CN110669038B - Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof - Google Patents

Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof Download PDF

Info

Publication number
CN110669038B
CN110669038B CN201910895655.2A CN201910895655A CN110669038B CN 110669038 B CN110669038 B CN 110669038B CN 201910895655 A CN201910895655 A CN 201910895655A CN 110669038 B CN110669038 B CN 110669038B
Authority
CN
China
Prior art keywords
fgfr4
pyrimidine
aryl
inhibitor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910895655.2A
Other languages
Chinese (zh)
Other versions
CN110669038A (en
Inventor
刘志国
张亚利
郑小辉
王怡
蔡跃飘
梁广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaogu (Wenzhou) Technology Development Co.,Ltd.
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN201910895655.2A priority Critical patent/CN110669038B/en
Publication of CN110669038A publication Critical patent/CN110669038A/en
Application granted granted Critical
Publication of CN110669038B publication Critical patent/CN110669038B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

The invention disclosesA pyrimidine FGFR4 is disclosedV550LInhibitor, preparation and application thereof, pyrimidine FGFR4V550LThe structure of the inhibitor is shown in a formula (I), Ar is substituted or unsubstituted aryl, and the substituent on the aryl is alkyl, alkoxy, halogen or 4-methylpiperazin-1-yl. Test results show that the 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound can effectively inhibit FGFR4V550LCan be used as FGFR4 with high potential inhibitory activityV550A potent compound.

Description

Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof
Technical Field
The invention belongs to the field of pharmaceutical chemistry, and particularly relates to a 2-N-aryl-4-N-aryl-5-trifluoromethylpyrimidine compound and a preparation method and application thereof.
Background
Fibroblast Growth Factor Receptors (FGFRs) are a class of transmembrane receptor tyrosine kinases, and currently known FGFRs mainly include 4 types, namely FGFR1, FGFR2, FGFR3 and FGFR4, and FGFR family members play an important role in signal pathways controlling cell proliferation and differentiation. Among 4 FGFR members, FGFR4 and FGFR 1-3 have larger difference in structure and function. Structurally, FGFR4 has the least homology with other three types, the difference of protein domains is large, and the D3 domain structure of the extracellular part of FGFR4 is also different from FGFR 1-3. Functionally, the high expression of the FGFR1 gene is commonly found in squamous non-small cell lung cancer, breast cancer, ovarian cancer, bladder cancer and the like, the high expression of FGFR2 and 3 is related to gastric cancer, breast cancer and bladder cancer, and the high expression of FGFR4 is closely related to liver cancer. In addition, the knockout of FGFR4 does not lead to early embryonic lethality, and is not involved in regulating skeletal development as FGFR 1-3 does. Therefore, a small molecule inhibitor that selectively targets FGFR4 would be relatively more advantageous, without significant side effects, to treat tumors.
A partial FGFR4 inhibitor has been reported or entered into clinical trials in succession. Currently, important FGFR4 inhibitor compounds are known: pyrazoles such as AZD454714 and CH 518328415; pyrimidine derivatives such as NVP-BGJ 39816; indazole compound LY287445517 and compound Ponatiniib with imidazo [1,2-b ] pyridazine as main pharmacophore. These inhibitors show varying degrees of inhibitory activity and selectivity against FGFR4 and its family members. British Blueprint pharmaceutical company publishes a first FGFR4 selective inhibitor BLU9931, and the compound takes quinazoline as a parent nucleus and shows good FGFR4 selective inhibition effect in vivo and in vitro tests. However, BLU9931 eventually fails to enter clinical research stage due to drug-induced deficiency such as unreasonable physicochemical parameters and poor water solubility (HAGEL M, MIDUTURU C, SHEETS M, equivalent. first selective small molecule inhibitor of FGFR4 for the treatment of the refractory fibrous pathogens with FGFR activated 4signaling pathway [ J ]. CancerDiscov,2015,5,424-. BLU554, which has a modified chemical structure, has better solubility than BLU9931, and has been used as a liver cancer therapeutic drug in the clinical phase I research stage (Lin X, Yosaatmadja Y, KalyukinaM, et al.
Although the FGFR4 inhibitor develops rapidly, besides the inhibition capability and selectivity of most of the inhibitors are not high enough, the existing better inhibitors are often subjected to the problems of drug-induced deficiency, metabolism or off-target effect and the like, and only few inhibitors can be finally clinically researched. In addition, secondary resistance is another important reason limiting the clinical utility of FGFR4 inhibitors (GALLH, NELSON KN, MEYER AN, et al]Cytokine growth factor Rev,2015,26(4): 425-449.). The first-generation FGFR4 inhibitor or a plurality of multi-target inhibitors (such as sorafenib and the like) usually have obvious secondary drug resistance (such as V550L residue dislocation mutation) after clinical medication for 9-12 months, thereby greatly limiting the survival of tumor patientsProlongation of time (GAO L, WANG X, TANG Y, et al FGF19/FGFR4signaling constraints to the resistance of a hepatocellular carbon sorbent [ J]J ExpClin Cancer Res,2017,36(1): 8.). However, as yet, it has not been shown to be useful for reversing FGFR4V550LLiterature reports of drug-resistant small molecule inhibitors.
Disclosure of Invention
The invention provides a pyrimidine FGFR4V550LInhibitor, preparation and application thereof, and pyrimidine FGFR4V550LThe inhibitor can be used as a potential anticancer drug.
The technical scheme of the invention is as follows:
pyrimidine FGFR4V550LThe inhibitor is a compound 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound, and the structure of the compound is shown as the formula (I):
Figure BDA0002210147660000021
in the formula (I), Ar is substituted or unsubstituted aryl;
r is CF3、-COOC2H5H or NO2(ii) a R is preferably CF3
The substituent on the aryl is alkyl, alkoxy, halogen or 4-methylpiperazin-1-yl.
Preferably, the pyrimidine FGFR4V550LThe inhibitor is a compound represented by the following formula:
Figure BDA0002210147660000031
the in vitro kinase inhibition activity test result shows that the compound has FGFR4 effectV550LThe kinase has strong inhibitory activity and IC50A value of 45.8nM higher than other similar compounds
The invention also provides a preparation method of the 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound, which comprises the following steps:
(1) under the action of N, N-dimethylformamide and alkali, 2, 4-dichloro-5-trifluoromethylpyrimidine reacts with 6-aminoindazole to obtain an intermediate;
(2) and (2) under the action of methanol and acid, reacting the intermediate obtained in the step (1) with arylamine to obtain the 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound.
Preferably, in step (1), the base is N, N-diisopropylethylamine.
Preferably, in step (2), the acid is trifluoroacetic acid.
Preferably, in the step (2), the arylamine is 4- (4-methylpiperazine) aniline.
The invention also provides a preparation method of the 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound, and the medicine is used for treating or preventing tumors.
Preferably, the medicament is used for selectively inhibiting FGFR 4.
Preferably, the medicament is used for inhibiting liver cancer cells.
The synthesized 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound is a new compound, and meanwhile, the result of in vitro antitumor kinase inhibition evaluation shows that the compound has FGFR4 effectV550LThe kinase has the strongest inhibitory activity, and the inhibitory activity is improved by about 30 percent compared with that of a lead compound D3.
Detailed Description
Example 1
Synthesis of Compounds
The melting point was measured using an X-4 micro melting point apparatus (temperature not corrected); the mass spectrum was measured using an Agilent 1100 series single quadrupole LC Mass spectrometer.1H-NMR、13C-NMR was determined using a BrukeraVANCE III 500 nuclear magnetic resonance apparatus (DMSO-d)6As solvent, TMS as internal standard); GF for thin layer chromatography254Silica gel powder (200-300 meshes) for silica gel plate and column chromatography is purchased from Aladdin reagent company (Shanghai Crystal pure and technology Co., Ltd.) and chemical reagent company of national drug group, respectively; other used reagents and solvents are all commercial analytical pure products, and are used after anhydrous drying treatment according to requirements.
The synthetic route is as follows:
Figure BDA0002210147660000041
1.1 general Synthesis of intermediates 3a to 3j (example 3a)
333.94mg (2.0mmol) of 2, 4-dichloro-5-fluoropyrimidine and 516.96mg (4.0mmol) of N, N-Diisopropylethylamine (DIPEA) were dissolved in 5mL of dry N, N-Dimethylformamide (DMF). 6-Aminoindazole (266.3mg, 2mmol) dissolved in 2mL DMF was added slowly with stirring in an ice bath. After 1 hour, the reaction was slowly warmed to room temperature and monitored by TLC. After the reaction is finished, a large amount of cold ultrapure water is added into the reaction solution, and precipitates are separated out. Suction filtration, ethanol washing and filter cake drying to obtain the light yellow solid (3a)55.8mg, yield 70.2%. The yield of 3 b-3 j is 10-95.1%.
1.24 Synthesis of (4-methylpiperazine) nitrobenzene (6)
1.0g (7.1mmol) of p-fluoronitrobenzene (4) and 1.42g (14.17mmol) of N-methylpiperazine (5) were dissolved together in 10mL of dry dimethyl sulfoxide (DMSO), and 1.96g (14.17mmol) of potassium carbonate was added to the mixed solution. Stirring and reacting for 5h at normal temperature, adding ice water into the reaction solution, separating out a precipitate, performing suction filtration, and drying a filter cake to obtain 1.18g of a yellow product (6), wherein the yield is 75.25%.
1.34 Synthesis of (4-methylpiperazine) aniline (7)
1.0g of 4- (4-methylpiperazine) nitrobenzene (6) is dissolved in 10mL of methanol, a catalytic amount of 10% Pd/C (mass fraction) is slowly added with stirring, hydrogen is introduced, and the reaction is carried out for 5h at normal temperature. The reaction solution was filtered with suction and the filter cake was washed with methanol. The filtrate was subjected to rotary drying under reduced pressure to remove methanol, and the residue was subjected to silica gel column chromatography to give 0.72g of 4- (4-methylpiperazine) aniline (7) as an off-white solid in 83.7% yield.
General Synthesis of target Compounds 8a to 8j (example 8 a)
263.66mg (1.0mmol) of intermediate 3a and 191.27mg (1.0mmol) of 4- (4-methylpiperazine) aniline (7) were dissolved in 5mL of methanol, 0.20mL of trifluoroacetic acid (TFA) was slowly added dropwise with stirring, and the reaction mixture was heated under reflux at 80 ℃ for 2 hours. After the reaction, the reaction mixture was cooled to room temperature, the reaction mixture was adjusted to neutral pH with saturated sodium bicarbonate solution, extracted with ethyl acetate (10mL × 3), the organic phases were combined, washed with saturated sodium chloride solution, and dried over anhydrous sodium sulfate. Filtering, concentrating the filtrate under reduced pressure, and separating with silica gel column chromatography to obtain brown yellow target product 8a112.4 mg with yield 95.1%. The yields, physicochemical properties and spectral data of the 9 target compounds synthesized are detailed in table 1.
TABLE 1
Figure BDA0002210147660000051
Figure BDA0002210147660000061
Example 2
Example 2 on FGFR4V550LInhibition activity test for protein kinase
Testing target compounds 8a-8 j on FGFR4 by using Caliper EZ Reader drug screening platformV550LInhibitory activity of protein kinases. The experimental steps are as follows: 1.25 Xkinase reaction buffer (62.5mmol/L HEPES, pH 7.5; 0.001875% Brij-35; 12.5mmol/L MgCl 2; 2.5mM DTT) and kinase reaction stop solution (100mmol/LHEPES, pH 7.5; 0.015% Brij-35; 0.2% Coating Reagent #3) were prepared; to 5. mu.l of 5 Xconcentration compound solution (dissolved in DMSO, diluted 10-fold with water) was added 10. mu.l of 2.5 XFGFR 4V550LKinase solution (kinase added to 1.25 Xkinase reaction buffer), incubated at room temperature for 10min, then 10. mu.l of 2.5 Xsubstrate peptide solution (FAM-labeled peptide and ATP added to 1.25 Xkinase reaction buffer) was added, and after a specified time at 28 ℃ 25. mu.l of kinase reaction stop solution was added. Data were collected by testing on a Caliper with a (max-conversion)/(max-min) 100 inhibition of kinase activity. "max" is DMSO control without compound addition and "min" is low control. Determination of IC50The samples were set at 2 replicate wells for each of 5 dilutions, 3 replicates, and the results are shown in table 2.
TABLE 2
Figure BDA0002210147660000062
Wherein, the structure of the compound D3 is shown as the following formula:
Figure BDA0002210147660000071
the experimental results show that most of the target compounds are opposite to FGFR4V550LKinase inhibition activity is poor, and particularly, compounds with large volume substituent groups on the optimized pyrimidine or pyridine parent nucleus, such as ester group (8a, 8i), methylthio (8h) and thiophene (8j) substituted compounds, such as FGFR4V550LProtein kinases have little inhibitory activity. In addition, 4, 6-disubstituted aminopyrimidine series compounds 8f-8h have no inhibitory activity basically, while in 2, 4-disubstituted aminopyrimidine series compounds 8a-8e, a compound (8e) with a substituent at the 6-position and a substituent with larger volume at the 5-position are not beneficial to improving the inhibitory activity, and the compound with trifluoromethyl (8d) can greatly improve FGFR4V550LIs effective against FGFR4V550LInhibited IC50The value was 45.8nM, and the inhibitory activity of the most active compound 8D was increased by approximately 5-fold over that of the lead compound D3.

Claims (4)

1. Pyrimidine FGFR4V550LAn inhibitor characterized by being a compound represented by the following formula:
Figure FDA0002530619070000011
2. the pyrimidine FGFR4 of claim 1V550LThe preparation method of the inhibitor is characterized by comprising the following steps:
(1) under the action of N, N-dimethylformamide and alkali, 2, 4-dichloro-5-trifluoromethylpyrimidine reacts with 6-aminoindazole to obtain an intermediate;
(2) under the action of methanol and acid, reacting the intermediate obtained in the step (1) with arylamine to obtain the 2-N-aryl-4-N-aryl-5-trifluoromethyl pyrimidine compound;
in the step (1), the alkali is N, N-diisopropylethylamine;
in the step (2), the acid is trifluoroacetic acid;
in the step (2), the arylamine is 4- (4-methylpiperazine) aniline.
3. The pyrimidine FGFR4 of claim 1V550LUse of an inhibitor in the manufacture of a medicament for the treatment or prevention of a tumour.
4. Pyrimidine FGFR4 according to claim 3V550LThe application of the inhibitor in the preparation of the medicament is characterized in that the medicament is used for inhibiting liver cancer cells.
CN201910895655.2A 2019-09-21 2019-09-21 Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof Active CN110669038B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910895655.2A CN110669038B (en) 2019-09-21 2019-09-21 Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910895655.2A CN110669038B (en) 2019-09-21 2019-09-21 Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN110669038A CN110669038A (en) 2020-01-10
CN110669038B true CN110669038B (en) 2020-10-30

Family

ID=69078480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910895655.2A Active CN110669038B (en) 2019-09-21 2019-09-21 Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN110669038B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778282B (en) 2021-01-06 2022-07-22 温州医科大学 Pyrimidine micromolecule compound and application thereof
CN115141181A (en) * 2022-06-14 2022-10-04 温州医科大学 Novel small molecule compound and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3704101A (en) * 2000-02-17 2001-08-27 Amgen Inc Kinase inhibitors
WO2003030909A1 (en) * 2001-09-25 2003-04-17 Bayer Pharmaceuticals Corporation 2- and 4-aminopyrimidines n-substtituded by a bicyclic ring for use as kinase inhibitors in the treatment of cancer
US20070105839A1 (en) * 2003-09-18 2007-05-10 Patricia Imbach 2, 4-Di (phenylamino) pyrimidines useful in the treatment of proliferative disorders
CN106831730B (en) * 2017-01-11 2019-11-26 温州医科大学 A kind of substituted diaminopyrimidines and its preparing the purposes in anti-malignant tumor medicine

Also Published As

Publication number Publication date
CN110669038A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
CN108191874B (en) A kind of C-Kit inhibitor and its application
Luan et al. Exploration of acridine scaffold as a potentially interesting scaffold for discovering novel multi-target VEGFR-2 and Src kinase inhibitors
WO2018017983A1 (en) Compounds useful for treating disorders related to ret
Cao et al. Synthesis and in vitro cytotoxic evaluation of 1, 3-bisubstituted and 1, 3, 9-trisubstituted β-carboline derivatives
CN109761960B (en) Preparation method of anti-drug-resistance anti-tumor EGFR inhibitor
CZ30697A3 (en) Substituted quinazoline derivatives, process of their preparation and pharmaceutical composition containing thereof
CN110669038B (en) Pyrimidine FGFR4V550LInhibitor, preparation method and application thereof
EP3287463A1 (en) Condensed-ring pyrimidylamino derivative, preparation method therefor, and intermediate, pharmaceutical composition and applications thereof
CN110746402B (en) 2-N-aryl-4-N-aryl-5-fluoropyrimidine compound and preparation method and application thereof
WO2008068507A2 (en) 2 -phenylamino, 6- (pyrid-3-yl) quinazoline derivatives as raf-protein kinase inhibitors in cancer treatment
Zhou et al. Design, synthesis and pharmacological evaluation of 6, 7-disubstituted-4-phenoxyquinoline derivatives as potential antitumor agents
Jing et al. Discovery and optimization of tetrahydropyrido [4, 3-d] pyrimidine derivatives as novel ATX and EGFR dual inhibitors
EP3521276B1 (en) Crystal form and salt form of and preparation method for tyrosine kinase inhibitor
CN111606889A (en) Process for the preparation of 4- (1-cyclopropyl-1H-indol-3-yl) -N-phenylpyrimidin-2-amine derivatives
TW201946623A (en) A formamide compound, a process for its preparation and use of the same
CN102068430A (en) 1,6-disubstituted-beta-carboline cyclin-dependent kinase 2/Raf kinase dual inhibitor and application thereof
CN114014814A (en) N-benzyl-4-phenylphthalazin-1-amine derivative, preparation method thereof and medicine for treating RECQL4 specific expression
CN107973788B (en) BBI608 derivative and preparation and application thereof
JP2021508319A (en) Salt form as an Akt inhibitor and its crystal form
Liu et al. Synthesis and anti-tumor activity evaluation of novel 7-fluoro-4-(1-piperazinyl) quinolines
CN115703758B (en) Compounds used as kinase inhibitors, preparation method and application thereof
CN111057065B (en) Preparation method and application of thienopyrimidine compound
CN102146076B (en) Anilinoquinazoline derivatives and preparation method thereof
CN111606888B (en) Pyrrole derivative and preparation method and application thereof
CN104177342B (en) The indoles and naphthalene ketone derivant and its medical usage of heterocyclic radical substitution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210519

Address after: Room 2001, building a, Wenzhou Medical Equipment headquarters park, Xuefu North Road, Ouhai District, Wenzhou City, Zhejiang Province

Patentee after: Yaogu (Wenzhou) Technology Development Co.,Ltd.

Address before: 325035 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai District, Wenzhou, Zhejiang

Patentee before: WENZHOU MEDICAL University