 2022-03-01 上海发那科机器人有限公司 一种基于双机器人弯管***的智能弯管轨迹的生成方法
CN114115113B (zh) * 2021-10-15 2023-11-21 上海发那科机器人有限公司 一种基于双机器人弯管***的智能弯管轨迹的生成方法
CN113733038A (zh) * 2021-11-02 2021-12-03 季华科技有限公司 一种机器人协同动作控制方法、装置、***及存储介质
CN114193450B (zh) * 2021-12-10 2022-12-30 南京我乐家居智能制造有限公司 一种基于人工智能的双工位机器人送料作业精准性智能分析调控方法
CN114193450A (zh) * 2021-12-10 2022-03-18 南京我乐家居智能制造有限公司 一种基于人工智能的双工位机器人送料作业精准性智能分析调控方法
CN115890653A (zh) * 2022-09-28 2023-04-04 华中科技大学 基于多通道的双臂机器人协同控制方法、装置及可读介质
CN117428791A (zh) * 2023-12-21 2024-01-23 江西求是高等研究院 一种用于肩部四轴康复机器人的逆运动学求解方法及***
CN117428791B (zh) * 2023-12-21 2024-03-01 江西求是高等研究院 一种用于肩部四轴康复机器人的逆运动学求解方法及***
CN117601137A (zh) * 2024-01-24 2024-02-27 海克斯康软件技术(青岛)有限公司 一种多机器人的联合控制方法
CN117601137B (zh) * 2024-01-24 2024-03-29 海克斯康软件技术(青岛)有限公司 一种多机器人的联合控制方法

Also Published As

Publication number Publication date
CN110757454B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN110757454B (zh) 一种双机器人协同旋转的路径规划方法和装置
CN109895101B (zh) 一种关节型机械臂逆运动学数值唯一解求取方法
CN107589934B (zh) 一种关节型机械臂逆运动学解析解的求取方法
Ye et al. Design and analysis of a reconfigurable parallel mechanism for multidirectional additive manufacturing
CN107756400B (zh) 一种基于旋量理论的6r机器人逆运动学几何求解方法
CN103942427A (zh) 一类六自由度机械臂运动学逆解的快速简便求法
CN110722562B (zh) 一种用于机器人参数辨识的空间雅克比矩阵构造方法
CN106041932B (zh) 一种ur机器人的运动控制方法
CN105643619B (zh) 一种采用框架描述的工业机器人工具位姿控制方法
Gan et al. Design and kinematics analysis of a new 3CCC parallel mechanism
CN104714473B (zh) 一种管路柔性装焊的导管余量切割位置计算方法
CN111791234A (zh) 一种狭窄空间内多机器人空间工作位置防撞控制算法
CN107791248A (zh) 基于不满足pipper准则的六自由度串联机器人的控制方法
WO2016008215A1 (zh) 工业机器人的5轴6轴混合控制方法及其***
Long et al. Robotic arm simulation by using matlab and robotics toolbox for industry application
CN113799130B (zh) 一种人机协作装配中的机器人位姿标定方法
CN109434838B (zh) 线驱动连续机器人内窥操作的协同运动规划方法及***
CN116330267A (zh) 一种基于工业机器人腕部奇异点计算的控制方法
Trinh et al. A geometrical approach to the inverse kinematics of 6R serial robots with offset wrists
JP5505155B2 (ja) ロボットシステムおよびロボット制御方法
Bian et al. Kinematic analysis and simulation of 6-DOF industrial robot capable of picking up die-casting products
CN111283682A (zh) 一种4-upu四自由度并联机器人正向运动学的几何投影解法
Sánchez-Alonso et al. Kinematic analysis of a novel 2 (3-RUS) parallel manipulator
Kang et al. Coordinated workspace analysis and trajectory planning of redundant dual-arm robot
Juan et al. Analysis and simulation of a 6R robot in virtual reality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant