CN110752092A - Preparation method of capacitor composite dielectric material - Google Patents

Preparation method of capacitor composite dielectric material Download PDF

Info

Publication number
CN110752092A
CN110752092A CN201811215262.4A CN201811215262A CN110752092A CN 110752092 A CN110752092 A CN 110752092A CN 201811215262 A CN201811215262 A CN 201811215262A CN 110752092 A CN110752092 A CN 110752092A
Authority
CN
China
Prior art keywords
znfe
parts
stirring
mixture
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811215262.4A
Other languages
Chinese (zh)
Other versions
CN110752092B (en
Inventor
詹建朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201811215262.4A priority Critical patent/CN110752092B/en
Publication of CN110752092A publication Critical patent/CN110752092A/en
Application granted granted Critical
Publication of CN110752092B publication Critical patent/CN110752092B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics

Abstract

The invention provides a preparation method of a capacitor composite dielectric material, which comprises the following preparation steps: (1) mixing ZnO and Fe2O3Wet grinding, drying after finishing wet grinding, and sintering to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler; (2) ZnFe is mixed with water2O4Dissolving a filler in absolute ethyl alcohol, dropwise adding a KH560 alcohol solution under a water bath condition, stirring for reaction, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use; (3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution, adjusting the pH to 8.5, taking out, adding into a reactor, and adding treated ZnFe2O4Heating and stirring for 1h to obtain prepolymer, adding ammonium chloride, stirring,and cooling to 70 ℃, preserving heat for 2 hours, and carrying out hot press molding to obtain the capacitor composite dielectric material. The material prepared by the invention has high dielectric constant, high energy storage density, low loss and easy processing performance.

Description

Preparation method of capacitor composite dielectric material
Technical Field
The invention relates to the field of materials, in particular to a preparation method of a composite dielectric material of a capacitor.
Background
The high dielectric constant material has good performance of storing electric energy and uniform electric field, and is an insulating material with excellent performance and wide application. With the continuous development of electronic information technology, materials with high dielectric constant, low dielectric loss, light weight and low cost become hot spots of interest in various industries, and have a very important position in the industries of electronics, motors and cables. Conventional high dielectric materials include ferroelectric ceramic materials and polymer materials, which have many disadvantages such as difficult processing, large loss, etc., and thus, there is a need for improvement thereof. In the development history of dielectric capacitors, high dielectric constant materials are always the targets pursued by dielectric material scientists and electrical engineers, and in addition to the rapid development of modern science and technology, the dielectric properties of electronic materials are required to be higher and higher, so that the invention develops a preparation method of a capacitor composite dielectric material with high dielectric constant, high energy storage density, low loss and easy processing property.
Disclosure of Invention
The technical problem to be solved is as follows:
the invention aims to provide a preparation method of a capacitor composite dielectric material, and the prepared material has higher dielectric constant and lower dielectric loss.
The technical scheme is as follows:
the invention provides a preparation method of a capacitor composite dielectric material, which comprises the following preparation steps:
(1) mixing ZnO and Fe2O3Putting into a nylon ball milling tank, wet-milling for 30min by using absolute ethyl alcohol as a medium, then transferring to a three-roller four-cylinder ball mill for wet milling for 9h, drying for 2h at 80 ℃ after wet milling is finished, and then sintering to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 18-26 parts of ZnFe2O4Dissolving a filler in 32-46 parts of absolute ethyl alcohol, dropwise adding 1 wt% KH560 alcohol solution under a water bath condition, stirring for reaction, performing suction filtration, washing for 6 times by using deionized water, and performing vacuum drying for later use; (3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution, adjusting the pH to 8.5 by using sodium hydroxide, adding 34-46 parts of the mixture into a reactor, and adding 16-22 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 2-6 parts of ammonium chloride, stirring for 20min, cooling to 70 ℃, preserving heat for 2h, and then carrying out hot press molding to obtain the capacitor composite dielectric material.
Preferably, said oneA preparation method of a capacitor composite dielectric material comprises the steps of (1) preparing ZnO and Fe2O3In a weight ratio of 3: 2.
Preferably, in the preparation method of the capacitor composite dielectric material, the sintering temperature in the step (1) is 1200 ℃, the pressure is 330MPa, and the sintering time is 32 h.
Preferably, in the preparation method of the capacitor composite dielectric material, the water bath temperature in the step (2) is 45 ℃, and the reaction time is 30 min.
Preferably, in the preparation method of the capacitor composite dielectric material, the weight ratio of the urea, the melamine, the polyvinyl acetate emulsion and the 37 wt% formaldehyde solution in the step (3) is 7:3:4: 20.
Preferably, in the preparation method of the capacitor composite dielectric material, the temperature of hot press molding in the step (3) is 200 ℃, the pressure is 15MPa, and the time is 1 h.
Has the advantages that:
(1) ZnFe with the grain diameter of 90nm is prepared in the invention2O4The filler is modified, the filler and the polymer are synthesized into the capacitor composite dielectric material by adopting an in-situ polymerization method, and the filler has good dispersibility in the polymer, so that the material has good electrical properties.
(2) In the invention, the dosage proportion of each component, ZnFe, is strictly controlled2O4The material can be well fused with a polymer, an interface effect cannot be caused, gaps cannot be generated, and the prepared material has high dielectric constant and low dielectric loss.
Detailed Description
The following examples are presented to enable one of ordinary skill in the art to more fully understand the present invention and are not intended to limit the invention in any way.
Example 1
(1) Mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting into a nylon ball milling tank, wet-milling for 30min by using absolute ethyl alcohol as a medium, then transferring into a three-roller four-cylinder ball mill for wet milling for 9h, drying for 2h at 80 ℃ after wet milling is finished, and then drying at 1200 ℃ under 330MPaSintering for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) mixing 26 parts of ZnFe2O4Dissolving a filler in 32 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution according to the weight ratio of 7:3:4:20, adjusting the pH to 8.5 by using sodium hydroxide, adding 46 parts of the mixture into a reactor, and adding 16 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 6 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
Example 2
(1) Mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting the mixture into a nylon ball milling tank, wet-milling the mixture for 30min by using absolute ethyl alcohol as a medium, then transferring the wet-milled mixture into a three-roller four-cylinder ball mill to wet-mill for 9h, drying the wet-milled mixture at 80 ℃ for 2h, and then sintering the dried mixture at 1200 ℃ and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 18 parts of ZnFe2O4Dissolving a filler in 46 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution according to the weight ratio of 7:3:4:20, adjusting the pH value to 8.5 by using sodium hydroxide, adding 34 parts of the mixture into a reactor, and adding 22 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain prepolymer, then adding 2 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa,and hot-press molding to obtain the capacitor composite dielectric material.
Example 3
(1) Mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting the mixture into a nylon ball milling tank, wet-milling the mixture for 30min by using absolute ethyl alcohol as a medium, then transferring the wet-milled mixture into a three-roller four-cylinder ball mill to wet-mill for 9h, drying the wet-milled mixture at 80 ℃ for 2h, and then sintering the dried mixture at 1200 ℃ and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 24 parts of ZnFe2O4Dissolving a filler in 36 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution according to the weight ratio of 7:3:4:20, adjusting the pH to 8.5 by using sodium hydroxide, adding 42 parts of the mixture into a reactor, and adding 18 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 5 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
Example 4
(1) Mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting the mixture into a nylon ball milling tank, wet-milling the mixture for 30min by using absolute ethyl alcohol as a medium, then transferring the wet-milled mixture into a three-roller four-cylinder ball mill to wet-mill for 9h, drying the wet-milled mixture at 80 ℃ for 2h, and then sintering the dried mixture at 1200 ℃ and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 20 portions of ZnFe2O4Dissolving a filler in 42 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) mixing urea, melamine, polyvinyl acetate emulsion and 37wt% of formaldehyde solution is evenly mixed according to the weight ratio of 7:3:4:20, the pH value is adjusted to 8.5 by sodium hydroxide, 38 parts of formaldehyde solution are added into a reactor, and 20 parts of ZnFe treated in the step (2) are added2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 3 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
Example 5
(1) Mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting the mixture into a nylon ball milling tank, wet-milling the mixture for 30min by using absolute ethyl alcohol as a medium, then transferring the wet-milled mixture into a three-roller four-cylinder ball mill to wet-mill for 9h, drying the wet-milled mixture at 80 ℃ for 2h, and then sintering the dried mixture at 1200 ℃ and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 22 parts of ZnFe2O4Dissolving a filler in 39 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution according to the weight ratio of 7:3:4:20, adjusting the pH to 8.5 by using sodium hydroxide, adding 40 parts of the mixture into a reactor, and then adding 19 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 4 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
Comparative example 1
This comparative example differs from example 1 in the ratio of ZnO and Fe2O3 in step (1). Specifically, the method comprises the following steps:
(1) mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:3, putting into a nylon ball milling tank, wet-milling for 30min by using absolute ethyl alcohol as a medium, then transferring into a three-roller four-barrel ball mill for wet milling for 9h, and after the wet milling is finished, wet-millingDrying at 80 deg.C for 2h, and sintering at 1200 deg.C and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) mixing 26 parts of ZnFe2O4Dissolving a filler in 32 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% of formaldehyde solution according to the weight ratio of 7:3:4:20, adjusting the pH to 8.5 by using sodium hydroxide, adding 46 parts of the mixture into a reactor, and adding 16 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 6 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
Comparative example 2
This comparative example differs from example 1 in the proportions of urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution in step (3). Specifically, the method comprises the following steps:
(1) mixing ZnO and Fe2O3Mixing according to the weight ratio of 3:2, putting the mixture into a nylon ball milling tank, wet-milling the mixture for 30min by using absolute ethyl alcohol as a medium, then transferring the wet-milled mixture into a three-roller four-cylinder ball mill to wet-mill for 9h, drying the wet-milled mixture at 80 ℃ for 2h, and then sintering the dried mixture at 1200 ℃ and 330MPa for 32h to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) mixing 26 parts of ZnFe2O4Dissolving a filler in 32 parts of absolute ethyl alcohol, dropwise adding a 1 wt% KH560 alcohol solution under a water bath condition of 45 ℃, stirring for 30min, performing suction filtration, washing with deionized water for 6 times, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution according to the weight ratio of 6:4:3:18, adjusting the pH to 8.5 by using sodium hydroxide, adding 46 parts of the mixture into a reactor, and adding the mixturePutting 16 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 6 parts of ammonium chloride, stirring continuously for 20min, cooling to 70 ℃, preserving heat for 2h, then preserving heat for 1h under the conditions of 200 ℃ and 15MPa, and carrying out hot press molding to obtain the capacitor composite dielectric material.
The materials prepared in examples 1-5 and comparative examples 1-2 were subjected to performance testing, and samples were tested for ac dielectric properties at different frequencies using an HP 4194A impedance analyzer. The test results are given in the following table:
TABLE 1
TABLE 2
Figure BDA0001833396820000062
According to the test results, the capacitor composite dielectric material prepared by the method has higher dielectric constant and lower dielectric loss. The production method in example 5 is the best production method in the present invention, and the material produced according to the production method in example 5 has a highest dielectric constant of 319.73 and a lowest dielectric loss tangent of 0.02.
In the invention, ZnFe is adopted2O4As a filler, the composite material, ZnFe, is prepared by adopting an in-situ polymerization method2O4The performance of the material is influenced due to the difference of the mixture ratio of the raw materials in the preparation process, and the test result shows that ZnFe has high performance2O4ZnO and Fe in the preparation process2O3The weight ratio of 3:2 is the optimal ratio. According to the invention, the modified resin-based material is synthesized by urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution according to the weight ratio of 7:3:4:20, when the proportion of the components is changed, the performance of the material is adversely affected, and the compatibility of the material and the filler is deteriorated, so that the dielectric constant of the material is reduced, and the dielectric loss is increased.

Claims (6)

1. A preparation method of a capacitor composite dielectric material is characterized by comprising the following preparation steps:
(1) mixing ZnO and Fe2O3Putting into a nylon ball milling tank, wet-milling for 30min by using absolute ethyl alcohol as a medium, then transferring to a three-roller four-cylinder ball mill for wet milling for 9h, drying for 2h at 80 ℃ after wet milling is finished, and then sintering to synthesize ZnFe2O4Mechanically grinding the mixture to a particle size of 90nm to obtain ZnFe2O4A filler;
(2) 18-26 parts of ZnFe2O4Dissolving a filler in 32-46 parts of absolute ethyl alcohol, dropwise adding 1 wt% KH560 alcohol solution under a water bath condition, stirring for reaction, performing suction filtration, washing for 6 times by using deionized water, and performing vacuum drying for later use;
(3) uniformly mixing urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution, adjusting the pH to 8.5 by using sodium hydroxide, adding 34-46 parts of the mixture into a reactor, and adding 16-22 parts of ZnFe treated in the step (2)2O4Heating to 70 ℃ and stirring continuously, reacting for 1h to obtain a prepolymer, then adding 2-6 parts of ammonium chloride, stirring for 20min, cooling to 70 ℃, preserving heat for 2h, and then carrying out hot press molding to obtain the capacitor composite dielectric material.
2. The method of claim 1, wherein the ZnO and Fe are added in step (1)2O3In a weight ratio of 3: 2.
3. The method of claim 1, wherein the sintering temperature in step (1) is 1200 ℃, the pressure is 330MPa, and the sintering time is 32 h.
4. The method of claim 1, wherein the water bath temperature in step (2) is 45 ℃ and the reaction time is 30 min.
5. The method of claim 1, wherein the weight ratio of urea, melamine, polyvinyl acetate emulsion and 37 wt% formaldehyde solution in step (3) is 7:3:4: 20.
6. The method as claimed in claim 1, wherein the hot press molding in step (3) is performed at 200 ℃, 15MPa, and 1 h.
CN201811215262.4A 2018-10-18 2018-10-18 Preparation method of capacitor composite dielectric material Active CN110752092B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811215262.4A CN110752092B (en) 2018-10-18 2018-10-18 Preparation method of capacitor composite dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811215262.4A CN110752092B (en) 2018-10-18 2018-10-18 Preparation method of capacitor composite dielectric material

Publications (2)

Publication Number Publication Date
CN110752092A true CN110752092A (en) 2020-02-04
CN110752092B CN110752092B (en) 2021-03-30

Family

ID=69275660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811215262.4A Active CN110752092B (en) 2018-10-18 2018-10-18 Preparation method of capacitor composite dielectric material

Country Status (1)

Country Link
CN (1) CN110752092B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572494A (en) * 2022-09-27 2023-01-06 佛山市三水区康立泰无机合成材料有限公司 Red-brown ceramic pigment, preparation method thereof and application of red-brown ceramic pigment in ceramic ink-jet printing ink

