CN110731543A - Preparation method of microporous ceramic heating element for atomizer - Google Patents

Preparation method of microporous ceramic heating element for atomizer Download PDF

Info

Publication number
CN110731543A
CN110731543A CN201910900635.XA CN201910900635A CN110731543A CN 110731543 A CN110731543 A CN 110731543A CN 201910900635 A CN201910900635 A CN 201910900635A CN 110731543 A CN110731543 A CN 110731543A
Authority
CN
China
Prior art keywords
microporous
heating
green
heating element
atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910900635.XA
Other languages
Chinese (zh)
Inventor
王江
管伟
王鹏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai 4u Electronic Ceramics Co Ltd
Original Assignee
Zhuhai 4u Electronic Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai 4u Electronic Ceramics Co Ltd filed Critical Zhuhai 4u Electronic Ceramics Co Ltd
Priority to CN201910900635.XA priority Critical patent/CN110731543A/en
Publication of CN110731543A publication Critical patent/CN110731543A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention discloses a preparation method of microporous ceramic heating elements for atomizers, which comprises the steps of uniformly mixing raw materials to obtain microporous green compacts, mixing the raw materials by weight to obtain 50-85% of a framework material, 10-40% of a pore-forming agent, 0.5-2% of a foaming agent and 10-35% of a binder, wherein the granularity of the framework material is 20-100 microns, the framework material comprises of aluminum oxide, silicon carbide and quartz, the pore-forming agent comprises at least of sawdust, graphite powder, wood powder, starch and plastic powder, the microporous laminated blank block and the second microporous blank block are laminated and adhered, a heating line is positioned in the middle position and/or on the surface of a microporous ceramic body, and sintering is carried out under a protective atmosphere environment to obtain the heating elements, wherein the sintering temperature is 1100-1600 ℃, the pore diameter of the heating elements is 15-120 microns, the porosity is 35-60%, and the heating elements are stable in heating, good in liquid absorption effect and good in atomization effect.

Description

Preparation method of microporous ceramic heating element for atomizer
Technical Field
The invention relates to a heating element of an electronic cigarette atomizer, in particular to a preparation method of a microporous ceramic heating element for atomizers.
Background
The oil storage type electronic cigarette heats and evaporates (atomizes) tobacco tar through the heating element, and the generated smoke can be sucked by a user. Wherein, the heating element of the atomizer needs to have better heating capacity and liquid absorption capacity.
The ceramic heating element of the existing atomizer has the specific flow that: the heating wires are embedded in the powdery microporous ceramic, and then the powdery ceramic is formed by hot-press casting and powder material is formed by pressing.
The powder is on the surface of a friction shuttle heating element (an electric heating element, most of the powder is made of metal materials) in a die-casting hardening process, -specified high temperature is inevitably supplied in the die-casting process, the surface of the heating element is abraded by heating, the surface of an electric heating wire is easy to oxidize, and the capability of the heating wire for heating outwards is unstable.
Disclosure of Invention
The invention aims to at least solve technical problems in the prior art, and therefore, the invention provides a preparation method of microporous ceramic heating elements for an atomizer, which has a better micropore effect, and the heating elements have better heating capacity and liquid absorption capacity.
The preparation method of the microporous ceramic heating element for the atomizer according to the embodiment of the aspect of the invention comprises the following steps:
preparing a micropore green body, uniformly mixing raw materials, preparing the micropore green body by any modes of tape casting, film rolling, extrusion and gel casting, wherein the raw materials comprise 50-85% of a framework material, 10-40% of a pore-forming agent, 0.5-2% of a foaming agent and 10-35% of a binder according to the weight ratio, the granularity of the framework material is 20-100 microns, the framework material comprises of alumina, silicon carbide and quartz, and the pore-forming agent comprises at least of sawdust, graphite powder, wood powder, starch and plastic powder;
punching sheet forming, wherein the micropore green body is manufactured into a required size through die punching or automatic slicing;
printing a heating circuit, wherein the heating circuit is printed on the micropore green body;
laminating, namely laminating at least two microporous green bodies to adhere the at least two microporous green bodies into whole bodies, wherein the heating circuit is positioned on the surface of the whole body and/or between two adjacent microporous green bodies;
and sintering, namely sintering the whole body obtained by printing and laminating the heating circuit at the sintering temperature of 1100-1600 ℃ in a protective atmosphere environment to obtain the heating element.
The preparation method of the microporous ceramic heating parts for the atomizer at least has the following beneficial effects that the aperture in the heating part is 15-120 mu m, the porosity is 35-60%, and the heating part is stable in heating, good in liquid absorption effect and good in atomization effect.
According to , the heating circuit is printed and laminated, and the heating circuit is located between at least two adjacent microporous green bodies.
According to , the heating circuit is printed after lamination, and the heating circuit is printed on the whole surface after lamination.
According to embodiments of the invention, the method comprises circuit board printing, laminating and second heating circuit printing in sequence, wherein the heating circuit is positioned between at least two adjacent microporous green bodies, and the second heating circuit is printed on the surface of the whole body obtained after laminating.
According to embodiments of the invention, the binder includes at least of clay, kaolin, glaze, and glass frit.
According to , the material of the heating circuit is composed of or more of silver, palladium, nickel, chromium, iron, aluminum, cobalt, copper, molybdenum, tungsten and titanium, wherein the heating circuit has better conductivity and higher heating rate.
According to , the method further comprises a wire bonding step of bonding wires to the ends of the sintered heat generating element so that the ends of the heat generating circuit are bonded with the th and second leads, respectively.
According to embodiments of the present invention, the heat generating member is cut to form a T-shape.
According to embodiments of the present invention, after the heating circuit is printed, the micro-porous green body is shaped to form a mounting structure, and the micro-porous green body is hot pressed or isostatic pressed.
According to , the laminating process is carried out under heating.
According to examples of the present invention, in the isostatic pressing process, at least two green microporous bodies are stacked to form whole bodies, and then the whole bodies are placed in a closed container filled with liquid, and the at least two green microporous bodies are pressed together in high-pressure liquid by pressurizing the liquid.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The above and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
FIG. 1a is a schematic structural diagram of a microporous ceramic heating element according to an embodiment of the present invention;
FIG. 1b is a schematic structural diagram of a microporous ceramic heating element according to an embodiment of the present invention;
FIG. 2a is a schematic view of a process flow of a microporous ceramic heating element according to an embodiment of the present invention;
FIG. 2b is a schematic diagram of a process flow of the microporous ceramic heating element according to the embodiment of the present invention;
fig. 2c is a third schematic diagram of the process flow of the microporous ceramic heating element according to the embodiment of the present invention.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.
If any of the descriptions to and the second are only used for distinguishing technical features, the descriptions cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the precedence of the indicated technical features.
In the description of the present invention, unless otherwise specifically limited, terms such as set, mounted, connected and the like should be understood as meaning, and those skilled in the art can reasonably determine the specific meaning of the terms in the present invention by combining the details of the technical solutions.
In embodiments of the present invention, the heating circuit is disposed at the middle position of the ceramic body, referring to fig. 1a, the microporous ceramic heating element for atomizer comprises a th green layer 100, a heating circuit layer 300 and a second green layer 200, which are sequentially disposed from top to bottom, and in embodiments of the present invention, the heating circuit is disposed at the surface position of the ceramic body, referring to fig. 1b, the microporous ceramic heating element for atomizer comprises a heating circuit layer 300, a th green layer 100 and a second green layer 200, which are sequentially disposed from top to bottom, a th green layer 100 and/or a second green layer 200 are shaped, i.e., the th green layer 100 and/or the second green layer 200 are processed to obtain corresponding mounting structures (e.g., T-shaped, etc.), wherein the th green layer and the second green layer 200 correspond to different microporous green bodies.
Referring to fig. 2a to 2c, a method for preparing a microporous ceramic heating element according to an embodiment of aspect of the present invention comprises the steps of microporous green body making, heating circuit printing, laminating and sintering.
The manufacturing method comprises the following steps of (1) uniformly mixing raw materials, preparing the microporous green body by any modes of tape casting, film rolling, extrusion and gel casting, wherein the raw materials comprise 50-85% of framework material, 10-40% of pore-forming agent, 0.5-2% of foaming agent and 10-35% of binder according to the weight ratio, the granularity of the framework material is 20-100 microns, the framework material comprises of aluminum oxide, silicon carbide and quartz, and the pore-forming agent comprises at least of wood chips, graphite powder, wood powder, starch and plastic powder.
Punching sheet forming step/procedure: manufacturing the micropore green body into a required size through die punching or automatic slicing;
heating line printing step/process: and heating lines are printed on the micropore green bodies.
And (3) a laminating step/procedure, namely laminating at least two micropore green bodies to adhere the at least two micropore green bodies into whole bodies, wherein a heating circuit is positioned on the surface of the whole body and/or between two adjacent micropore green bodies, the heating circuit is thin, raw materials comprise a binder, and the two adjacent micropore green bodies are slightly deformed and adhered on the joint surface in the laminating process.
Sintering step/procedure: and sintering the whole body obtained by printing and laminating the heating circuit at the sintering temperature of 1100-1600 ℃ under the protective atmosphere environment to obtain the heating element. At least two micropore green compacts are placed into a closed kiln after being stacked into a whole, then inert gas, nitrogen and the like are added, and the inner cavity of the kiln is heated. The heating element is sintered at high temperature under the protective atmosphere, and the heating circuit cannot be oxidized in the working procedure.
The heating element is solidified to required strength by adopting a sintering mode, and under the action of high temperature of 1100-1600 ℃, a pore-forming agent and a binder are carbonized and volatilized to form micropores, wherein the weight ratio of a skeleton material is 50-85%, the granularity is 20-100 microns, the pore-forming agent is 10-40%, and the foaming agent is 0.5-2%.
Alumina, silicon carbide, quartz, and the like, which belong to a ceramic/glass base material (skeleton material). The microporous ceramic body is prepared by mixing and molding sawdust, graphite powder, wood powder, starch, plastic powder (PVB/PVA) and other pore-forming agents, sintering at high temperature, volatilizing the pore-forming agents and the binders to form micropores, and sintering the framework materials to form ceramic.
In embodiments of the invention, the raw materials include, by weight, 60% -75% of a skeleton material, 20% -30% of a pore-forming agent, 1% -1.5% of a foaming agent, 50-80 um of pore diameter in a heating element, 40-50% of porosity, the heating element has a high heating rate, heat emitted by a heating circuit resistor is quickly and fully utilized, and a microporous ceramic/glass shell has excellent liquid absorption performance.
Preferably, the granularity of the framework material is 35-60 um.
Referring to FIG. 2a, in embodiments of the present invention, the heat generating circuit is printed and then laminated, and the heat generating circuit is located between at least two adjacent green microcellular bodies.
It can be understood that more than two micro-pore briquettes can be arranged, at least two heating circuits are arranged, a heating circuit is arranged between two adjacent micro-pore briquettes, and the heating circuits are connected in parallel or in series.
Referring to FIG. 2b, in embodiments of the present invention, the heating lines are printed after lamination, and the heating lines are printed on the entire surface of the laminate.
Referring to fig. 2c, in embodiments of the present invention, the method sequentially comprises printed circuit boards, lamination and a second heating circuit printed circuit, wherein the heating circuit is located between at least two adjacent microporous green bodies, and the second heating circuit is printed on the surface of the laminated whole.
In embodiments of the present invention, the sintering temperature in the sintering process is 1300-1500 ℃, in embodiments of the present invention, the sintering temperature can reach 1500 ℃ and 1550 ℃ when the amount of the skeleton material is large, and in embodiments of the present invention, the sintering temperature can reach 1200 ℃ and 1100 ℃ when the amount of the skeleton material is small.
In embodiments of the invention, the binder includes at least of clay, kaolin, glaze, and glass frit.
In examples of the present invention, the heating circuit is made of or more of silver, palladium, nickel, chromium, iron, aluminum, cobalt, copper, molybdenum, tungsten and titanium, among which the heating circuit has better conductivity and higher heating rate.
In , the method further comprises a wire bonding step of bonding wires to the ends of the sintered heat generating element, so that the ends of the heat generating circuit are respectively bonded with the th and second wires 400 and 500.
In examples of the present invention, after the heating circuit is printed, the heating circuit is connected to the surface of the microporous ceramic body, and the lead 400 and the second lead 500 are respectively welded to the two electrodes of the heating circuit.
In embodiments of the invention, the heat generating element may be formed without protruding leads, and the external electrical contacts contact the electrode points of the heat generating circuit during application to form a circuit.
In embodiments of the present invention, the heat generating member is cut to form a T-shape, and the heat generating member has a corresponding mounting configuration/structure.
In embodiments of the present invention, after the heating circuit is printed, the micro-porous green body is shaped to form a mounting structure, and the micro-porous green body is hot pressed or isostatically pressed.
In examples of the present invention, in the isostatic pressing process, at least two green microporous bodies are stacked to form units and then placed in a closed container filled with liquid, and the at least two green microporous bodies are pressed together in a high-pressure liquid by pressurizing the liquid.
The embodiments of the present invention have been described in detail with reference to the accompanying drawings, but the present invention is not limited to the above embodiments, and various changes can be made within the knowledge of those skilled in the art without departing from the gist of the present invention.

Claims (10)

1, A preparation method of microporous ceramic heating element for atomizer, characterized by comprising the following steps:
preparing a micropore green body, uniformly mixing raw materials, preparing the micropore green body by any modes of tape casting, film rolling, extrusion and gel casting, wherein the raw materials comprise 50-85% of a framework material, 10-40% of a pore-forming agent, 0.5-2% of a foaming agent and 10-35% of a binder according to the weight ratio, the granularity of the framework material is 20-100 microns, the framework material comprises of alumina, silicon carbide and quartz, and the pore-forming agent comprises at least of sawdust, graphite powder, wood powder, starch and plastic powder;
punching sheet forming, wherein the micropore green body is manufactured into a required size through die punching or automatic slicing;
printing a heating circuit, wherein the heating circuit is printed on the micropore green body;
laminating, namely laminating at least two microporous green bodies to adhere the at least two microporous green bodies into whole bodies, wherein the heating circuit is positioned on the surface of the whole body and/or between two adjacent microporous green bodies;
and sintering, namely sintering the whole body obtained by printing and laminating the heating circuit at the sintering temperature of 1100-1600 ℃ in a protective atmosphere environment to obtain the heating element.
2, A method for preparing microporous ceramic heating element for atomizer, which is characterized in that the heating circuit is printed and then laminated, the heating circuit is located between at least two adjacent microporous green bodies.
3, A method for preparing a microporous ceramic heating element for an atomizer, which is characterized in that the heating element is printed after lamination, and the heating element is printed on the surface of the whole body obtained after lamination.
The preparation method of the microporous ceramic heating element for the atomizers is characterized by sequentially comprising th circuit board printing, laminating and second heating line printing, wherein the th heating line is positioned between at least two adjacent microporous green bodies, and the second heating line is printed on the surface of an integral body obtained after laminating.
5. The method for preparing microporous ceramic heating elements for atomizer according to claim 1, wherein the binder comprises at least kinds of clay, kaolin, glaze and glass powder.
6. The method for preparing microporous ceramic heating elements for atomizer according to claim 1, wherein the heating circuit is made of or more of silver, palladium, nickel, chromium, iron, aluminum, cobalt, copper, molybdenum, tungsten and titanium.
7. The method of microporous ceramic heater elements for atomizer according to claim 1, further comprising a wire bonding step of bonding wires to the ends of the sintered heater elements, and bonding th and second wires to the ends of the heating circuit, respectively.
8. The method for preparing a microporous ceramic heating element for an atomizer as claimed in any one of claims 1 to 4 and , wherein after the heating circuit is printed, the microporous green sheet is subjected to a shaping process to form a mounting structure, and the microporous green sheet is subjected to a hot pressing or an isostatic pressing.
9. The method for producing the microporous ceramic heat generating member for an atomizer as claimed in any one of claims 1 to 4 and , wherein the laminating step is carried out under heating.
10. The method for producing microporous ceramic heating elements for atomizers of claim 8, wherein in the isostatic pressing step, at least two of the microporous green compacts are stacked to pieces and placed in a closed container filled with a liquid, and the at least two microporous green compacts are pressed together in a high-pressure liquid by pressurizing the liquid.
CN201910900635.XA 2019-09-23 2019-09-23 Preparation method of microporous ceramic heating element for atomizer Pending CN110731543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910900635.XA CN110731543A (en) 2019-09-23 2019-09-23 Preparation method of microporous ceramic heating element for atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910900635.XA CN110731543A (en) 2019-09-23 2019-09-23 Preparation method of microporous ceramic heating element for atomizer

Publications (1)

Publication Number Publication Date
CN110731543A true CN110731543A (en) 2020-01-31

Family

ID=69269435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910900635.XA Pending CN110731543A (en) 2019-09-23 2019-09-23 Preparation method of microporous ceramic heating element for atomizer

Country Status (1)

Country Link
CN (1) CN110731543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493373A (en) * 2020-04-27 2020-08-07 深圳市小朋新材料科技有限公司 Novel integral infrared heating element for tobacco and preparation method thereof
CN112209730A (en) * 2020-09-16 2021-01-12 深圳市华诚达精密工业有限公司 Porous ceramic atomization structure and preparation method thereof
WO2023130389A1 (en) * 2022-01-07 2023-07-13 江门思摩尔新材料科技有限公司 Heating assembly and preparation method therefor, atomizer, and electronic atomization apparatus
CN116813358A (en) * 2023-06-21 2023-09-29 杭州沈氏节能科技股份有限公司 Forming process of silicon carbide plate and silicon carbide plate prepared by forming process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649449A (en) * 2004-01-20 2005-08-03 珠海粤科清华电子陶瓷有限公司 High temperature coburning heating element and its producing method
WO2015192300A1 (en) * 2014-06-16 2015-12-23 深圳麦克韦尔股份有限公司 Method for preparing porous ceramics, porous ceramics, and electronic cigarette
CN205250357U (en) * 2015-12-29 2016-05-25 湖北中烟工业有限责任公司 Electron cigarette is with cellular cavity porous ceramic atomization component
CN205358219U (en) * 2015-12-31 2016-07-06 深圳市合元科技有限公司 The heating element , atomizer that contains this the heating element and electron cigarette
CN107006896A (en) * 2017-05-05 2017-08-04 湖北中烟工业有限责任公司 A kind of compound ceramic atomizer and preparation method thereof
CN108059462A (en) * 2017-12-21 2018-05-22 深圳市卓力能电子有限公司 A kind of preparation process of novel porous heat generating ceramic
CN108354232A (en) * 2018-05-03 2018-08-03 深圳顺络电子股份有限公司 A kind of electronic cigarette atomizing core and preparation method thereof
CN108503391A (en) * 2018-04-10 2018-09-07 珠海惠友电子有限公司 A kind of manufacturing process of ceramic heating part
WO2019014885A1 (en) * 2017-07-20 2019-01-24 惠州市吉瑞科技有限公司深圳分公司 Atomizer and electronic cigarette
CN109721344A (en) * 2019-01-29 2019-05-07 东莞信柏结构陶瓷股份有限公司 Porous ceramic film material, porous ceramics and preparation method thereof
CN109832673A (en) * 2019-02-27 2019-06-04 深圳市合元科技有限公司 Electronic smoke atomizer, electronic cigarette, atomizing component and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649449A (en) * 2004-01-20 2005-08-03 珠海粤科清华电子陶瓷有限公司 High temperature coburning heating element and its producing method
WO2015192300A1 (en) * 2014-06-16 2015-12-23 深圳麦克韦尔股份有限公司 Method for preparing porous ceramics, porous ceramics, and electronic cigarette
CN205250357U (en) * 2015-12-29 2016-05-25 湖北中烟工业有限责任公司 Electron cigarette is with cellular cavity porous ceramic atomization component
CN205358219U (en) * 2015-12-31 2016-07-06 深圳市合元科技有限公司 The heating element , atomizer that contains this the heating element and electron cigarette
CN107006896A (en) * 2017-05-05 2017-08-04 湖北中烟工业有限责任公司 A kind of compound ceramic atomizer and preparation method thereof
WO2019014885A1 (en) * 2017-07-20 2019-01-24 惠州市吉瑞科技有限公司深圳分公司 Atomizer and electronic cigarette
CN108059462A (en) * 2017-12-21 2018-05-22 深圳市卓力能电子有限公司 A kind of preparation process of novel porous heat generating ceramic
CN108503391A (en) * 2018-04-10 2018-09-07 珠海惠友电子有限公司 A kind of manufacturing process of ceramic heating part
CN108354232A (en) * 2018-05-03 2018-08-03 深圳顺络电子股份有限公司 A kind of electronic cigarette atomizing core and preparation method thereof
CN109721344A (en) * 2019-01-29 2019-05-07 东莞信柏结构陶瓷股份有限公司 Porous ceramic film material, porous ceramics and preparation method thereof
CN109832673A (en) * 2019-02-27 2019-06-04 深圳市合元科技有限公司 Electronic smoke atomizer, electronic cigarette, atomizing component and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗民华: "《多孔陶瓷实用技术》", 31 March 2006, 中国建材工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493373A (en) * 2020-04-27 2020-08-07 深圳市小朋新材料科技有限公司 Novel integral infrared heating element for tobacco and preparation method thereof
CN112209730A (en) * 2020-09-16 2021-01-12 深圳市华诚达精密工业有限公司 Porous ceramic atomization structure and preparation method thereof
WO2023130389A1 (en) * 2022-01-07 2023-07-13 江门思摩尔新材料科技有限公司 Heating assembly and preparation method therefor, atomizer, and electronic atomization apparatus
CN116813358A (en) * 2023-06-21 2023-09-29 杭州沈氏节能科技股份有限公司 Forming process of silicon carbide plate and silicon carbide plate prepared by forming process

Similar Documents

Publication Publication Date Title
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
JP3687484B2 (en) Method for manufacturing ceramic substrate and unfired ceramic substrate
US6346317B1 (en) Electronic components incorporating ceramic-metal composites
JP2011510502A (en) Heat sink and method for manufacturing the heat sink
WO1998058390A1 (en) Resistance wiring board and method for manufacturing the same
CN107226708A (en) The manufacture method of conjugant and conjugant
JP4959079B2 (en) Package for storing semiconductor elements
JP2002015946A (en) Ceramic capacitor
US6143421A (en) Electronic components incorporating ceramic-metal composites
JP4471470B2 (en) Semiconductor device
JPH0336305B2 (en)
JPH05267849A (en) Manufacture of ceramic multilayer circuit board
JP4530524B2 (en) Wiring board
JP3173412B2 (en) Manufacturing method of glass ceramics substrate
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP2002246717A (en) Ceramic circuit board
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP4336164B2 (en) Method for manufacturing composite sheet, method for manufacturing composite laminate, and method for manufacturing ceramic substrate
JP4493158B2 (en) Ceramic circuit board
JP2005033069A (en) Method for manufacturing thermal stress relaxation pad for thermoelectric converter
JP3954912B2 (en) Manufacturing method of ceramic circuit board
JP3762352B2 (en) Wiring board
CN116621602A (en) Atomizer, atomized ceramic and preparation method thereof
JP5457789B2 (en) Electronic component manufacturing method and electronic component
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131