CN110677063B - 一种串并联DCM Boost PFC变换器及其工作方法 - Google Patents

一种串并联DCM Boost PFC变换器及其工作方法 Download PDF

Info

Publication number
CN110677063B
CN110677063B CN201910960076.1A CN201910960076A CN110677063B CN 110677063 B CN110677063 B CN 110677063B CN 201910960076 A CN201910960076 A CN 201910960076A CN 110677063 B CN110677063 B CN 110677063B
Authority
CN
China
Prior art keywords
phase
inductor
series
parallel
switch tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910960076.1A
Other languages
English (en)
Other versions
CN110677063A (zh
Inventor
陈章勇
卢正东
吴云峰
赵玲玲
沈澜枭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910960076.1A priority Critical patent/CN110677063B/zh
Publication of CN110677063A publication Critical patent/CN110677063A/zh
Application granted granted Critical
Publication of CN110677063B publication Critical patent/CN110677063B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种串并联DCM Boost PFC变换器,包括依次连接的控制器、前端整流电路和后端Boost DC/DC变换器。该换器通过控制开关管的导通和关断,使两相电感在充电阶段并联,在放电阶段串联,有效降低了开关管导通时间,减小了电流峰值与均方根值,因此减小了功率器件的损耗特别是导通损耗,在功率因数校正效果一致的前提下提高了变换器效率。同时,在电感串联阶段有效降低了开关管漏源电压应力。

Description

一种串并联DCM Boost PFC变换器及其工作方法
技术领域
本发明属于电路电子技术领域,具体涉及一种串并联DCM Boost PFC变换器及其工作方法。
背景技术
并网设备需要满足一定的谐波标准,需要功率因数校正电路(PFC)作为前端变换器。Boost PFC是使用最广泛的功率因数校正电路之一,当其工作于DCM模式时,具有开关管零电流开通、二极管零电流关断、控制方法简单等优点。但是DCM模式下电流峰值较大,器件应力较大,损耗较大。在一些要求控制方法简单、效率高的场合,传统DCM Boost PFC变换器很难满足需要。
发明内容
针对现有技术中的上述不足,本发明提供的串并联DCM Boost PFC变换器解决了现有的DCM模式下,电流峰值较大、器件应力较大,损耗较大的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种串并联DCM Boost PFC变换器,包括依次连接的控制器、前端整流电路和后端Boost DC/DC变换器;
所述控制器为PI控制器;
所述前端整流为电路二极管整流电路;
所述后端Boost DC/DC变换器包括相一电感L1、相一开关管S1、相二电感L2、相二开关管S2、输出二极管D和输出电容C0
所述相一电感L1的一端分别与前端整流电路的一端和相二开关管S2的漏极连接,所述相一电感L1的另一端分别与相一开关管S1的漏极和输出二极管D的正极连接,所述输出二极管D的负极与输出电容C0的一端连接,所述相一开关管S1的源极与相二电感L2的一端连接,所述相二开关管S2的源极分别与相二电感L2的另一端和输出电容C0的另一端连接;
所述输出电容C0的两端作为串并联DCM Boost PFC变换器的输出端,外接负载电路;
所述控制器的电压输入端口与串并联DCM Boost PFC变换器的输出端连接,所述控制器的驱动端分别与相一开关管S1和相二开关管S2连接。
进一步地,所述相一电感L1和相二电感L2的电感值相同。
一种串并联DCM Boost PFC变换器的工作方法,所述串并联DCM Boost PFC变换器的工作方法为:
当串并联DCM Boost PFC变换器工作在DCM模式时,通过控制器确定占空比,并在确定的占空比下,通过控制相一开关管S1和相二开关管S2的导通与关断,使相一电感L1和相二电感L2在充电阶段并联,在放电阶段串联。
进一步地,所述串并联DCM Boost PFC变换器工作在DCM模式时包括三种模态,所述三种模态依次为:
在0Ts~D1Ts模态时:在0Ts时刻,控制器控制相一开关管S1和相二开关管S2同时导通,输出二极管D截止,相一电感L1和相二电感L2并联开始充电,并在D1Ts时刻结束充电;
在D1Ts~D3Ts模态时:在D1Ts时刻,控制器控制相一开关管S1和相二开关管S2同时关断,输出二极管D导通续流,相一电感L1和相二电感L2串联开始放电,并在D3Ts时刻完成放电;
在D3Ts~Ts模态时:控制器控制两相开关管保持关断,输出电容C0为负载供电,直到Ts时刻进入下一个开关周期;
其中,Ts为开关管开关周期;
D1为占空比;
D3=D1+D2,其中,D2为在一个脉冲循环内,电感电流下降到0所需要的时间。
进一步地,所述占空比D1稳态值为:
Figure GDA0002751444330000031
式中,Vm为交流输入电压幅值;
L为相一电感和相二电感的值;
fs为相一开关管和相二开关管的开关频率;
Po为输出功率;
Vo为直流输出电压。
进一步地,所述串并联DCM Boost PFC变换器工作在DCM模式时,所述相一电感L1和相二电感L2的电感值需满足下列条件:
Figure GDA0002751444330000032
式中,L=L1=L2
本发明的有益效果为:
(1)与现有DCM Boost PFC变换器相比(相同器件、输入输出电压、功率),本发明开关管导通时间更短,电流峰值更小。
(2)与现有DCM Boost PFC变换器相比,本发明电感直流电阻损耗更小,开关管开关损耗,导通损耗更小,输出电容串联等效电阻损耗更小,二极管导通损耗一致,输入整流桥导通损耗一致。
(3)与现有DCM Boost PFC变换器相比,本发明开关管承受的电压应力更小。
附图说明
图1为本发明提供的串并联DCM Boost PFC变换器电路结构图。
图2为本发明提供的串并联DCM Boost PFC变换器第一种工作模态电路示意图。
图3为本发明提供的串并联DCM Boost PFC变换器第二种工作模态电路示意图。
图4为本发明提供的串并联DCM Boost PFC变换器第三种工作模态电路示意图。
图5为本发明提供的实施例中串并联DCM Boost PFC变换器在开关周期内的关键波形图。
图6为本发明提供的实施例中串并联DCM Boost PFC变换器在工频周期内的仿真波形图。
图7为本发明提供的实施例中串并联DCM Boost PFC变换器在开关周期内的仿真波形图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
如图1所示,一种串并联DCM Boost PFC变换器,包括依次连接的控制器、前端整流电路和后端Boost DC/DC变换器;
所述控制器为PI控制器,在DCM模式下,只需要单电压环即可,因此普通的PI控制就行;
所述前端整流电路为二极管整流电路;
上述后端Boost DC/DC变换器包括相一电感L1、相一开关管S1、相二电感L2、相二开关管S2、输出二极管D和输出电容C0;相一电感L1的一端分别与前端整流电路的一端和相二开关管S2的漏极连接,相一电感L1的另一端分别与相一开关管S1的漏极和输出二极管D的正极连接,输出二极管D的负极与输出电容C0的一端连接,相一开关管S1的源极与相二电感L2的一端连接,相二开关管S2的源极分别与相二电感L2的另一端和输出电容C0的另一端连接;输出电容C0的两端作为串并联DCM Boost PFC变换器的输出端,外接负载电路;控制器的电压输入端口与串并联DCM Boost PFC变换器的输出端连接,控制器的驱动端分别与相一开关管S1和相二开关管S2连接。其中,相一电感L1、相二电感L2的电感值相同。
本发明中的控制器采用定占空比PWM驱动技术,无需电流内环,采用电压单环控制维持输出电压稳定;前端整流电路实现交流变直流。
本发明还提供了一种串并联DCM Boost PFC变换器的工作方法,串并联DCM BoostPFC变换器的工作方法为:
当串并联DCM Boost PFC变换器工作在DCM模式时,通过控制器确定占空比,并在确定的占空比下,通过控制相一开关管S1和相二开关管S2的导通与关断,使相一电感L1和相二电感L2在充电阶段并联,在放电阶段串联。
具体地,串并联DCM Boost PFC变换器工作在DCM模式时包括三种模态,两种模态依次为:
在0Ts~D1Ts模态时:在0Ts时刻,控制器控制相一开关管S1和相二开关管S2同时导通,输出二极管D截止,相一电感L1和相二电感L2并联开始充电,并在D1Ts时刻结束充电;
上述模态如图2所示,在该过程中相一电感L1和相二电感L2中的电流从0开始逐渐增加,输出电容C0为负载供电,此阶段整流电路的输入电流为两个电感电流之和;
在D1Ts~D3Ts模态时:在D1Ts时刻,控制器控制相一开关管S1和相二开关管S2同时关断,输出二极管D导通续流,相一电感L1和相二电感L2串联开始放电,并在D3Ts时刻完成放电;
上述模态如图3所示,相一开关管S1和相二开关管S2同时关断时,输出二极管D导通续流,此时两相电感串联,且其中得电流逐渐下降,该阶段输入电流与电感电流相同;
在D3Ts~Ts模态时:控制器控制两相开关管保持关断,输出电容C0为负载供电,直到Ts时刻进入下一个开关周期;
上述模态如图4所示,在D3Ts时刻,两相电感中的电流下降到0,输出二极管D截止,此后输出电容C0为负载供电,此阶段的输入电流为0;
D1为占空比;
D3=D1+D2,其中,D2为在一个脉冲循环内,电感电流下降到0所需要的时间。
其中,经控制器控制的占空比D1稳态值为:
Figure GDA0002751444330000061
式中,Vm为交流输入电压幅值;
L为相一电感和相二电感的值;
fs为相一开关管和相二开关管的开关频率;
Po为输出功率;
Vo为直流输出电压。
上述三个模态变化过程中的关键电量波形变化如图5所示。
本发明中的变换器工作在DCM模式时,相一电感和相二电感的电感值需要满足的条件为:
Figure GDA0002751444330000071
在本发明的一个实施例中,分析了本发明中变换器具有的因数校正功能:
假设图1中的输入电流为:
Vin(t)=Vm sinwt
式中,w为输入交流电压角频率。
经过前端整流桥后电压为:
Vin(t)=Vm|sinwt|
在一个开关周期内电感电流峰值为:
Figure GDA0002751444330000072
根据伏秒平衡原则有:
Figure GDA0002751444330000073
式中,Ts为开关周期;
Vg为整流桥输出电压瞬时值;
因此D2可表示为:
Figure GDA0002751444330000081
因此一个开关周期内输入电流的平均值为:
Figure GDA0002751444330000082
则输入电流为:
Figure GDA0002751444330000083
根据输入电压和输入电流的表达式,工频周期输入功率的平均值为:
Figure GDA0002751444330000084
式中,Tac为交流输入工频周期;
假设变换器的工作效率为100%,占空比D1为:
Figure GDA0002751444330000085
式中,DBoost为相同条件下传统DCM Boost PFC的占空比;
于是DCM模式下该电路的PF值为:
Figure GDA0002751444330000086
式中,PFBoost为相同条件下传统DCM Boost PFC的PF值;
根据占空比和PF值表达式可以看出,在定占空比控制下本发明所提供的电路与现有DCM Boost PFC相比功率因数校正效果一致,但是占空比更小,电感电流峰值更小,电感直流电阻损耗更小,流过开关管的电流更小,开关管开关损耗,导通损耗更小,输出电容串联等效电阻损耗更小。
在本发明的一个实施例中,提供了本发明变换器的仿真分析实例:
图6-7为实例的仿真波形,其仿真参数为:输入Vin=150Vac,负载电阻RL=481Ω,相一、相二电感L2=50uH,输出电容Co=220u,变换器输出电压为380V,输出功率为300W,开关频率50KHz根据占空比D1的表达式可知该工况下占空比为0.21。图6为实例的工频周期定占空比开环仿真波形。从上至下依次为输入电压,输入电流,电感电流,开关管漏源电压,输出电压,整流桥输出电压。由图6可知,输入电流跟踪输入电压,实现了功率因数校正功能。图7为实例的开关周期定占空比开环仿真波形,由漏源电压可知开关管的电压应力为:
Figure GDA0002751444330000091
其中,Vin为输入电压瞬时值,电压应力小于现有Boost PFC变换器。
本发明的有益效果为:
(1)与现有DCM Boost PFC变换器相比(相同器件、输入输出电压、功率),本发明开关管导通时间更短,电流峰值更小。
(2)与现有DCM Boost PFC变换器相比,本发明电感直流电阻损耗更小,开关管开关损耗,导通损耗更小,输出电容串联等效电阻损耗更小,二极管导通损耗一致,输入整流桥导通损耗一致。
(3)与现有DCM Boost PFC变换器相比,本发明开关管承受的电压应力更小。

Claims (1)

1.一种串并联DCM Boost PFC变换器的工作方法,串并联DCM Boost PFC变换器包括控制器、前端整流电路和后端Boost DC/DC变换器,所述前端整流电路输入端与交流输入电源连接,所述前端整流电路的输出端与后端Boost DC/DC变换器连接,所述后端Boost DC/DC变换器还与控制器连接;
所述控制器为PI控制器;
所述前端整流电路为二极管整流电路;
所述后端Boost DC/DC变换器包括相一电感L1、相一开关管S1、相二电感L2、相二开关管S2、输出二极管D和输出电容C0
所述相一电感L1的一端分别与前端整流电路的正输出端和相二开关管S2的漏极连接,所述相一电感L1的另一端分别与相一开关管S1的漏极和输出二极管D的正极连接,所述输出二极管D的负极与输出电容C0的一端连接,所述相一开关管S1的源极分别与前端整流电路的负输出端和相二电感L2的一端连接,所述相二开关管S2的源极分别与相二电感L2的另一端和输出电容C0的另一端连接;
所述输出电容C0的两端作为串并联DCM Boost PFC变换器的输出端,外接负载电路;
所述控制器的电压输入端口与串并联DCM Boost PFC变换器的输出端连接,所述控制器的驱动端分别与相一开关管S1和相二开关管S2连接;
所述相一电感L1和相二电感L2的电感值相同;
其特征在于,所述串并联DCM Boost PFC变换器的工作方法为:
当串并联DCM Boost PFC变换器工作在DCM模式时,通过控制器确定占空比,并在确定的占空比下,通过控制相一开关管S1和相二开关管S2的导通与关断,使相一电感L1和相二电感L2在充电阶段并联,在放电阶段串联;
所述串并联DCM Boost PFC变换器工作在DCM模式时包括三种模态,所述三种模态依次为:
在0Ts~D1Ts模态时:在0Ts时刻,控制器控制相一开关管S1和相二开关管S2同时导通,输出二极管D截止,相一电感L1和相二电感L2并联开始充电,并在D1Ts时刻结束充电;
在D1Ts~D3Ts模态时:在D1Ts时刻,控制器控制相一开关管S1和相二开关管S2同时关断,输出二极管D导通续流,相一电感L1和相二电感L2串联开始放电,并在D3Ts时刻完成放电;
在D3Ts~Ts模态时:控制器控制两相开关管保持关断,输出电容C0为负载供电,直到Ts时刻进入下一个开关周期;
其中,Ts为开关管开关周期;
D1为占空比稳态值;
D3=D1+D2,其中,D2为在一个脉冲循环内,相一电感L1和相二电感L2的电流从最大值下降到0的时长占总开关周期时长的比例;
所述占空比稳态值D1为:
Figure FDA0002778837250000021
式中,Vm为交流输入电压幅值;
L为相一电感和相二电感的电感值;
fs为相一开关管和相二开关管的开关频率;
Po为输出功率;
Vo为直流输出电压;
w为输入交流电压角频率;
所述串并联DCM Boost PFC变换器工作在DCM模式时,所述相一电感L1和相二电感L2的电感值需满足下列条件:
Figure FDA0002778837250000031
式中,L=L1=L2,L1、L2分别为相一电感和相二电感的电感值。
CN201910960076.1A 2019-10-10 2019-10-10 一种串并联DCM Boost PFC变换器及其工作方法 Expired - Fee Related CN110677063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910960076.1A CN110677063B (zh) 2019-10-10 2019-10-10 一种串并联DCM Boost PFC变换器及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910960076.1A CN110677063B (zh) 2019-10-10 2019-10-10 一种串并联DCM Boost PFC变换器及其工作方法

Publications (2)

Publication Number Publication Date
CN110677063A CN110677063A (zh) 2020-01-10
CN110677063B true CN110677063B (zh) 2020-12-22

Family

ID=69081558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910960076.1A Expired - Fee Related CN110677063B (zh) 2019-10-10 2019-10-10 一种串并联DCM Boost PFC变换器及其工作方法

Country Status (1)

Country Link
CN (1) CN110677063B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697826B (zh) * 2020-06-02 2021-08-31 上海交通大学 一种并充串放型高倍升压电路及其控制方法
CN112886809A (zh) * 2021-01-12 2021-06-01 佛山市顺德区和而泰电子科技有限公司 一种单闭环脉冲控制电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627455A (en) * 1994-11-22 1997-05-06 Lucent Technologies Inc. Boost topology with two outputs for power factor correction application
CN104852564A (zh) * 2014-02-17 2015-08-19 光宝电子(广州)有限公司 非线性转换比功率因数转换器
CN110611425B (zh) * 2019-08-30 2021-08-06 电子科技大学 一种基于串并联Boost变换器的均流方法

Also Published As

Publication number Publication date
CN110677063A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN108183603B (zh) 一种单级无桥软开关谐振隔离型功率因数校正电路
CN205847105U (zh) 一种三电平倍频llc谐振变换装置
CN107509280A (zh) 一种高频隔离型led驱动电路及其控制方法
CN106533152A (zh) 一种提高Boost三电平变换器PF的装置及方法
CN110677063B (zh) 一种串并联DCM Boost PFC变换器及其工作方法
CN102427293A (zh) 一种低输出纹波的并联功率因数校正变换控制方法及其装置
CN113541503A (zh) 一种零电流开关有源钳位电流型推挽直流变换器
CN101355305B (zh) 多功能有源箝位变结构型双管正反激直流变流器
Lin et al. A single-stage PFC by integrating quasi-bridgeless boost and LLC converter
CN116961399B (zh) 基于输出反向的反激与降压单元的无桥降压型pfc变换器
CN109039050A (zh) 一种电压型Trans-Z源有源功率因数校正电路
CN203104294U (zh) 模块化高效dc/dc变换器
CN111865115B (zh) 最优频率控制的双定频crm降压-升降压pfc变换器
Lai et al. Design and implementation of a single-stage LLC resonant converter with high power factor
CN103762839A (zh) 一种磁耦合型单相高增益无桥功率因数校正电路
WO2022179564A1 (zh) 无桥降压功率因素校正电路
CN109149954B (zh) 一种宽负载范围软开关电流型推挽直流变换器
CN113541476B (zh) 一种基于软开关的对称型双Boost电路及实现方法
CN113726147A (zh) 一种输入并联输出串联无桥降压pfc变换器
CN111555604A (zh) 一种新型准单级高功率因数电路
CN202444413U (zh) 一种低输出纹波的并联功率因数校正变换器
CN109149951B (zh) 一种软开关三相电流型推挽直流变换器
CN111769754B (zh) 一种辅助回路最低损耗的无桥双升软开关整流器
CN203691228U (zh) 一种磁耦合型单相高增益无桥功率因数校正电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222