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224585A (en) * 1993-01-25 1994-08-12 Riken Corp Ferrite radio wave absorptive material and manufacture thereof
US20080023821A1 (en) * 2005-07-20 2008-01-31 Shih-Ping Hsu Substrate structure integrated with passive components
CN101677033A (en) * 2008-09-19 2010-03-24 深圳先进技术研究院 Polymer-matrix composite dielectric material and plate capacitor
CN102532757A (en) * 2011-12-13 2012-07-04 西安科技大学 Polymer dielectric substance and preparation method thereof
CN103406953A (en) * 2013-08-14 2013-11-27 广西南宁绿园北林木业有限公司 Production method of anti-freezing full-eucalyptus wood laminated veneer
CN104086732A (en) * 2014-07-03 2014-10-08 合肥杰事杰新材料股份有限公司 Preparation method of urea-formaldehyde resin with high dielectric constant
CN104140674A (en) * 2014-07-22 2014-11-12 中国海洋大学 Polypyrrole-polyaniline/Fe3O4 compound and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224585A (en) * 1993-01-25 1994-08-12 Riken Corp Ferrite radio wave absorptive material and manufacture thereof
US20080023821A1 (en) * 2005-07-20 2008-01-31 Shih-Ping Hsu Substrate structure integrated with passive components
CN101677033A (en) * 2008-09-19 2010-03-24 深圳先进技术研究院 Polymer-matrix composite dielectric material and plate capacitor
CN102532757A (en) * 2011-12-13 2012-07-04 西安科技大学 Polymer dielectric substance and preparation method thereof
CN103406953A (en) * 2013-08-14 2013-11-27 广西南宁绿园北林木业有限公司 Production method of anti-freezing full-eucalyptus wood laminated veneer
CN104086732A (en) * 2014-07-03 2014-10-08 合肥杰事杰新材料股份有限公司 Preparation method of urea-formaldehyde resin with high dielectric constant
CN104140674A (en) * 2014-07-22 2014-11-12 中国海洋大学 Polypyrrole-polyaniline/Fe3O4 compound and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王怡婷等: "静电纺制备聚氨酯-Fe3O4纳米纤维包纱", 《上海纺织科技》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572494A (en) * 2022-09-27 2023-01-06 佛山市三水区康立泰无机合成材料有限公司 Red-brown ceramic pigment, preparation method thereof and application of red-brown ceramic pigment in ceramic ink-jet printing ink
CN115572494B (en) * 2022-09-27 2024-02-02 佛山市三水区康立泰无机合成材料有限公司 Red brown ceramic pigment, preparation method thereof and application thereof in ceramic inkjet printing ink

Also Published As

Publication number Publication date
CN110752092B (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN112652434B (en) Thin film power inductance magnetic sheet and preparation method and application thereof
CN110938238A (en) Filler for electronic material and method for producing same, method for producing resin composition, substrate for high frequency, and paste for electronic material
CN107141763B (en) Inorganic-organic composite flexible high-dielectric film and preparation method thereof
CN104308183A (en) Preparation method for flake silver powder for electronic paste
CN109467883B (en) Epoxy/inorganic nano composite high-thermal-conductivity insulating material based on electric field induced sequencing and preparation method thereof
CN109575646B (en) Aluminum pigment and preparation method thereof
CN110752092B (en) Preparation method of capacitor composite dielectric material
CN104312062B (en) A kind of preparation method of energy-storage composite material
KR20160061106A (en) A manufacturing method of magnetic powder paste for a molded inductor by molding under a room temperature condition and magnetic powder paste manufactured thereby.
CN114196108A (en) Modified polypropylene film material for capacitor and preparation method thereof
CN106699192B (en) Functional ceramic gel casting slurry and preparation method thereof
CN111233488A (en) Surface-modified zirconium oxide injection molding solvent degreasing feed and preparation method and application thereof
CN111548179A (en) Method for preparing porous silicon carbide ceramic by sintering with phenolic resin as carbon source
CN109111222B (en) Co-doped multiferroic ceramic with Olivies structure and preparation method thereof
CN113788674B (en) Conductive ceramic and preparation method thereof
CN114479191B (en) Inorganic filler for PTFE-based copper-clad plate and preparation method thereof
CN111763080B (en) Hollow mullite microspheres and preparation method thereof
CN114898963A (en) Magnetic filling slurry and preparation method and application thereof
CN112358231A (en) Preparation method of polyvinylidene fluoride composite material with high dielectric property
CN107698254A (en) A kind of preparation method of low temperature sintered electron ceramic material
KR100665122B1 (en) Method for Stabilizing Ceramic Powder and Slurry by Introducing Chemical Functional Group
CN107140979A (en) A kind of method for improving microwave dielectric ceramic with medium dielectric constant microwave dielectric property
CN110734292A (en) Method for uniformly mixing CuO and ceramic powder
CN111748230A (en) Preparation method of organic sericite for anticorrosive coating
CN104292717B (en) A kind of application of glycolylurea epoxide resin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant