CN110643618B - 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用 - Google Patents

小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用 Download PDF

Info

Publication number
CN110643618B
CN110643618B CN201911098741.7A CN201911098741A CN110643618B CN 110643618 B CN110643618 B CN 110643618B CN 201911098741 A CN201911098741 A CN 201911098741A CN 110643618 B CN110643618 B CN 110643618B
Authority
CN
China
Prior art keywords
gene
jcmyb16
plants
drought
jatropha curcas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911098741.7A
Other languages
English (en)
Other versions
CN110643618A (zh
Inventor
唐跃辉
王健
包欣欣
齐静
刘坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal University filed Critical Zhoukou Normal University
Priority to CN201911098741.7A priority Critical patent/CN110643618B/zh
Publication of CN110643618A publication Critical patent/CN110643618A/zh
Application granted granted Critical
Publication of CN110643618B publication Critical patent/CN110643618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种小桐子MYB类转录因子JcMYB16基因,其基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。

Description

小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
技术领域
本发明属于植物生物技术领域,它涉及一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用。
背景技术
干旱胁迫引发的植物生理缺水严重影响植物生长发育和农作物产量。统计显示,目前我国可耕地面积仅有1.21亿公顷,而荒漠化和盐碱化土地有2.6亿公顷,人为因素造成的废弃土地0.13亿公顷。因此干旱胁迫已成为制约我国农作物生长发育的瓶颈,解决这一问题的重要途径就是大力加强耐逆性相关基因的挖掘及在分子育种中的开发利用研究。目前,对于模式植物拟南芥的研究已经初步了解了植物响应干旱胁迫信号的信号途径,确定了一些抗旱途径的基因。由于物种进化的特异性和相关基因在特定物种的局限性,很难在单一物种中筛选出更多的抗旱相关基因。但是,由于物种的多样性,很多植物具有较好的耐干旱的特性,因此从具有耐干旱特性的植物中挖掘抗旱的基因资源,为将来应用于我国农作物耐旱品种培育具有重要的农业价值和应用前景。小桐子的引入给我们提供了一个较理想的方案,它不仅可以改善环境,改良土壤,保持水土,还可以作为生物质能源产生较大的经济效益。小桐子(Jatropha curcas L.)是大戟科麻疯树属的多年生落叶灌木/小乔木,具有繁殖快、耐逆强特别是耐干旱的特性。
MYB类转录因子是众多类转录因子中的一大类,以其蛋白N端含有50多个氨基酸组成的保守MYB结构域为重要特征,且含有1—3个串联的、不完全重复的MYB结构域(R1、R2和R3)。根据MYB结构域的个数,可将MYB转录因子分成4类,分别是1R-MYB、2R-MYB(R2R3-MYB)、3R-MYB(R1R2R3-MYB)和4R-MYB(four R1/R2)。MYB转录因子在调控植物的生长发育、生理生化过程和抗逆性中有重要作用。此外,MYB转录因子在植物响应干旱胁迫过程中,MYB转录因子也发挥关键的作用。比如,拟南芥AtMYB2转录因子和rd22BP1分别结合到干旱胁迫响应基因rd22的启动子区域,然后共同激活rd22的表达,从而实现抗旱性越来越多的研究表明,MYB蛋白参与植物对非生物胁迫响应的调控。总之,尽管许多MYB蛋白已经被克隆和功能分析,但是小桐子MYB家族响应干旱胁迫的基因仍然罕见报道。因此,克隆小桐子MYB家族参与干旱胁迫调控基因并对其功能进行研究,为抗旱作物品种培育提供一个新的基因资源,为培育抗干旱植物提供分子理论基础,有助于我国干旱土地得到有效的开发利用,进而促进我国国民经济的可持续发展和生态环境的有效保护。
发明内容
本发明的目的在于提供了一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用,该基因可以提高植物的抗干旱能力,对植物应对逆境胁迫的分子育种具有重要价值。
为实现上述目的,本发明采用的技术方案如下:
一种小桐子MYB类转录因子JcMYB16基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2。
一种多肽,多肽的氨基酸序列由SEQ ID NO.3编码而成。
一种重组构建体,重组构建体包含SEQ ID NO.1所示的核苷酸序列,所述构建体用的载体为用于克隆的pMD18-T载体或者用于表达的pCAMBIA1301载体。
小桐子MYB类转录因子JcMYB16基因的转基因农杆菌为EHA105或GV3101。
小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用。
小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用,所述植物为单子叶植物或双子叶植物。
所述单子叶植物为水稻,所述双子叶植物为小桐子拟南芥。
所述SEQ ID NO.1为:
TTAGTGGTGGTTAAACTTTCAAAATCTCGATAGTGCAAGTATTTGAATTTTTAGGTTATGTTTCTTTTATGGCCTTTCGCACTGTTAGTGGAATTGGAGTGTGAAAATGGAATCTGGGGTTAGAGATTATTTTTCTTCTCTAATCAGGAGTGAGAAACCTTGAATTACTGGCCGTTCTACTCTCAATTAATGGCTTTCTGTTCCCAGGAATTGCCCTTCAAATCTGCTGTTGATAACATAGGTCAGCAGTTCACAAGAGTCCAATTTTTTTGAATTGTGGAGCAAATTACCATTGAATTCTTCACATACTCCGTTGGGATTTTGTGATTTTTATTGGAGGTGATCTCTGGTTCAGTTCTCTTGGCTTTTTTTGGGTCCATCTGCTTGTTTCTCGTCTTCCTTACCTCTACACCCTGACACATCCTGCTGCTTTCCCATAATTCTGTTCTGCCATCACTCCAACTGTTGGTCATAACCAAATATAGAAATTATTCAGATCCAAATTTCAAGAAACCGTTCTAGAATTTTTTTTTTTTTTCAAGATTGGCTTATTAATTTAGCCTAGATTCTAGAGCTAGGTTTTTCCTTTCTTTGCTAGTGTAAGATTCAAACCAGTCTAGATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGATATACATGGTTTAGCTGCAAAATGTACAAAGACAGAAGGCTACTTGCTTGTATTTCTGGTGGGTCAGTGGCTTCTCCATTTTAGCCTGAATAAAACTGCTTATTTGCAAGCAAAAATTGTCTGATGTCATTTGTTTATTCTGGTAGCAATATCAAATAAACCAATAGGTAGAGAAACTACATGCATTTGTATAGGCAGCAGCTGTGGAAAATATGGCAGCAGTTATGGGTAGGACACATTTTGGTACTTTTTTTTTGGTTTTACATTACAATGTTTAGTCTCAGTAGCAGTCAGTTAATGGTATTTTACTTTTAATGACCAAATTTGTAAAGAATCCATTTATACGTTTTACTATTTTGAGTAGTAGATGTTGGCACGGATTGTGCAAAGCCTTTGTAAAAAAAAGTACCAAAATGTGTCCTACCCATAACTGCTGCCATATTTTCCACAGCTGCTGCCTATACAAATGCATGTAGTTTCTCTACCTATTGGTTTATTTGATATTGCTACCAGAATAAACAAATGACATCAGACAATTTTTGCTTGCAAATAAGCAGTTTTATTCAGGCTAAAATGGAGAAGCCACTGACCCACCAGAAATACAAGCAAGTAGCCTTCTGTCTTTGTACATTTTGCAGCTAAACCATGTATATCACCTATGAGCAGTTGTCGGTGGCATTGGATATGCCATAGGACCCATGTTCATCAT
所述SEQ ID NO.2为:
ATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGA
所述SEQ ID NO.3为:
MIADEADCSSVWTREQDKAFEDALATYPEDAVDRWEKIAADVPGKTLEELKLHYELLVEDLNQIEAGCVPLPNYSSMEGSISQAGDEGTTKKGGQMGHHNSESTHGNKASRSDQERRKGIAWTEDEHRLFLLGLDKYGKGDWRSISRNFVVTRTPTQVASHAQKYFIRLNSMNKDRRRSSIHDITSVGNGDISAPQGPITGQTNGSAAGGSSGKAAKQPPQHPTGPPGVGVYGPPTIGQPIGGPLVSAVGTPVNLPAPAHMAYGVRAPVPGTVPGAVVPGAPMMNMGPMAYPMPPTTAHR*
与现有技术相比,本发明的优点在于:本发明提供一种小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用,超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。
附图说明
图1表示JcMYB16在小桐子不同组织中的表达量;
图2表示JcMYB16在干旱胁迫条件下在小桐子中的表达量;
图3表示JcMYB16在正常生长条件下在转基因水稻中的表达量;
图4表示超表达JcMYB16基因在水稻中的表型观察;
图5表示超表达JcMYB16基因在水稻干旱胁迫条件下的表型观察;
图6表示超表达JcMYB16基因在水稻干旱胁迫条件下的存活率统计结果;
图7表示超表达JcMYB16基因在水稻干旱胁迫条件下的相对电导率测定结果;
图8表示超表达JcMYB16基因在水稻干旱胁迫条件下的脯氨酸含量测定结果;
图9表示JcMYB16在正常生长条件下在转基因拟南芥中的表达量;;
图10表示超表达JcMYB16基因在拟南芥中的表型观察;
图11表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的表型观察;
图12表示超表达JcMYB16基因在拟南芥干旱胁迫(300mM甘露醇)条件下的表型观察;
图13表示超表达JcMYB16基因在拟南芥正常生长条件和干旱胁迫条件下的主根长度;
图14表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的脯氨酸含量测定结果;
图15表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的丙二醛(MDA)测定结果;
图16表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的相对电导率测定结果;
图17表示非生物胁迫响应基因在干旱胁迫条件下在野生型和超表达JcMYB16基因拟南芥植株中的表达量;
具体实施方式
以下本发明拟进一步对JcMYB16基因的上下游基因及其参与的相关调控信号通路进行分析,并分析JcMYB16基因是否具有更广泛的抗旱作用。通过分析该基因在水稻和拟南芥干旱胁迫调控机理研究及抗旱品种培育中的作用,以期丰富小桐子和水稻等禾谷类作物响应干旱胁迫的分子机理积累资料,通过基因工程手段为小桐子和水稻、小麦等禾谷类作物的抗旱分子模块设计育种提供新的基因资源。
实施例1
一水稻转基因株系获得及表型、抗旱胁迫分析实验
1材料与方法
1.1植物材料及种植方式
供试的水稻品种为水稻粳稻品种中花11即水稻(Oryza sativa L.)cv.中花11,保存在周口师范学院植物遗传与分子育种重点实验室。新收的种子种植前先用质量百分比浓度为5%次氯酸钠消毒40min或者用1/1000的多菌灵消毒12h,再用0.1mol/L HNO3(1mL63%的浓HNO3加入100mL水)浸种16h,自来水冲洗干净后将消毒后的种子置于28℃环境下浸种1d,然后将种子均匀的平铺在培养皿中,其中培养皿中放置一层滤纸,并用水湿润;盖上盖子,然后放入32℃下培养,每天换水两到三次,看到大多数种子破壳出根后转入30℃下培养。保存半年以上的种子播种前先晒种2d,消毒后浸种,消毒方法:55℃温汤浸种30min,待水稻芽长到4.8-5.2mm长的时候播种到纱窗布上(水稻营养液中培养),3叶期后,将水稻幼苗移入土壤中并做好对应的标签进行表型观察和后续的试验分析。水稻每间隔8或者10d进行一次施肥。
1.2所用试剂及载体
本实验所采用的大肠杆菌为DH5α,农杆菌为EHA105,这些菌株为周口师范学院植物遗传与分子育种重点实验室保存,植物表达载体为pCAMBIA1301;其中,限制性内切酶、克隆载体pMD18-T、T4DNA连接酶、Taq DNA聚合酶购自于TaKaBa生物公司;DNA回收试剂盒为Magen生物公司产品;潮霉素(Hyg)、卡那霉素(Kan)和氨卡霉素(Amp)等购自北京鼎国生物技术有限公司,试验所有引物均由北京奥克鼎盛生物公司合成。
1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因
RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表1。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。
表1 RT-PCR扩增目的基因的引物序列
Table1 The sequences of primers used in RT-PCR of objective genes
Figure BDA0002266699140000071
1.4 JcMYB16基因表达模式分析
组织特异性表达分析如下:选用6叶期的小桐子根、茎韧皮部、叶,花、授粉后35天种子用于表达模式分析。干旱胁迫表达模式分析如下:干旱处理开始于小桐子六叶期(发芽后八周),对照组浇灌1/2MS培养基,实验组直接停止浇水,分别取0h,2d,4d和7d第三片叶进行RNA提取和表达分析。JcMYB16基因表达量检测选用定量PCR(qRT-PCR)。用于qRT-PCR分析的引物根据基因全长序列设计,作为定量PCR引物(表2)。
表2定量qRT-PCR的引物序列
Table 2 The sequences of primers used in quantitative qRT-PCR
Figure BDA0002266699140000081
1.5 JcMYB16基因植物表达载体的构建
目的基因的PCR产物,按照宝生物(Takara)Agarose Gel DNA PurificationKit试剂盒操作进行纯化。限制性内切酶KpnI和Sal I双酶切连接有目的基因片段的pMD18-T质粒或pCAMBIA1301质粒后,用T4DNA连接酶将目的基因连接到植物表达载体pCAMBIA1301上,反应体系如下:T4DNA连接酶(5U/μL)1μL,10×buffer 1μL,目的基因片段5μL,pCAMBIA1301载体3μL;反应条件:16℃,2h。连接产物转化感受态E.coli DH5α,涂布LB平板(50mg/L Kan)培养,37℃过夜倒置培养形成单菌落。
1.6 JcMYB16基因植物表达载体的鉴定
挑取JcMYB16基因植物表达载体质粒转化E.coli DH5α后形成的单克隆,提取质粒进行PCR鉴定。阳性质粒转化至感受态农杆菌EAH105,涂布LB平板(50mg/L Kan、50mg/LRif)培养,28℃倒置培养2d,挑选阳性克隆提取质粒并进行酶切验证。
1.7农杆菌侵染和转基因苗的获得
以水稻愈伤组织为实验材料。JcMYB16基因植物表达载体(质粒)通过冻融法转化农杆菌EHA105。分别挑取农杆菌(含有JcMYB16基因植物超表达载体)单克隆于28℃培养过夜,取10mL培养液,3000rpm,20min,离心收集菌体沉淀,分别重悬于AAI溶液(AA培养液,30g/L蔗糖,70g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.2)内,OD600=1.0,然后将悬浮液在摇床上28℃振荡培养3-5h。将长到一定大小的水稻愈伤组织挑出,放入农杆菌悬浮液浸染30min;然后将愈伤组织取出,置于灭菌滤纸上沥干50min;将愈伤组织置于共培养基(2N6,10g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.5)上,28℃暗培养3d。三天后用500mg/L头孢美素的灭菌水清洗6遍,100mL灭菌水(包含16μL吐温)清洗5遍,然后用无菌水清洗一遍。将沥干的水稻愈伤转移到筛选培养基(2N6,500mg/L头孢美素,50mg/L潮霉素),28℃暗培养30d。将新长出的抗性愈伤组织转入分化培养基(MS+30g/L蔗糖+30g/L山梨醇+2mg/L6-BA(花之舞用KT)+0.8%琼脂+1.0mg/L NAA+250mg/L头孢霉素+50mg/L潮霉素+2g/L水解酪蛋白,PH5.8)。挑取出现绿芽的水稻愈伤移入装有生根培养基(MS/2+30g/L蔗糖+250mg/L头孢霉素+50mg/L潮霉素)的三角瓶中,放入恒温培养箱28℃光培养15d。准备移栽。首先通过潮霉素抗性基因和GUS活性分析对阳性转基因植株进行初步筛选,然后通过qRT-PCR技术检测目的基因在野生型和转基因植株中的表达情况,进一步对初次筛选的阳性植株进行再次筛选。
1.8 JcMYB16基因在野生型和转基因水稻中的表达情况检测
取14d的野生型和转基因水稻叶片进行RNA提取,以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。以JcMYB16基因cDNA设计特异定量PCR引物(表二),通过qRT-PCR检测JcMYB16在野生型和转基因株系中的表达情况。
1.9 JcMYB16基因在野生型和转基因水稻中的表型分析
野生型和JcMYB16转基因水稻植株萌发后,将幼苗种植到水稻国际Yoshida营养液中,12天后进行表型分析。
2.0 JcMYB16基因转基因水稻干旱胁迫实验分析
野生型和JcMYB16转基因水稻植株萌发后,选取14d的生长一致的幼苗进行盐胁迫处理实验。方法如下:将生长14d的野生型和转基因植株幼苗放入含有300mM甘露醇的Yoshida营养液,6d后进行表型分析;然后将干旱胁迫6d的幼苗放入Yoshida营养液中生长,10d后进行表型分析并统计存活率。并选取干旱胁迫处理3d的地上部分叶片进行生理指标例如电导率、脯氨酸和MDA含量检测。每个实验包含三个生物学重复。
2.2 JcMYB16序列对应基因的全长
JcMYB16序列对应基因的全长序列为2 232bp,其中包含完整读码框序列长度为903bp,序列如下SEQ ID NO.1;
采用NCBI ORF-finder预测其编码蛋白质为300个氨基酸,序列如下SEQ ID NO.3;
根据序列分析,JcMYB16为一个功能未知的新的小桐子干旱胁迫相关的基因,尚没有与其同源的任何功能已知的基因被发现。
实施例2
一拟南芥转基因株系获得及表型、抗旱胁迫分析实验
1材料与方法
1.1植物材料及种植方式
本实验使用的拟南芥是哥伦比亚(Columbia)生态型,保存于周口师范学院植物遗传与分子育种重点实验室。拟南芥种子消毒方法为:无菌水清洗1遍,70%酒精消毒5分钟,无菌水清洗1遍,1%次氯酸钠消毒15分钟,无菌水清洗5遍。拟南芥种子种植前使用4℃低温处理2天,使其萌发一致。经消毒种植的种子在1/2MS(1%蔗糖,8%琼脂,pH 5.7)培养基上萌发7-10天后,移植于种植基质中。不需消毒的种子经低温处理后可直接播种。种植基质为大颗粒蛭石,萌发期间使用薄膜覆盖约5天。生长阶段每隔3-5天浇一次营养液。生长间的培养条件为:22±2℃,光照周期为16小时光照/8小时黑暗。
超表达植株干旱胁迫分析实验
1.2菌株,载体和试剂
本实验使用的大肠杆菌为DH5α,农杆菌为GV3101。植物表达载体为pCAMBIA1301。以上菌株和载体均保存于本实验室。pMD18-T载体、限制性内切酶、T4连接酶、核酸回收试剂盒等均购自大连宝生物公司(Takara)。氨苄霉素(Amp)、潮霉素(Hyg)等购自北京鼎国生物技术有限公司。实验所有引物均由北京奥科鼎盛生物公司合成。
本实验主要使用成苗干旱胁迫,幼苗150mM NaCl胁迫、300mM甘露醇(Man)胁迫对各转基因株系的抗逆性进行了实验。具体步骤如下:将消毒的拟南芥种子低温处理2天,播种于1/2MS+1%蔗糖的培养基中萌发,垂直培养4天。移栽至相应的胁迫培养基(基本培养基仍为1/2MS)中垂直培养5-7天。观察、记录生长情况和成活率等。
1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因
RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表3。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。
表3 RT-PCR扩增目的基因的引物序列
Table3 The sequences of primers used in RT-PCR of objective genes
Figure BDA0002266699140000111
1.4 JcMYB16基因植物表达载体构建
提取测序正确克隆的质粒,用已经添加的酶切位点进行双酶切,具体如下:使用Kpn I和SalI双酶切。10μl体系中各酶均添加0.5μl,其他条件根据Takara提供的说明书进行,酶切时间2小时。将酶切片段回收,与用同样进行双酶切的pCAMBIA1301载体进行连接过夜。连接产物直接转化DH5α感受态,使用Kan筛选,挑取有抗性的克隆进行菌液PCR检测。将检测阳性的克隆进行扩大培养,提取质粒。对提取的质粒进行双酶切验证:除了选用PCR添加的酶切位点外,另外选取载体中已有的酶切位点EcoR I和Hind III进行组合酶切验证,判断连入表达载体的方向是否正确。将连接正确的质粒转化农杆菌GV3101感受态,1天后挑取抗性克隆进行菌液PCR检测。对检测阳性的克隆再提取质粒,进行回转验证,即再转入大肠杆菌中提取质粒进行双酶切验证。每一步均检测正确的克隆将用于下一步的转化,并保存于-80℃备用。
1.5 JcMYB16植物表达载体转基因到拟南芥
本实验转化拟南芥的方法为花粉管通道法,也被称为花序浸染法,具体步骤如下:选取含苞待放的拟南芥植株(约4周),去除已经开放的花苞,侵染前夜充分浇水备用。将包含目的载体的农杆菌摇至OD600=1.8,5000g离心5min收集菌体。加入浸润培养基(1/2MS不加维生素+1ml 1000×Gamborg’s Vitamins(肌醇100mg/mL,烟酸1mg/mL,B6 1mg/mL,B110mg/mL)+6-BA 10μg/mL,pH 5.7)使农杆菌以1:1的比例重悬,并加入表面活性剂Silwet,使其终浓度达到0.02%。准备完毕后进行浸染,浸染时间为2min,期间不断搅拌浸染液使其与花序充分结合。浸染后短暂晾干,将植株置于暗箱中黑暗培养24h,期间使用报纸遮光并保持暗箱一定湿度。暗培养结束后,继续正常培养,收取种子用于筛选。
1.6 JcMYB16转基因植株筛选和目的基因表达量检测
将收取的拟南芥种子消毒,播种于1/2MS+潮霉素(Hyg)30μg/mL培养基上,一周后获得阳性植株。阳性植株的特征为叶片较绿,根系发达。这些阳性植株即为T1代株系,每个单株均为一个株系,单独编号和收集种子。将T1代株系种子进行消毒和潮霉素筛选,统计分离比。选取分离比约为3﹕1(阳性植株﹕阴性植株)的株系进行移植,每个株系12棵单株(T2代)。然后将T2代单株收种,再进行消毒和潮霉素筛选。观察T2代单株种子是否发生分离,不再发生分离的单株就是纯合体植株,单独收种、保存,并播种获得T3代植株种子。这样获得的T3代植株种子较多,用于后续的表型分析。
取生长20天的T3代植株第四片叶片用于RNA提取。提取方法为Trizol法。提取的RNA使用Nanodrop2000分光光度计和琼脂糖凝胶电泳检测浓度和完整度。质量较好的RNA用于逆转录,逆转录RNA量为2μg,试剂盒购自Premega公司。逆转录的cDNA质量使用JcActin基因进行PCR检测,并调整浓度一致。使用半定量PCR检测各目的基因在拟南芥各株系中的表达量,并由此选取3个超表达株系用于后续表型分析。
1.7 JcMYB16转基因植物干旱胁迫实验分析
干旱胁迫处理条件如下:首先将野生型和JcMYB16转基因拟南芥种子消毒,然后将拟南芥点播在含有1/2MS培养基的正方形无菌培养皿中,垂直培养4d,然后挑选生长一致的野生型和转基因拟南芥幼苗并转移到1/2MS和含有300mM甘露醇的1/2MS培养基中继续垂直生长7d,进行表型分析,电导率、脯氨酸和MDA含量检测。此外,营养土中的干旱胁迫,3周的拟南芥直接停止浇水,2周后进行表型观察,然后复水7d统计存活率。
1.8 RNA提取及qRT-PCR
本实验所需RNA均采用Magen公司植物RNA提取试剂盒进行;第一链cDNA合成采用TAKARA公司第一链cDNA合成试剂盒进行。LightCycler 480和TB GreenTM Premix Ex TaqII被用来进行qRT-PCR分析。2-ΔΔCT方法被用来计算基因相对表达量,AtActin2用作拟南芥内参基因。定量PCR引物见表4。
表4定量qRT-PCR的引物序列
Table 4 The sequences of primers used in quantitative qRT-PCR
Figure BDA0002266699140000131
首次克隆并研究了小桐子MYB家族基因JcMYB16在植物响应干旱胁迫中的功能,即本发明可以提供一种能够增加植物干旱抗性的基因。首先对JcMYB16基因进行了组织特异性表达分析,qRT-PCR结果表明JcMYB16基因在小桐子根中高效表达;然后将JcMYB16基因构建到以35S启动子启动的植物表达载体pCAMBIA1301中,获得重组载体pCAMBIA1301-JcMYB16,将重组载体转入农杆菌用于进一步的转化。以水稻愈伤和拟南芥为受体,利用农杆菌介导法将构建好的载体分别转入到水稻愈伤组织和拟南芥中,获得JcMYB16转基因纯合体株系;然后对JcMYB16转基因株系进行表型和干旱胁迫分析。表型分析显示,超表达JcMYB16基因不影响植物的生长和发育。干旱胁迫实验分析显示,超表达JcMYB16基因增加了转基因水稻和拟南芥对干旱胁迫抗性。此外,我们已经种植了4代转基因株系,并且从T1代开始JcMYB16转基因水稻和转基因拟南芥就可以显著提高干旱胁迫抗性,说明我们获得的JcMYB16转基因植株是可以稳定遗传的。JcMYB16基因是水稻和拟南芥干旱胁迫的关键调控基因,表明可以利用基因工程技术提高水稻、小桐子抵抗干旱胁迫抗性,在利用生物工程技术有目的调控植物耐干旱胁迫特性,通过分子育种手段培育耐干旱水稻或者小桐子新品种进而促进水稻或小桐子在干旱地区大面积推广种植方面具有非常重要的应用价值。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。JcMYB16编码的蛋白质,或其他物种中的功能类似蛋白,其氨基酸序列与Seq IDNo.3所示的氨基酸序列具有不小于30%的同源性。蛋白在培育耐逆品种植物中的应用,耐逆为增加禾谷类作物抗旱能力,进而增加在干旱和盐碱地单位面积产量。
以上实施例仅用以说明,而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。
                         SEQUENCE LISTING
<110>  周口师范学院
<120>  小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
<130>  191131
<160>  3
<170>  PatentIn version 3.5
<210>  1
<211>  2232
<212>  DNA
<213>  JcMYB16基因核苷酸序列
<400>  1
ttagtggtgg ttaaactttc aaaatctcga tagtgcaagt atttgaattt ttaggttatg 60
tttcttttat ggcctttcgc actgttagtg gaattggagt gtgaaaatgg aatctggggt 120
tagagattat ttttcttctc taatcaggag tgagaaacct tgaattactg gccgttctac 180
tctcaattaa tggctttctg ttcccaggaa ttgcccttca aatctgctgt tgataacata 240
ggtcagcagt tcacaagagt ccaatttttt tgaattgtgg agcaaattac cattgaattc 300
ttcacatact ccgttgggat tttgtgattt ttattggagg tgatctctgg ttcagttctc 360
ttggcttttt ttgggtccat ctgcttgttt ctcgtcttcc ttacctctac accctgacac 420
atcctgctgc tttcccataa ttctgttctg ccatcactcc aactgttggt cataaccaaa 480
tatagaaatt attcagatcc aaatttcaag aaaccgttct agaatttttt ttttttttca 540
agattggctt attaatttag cctagattct agagctaggt ttttcctttc tttgctagtg 600
taagattcaa accagtctag atgattgcgg atgaagcaga ctgcagctct gtgtggacta 660
gggagcagga taaggcattt gaggatgccc ttgcaacata tcctgaggat gctgtagatc 720
ggtgggagaa aattgctgct gatgttcctg ggaaaacctt agaagagctt aaacttcact 780
atgaacttct ggttgaagat ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact 840
actcttctat ggagggttca ataagccaag ctggcgatga aggaactact aagaagggtg 900
gtcaaatggg gcaccataac agtgagtcta ctcatggaaa taaggcttca aggtcagatc 960
aagaacgccg taaaggaatc gcttggacag aggatgagca caggttattt cttcttggtt 1020
tggacaaata tgggaaaggt gactggcgaa gtatttccag aaactttgtt gtgacaagga 1080
cacctacgca agtggcaagc catgcacaaa aatatttcat tcgtttgaac tcgatgaaca 1140
aagataggag gcgttccagc attcatgata tcaccagtgt tggcaatgga gatatttcag 1200
cgccacaagg accaataact ggtcaaacaa atggttctgc tgcaggaggt tcctctggta 1260
aagctgctaa acaaccccct caacacccta ctggacctcc aggagttggt gtttatggtc 1320
ctccgactat agggcaacct ataggaggtc cccttgtctc agcagttggc acccctgtga 1380
atcttcctgc ccctgcacac atggcttatg gcgttagagc tcctgtacca ggaacagtac 1440
cgggagctgt ggttcctggt gcaccaatga tgaacatggg tcctatggca tatccaatgc 1500
caccgacaac tgctcatagg tgatatacat ggtttagctg caaaatgtac aaagacagaa 1560
ggctacttgc ttgtatttct ggtgggtcag tggcttctcc attttagcct gaataaaact 1620
gcttatttgc aagcaaaaat tgtctgatgt catttgttta ttctggtagc aatatcaaat 1680
aaaccaatag gtagagaaac tacatgcatt tgtataggca gcagctgtgg aaaatatggc 1740
agcagttatg ggtaggacac attttggtac tttttttttg gttttacatt acaatgttta 1800
gtctcagtag cagtcagtta atggtatttt acttttaatg accaaatttg taaagaatcc 1860
atttatacgt tttactattt tgagtagtag atgttggcac ggattgtgca aagcctttgt 1920
aaaaaaaagt accaaaatgt gtcctaccca taactgctgc catattttcc acagctgctg 1980
cctatacaaa tgcatgtagt ttctctacct attggtttat ttgatattgc taccagaata 2040
aacaaatgac atcagacaat ttttgcttgc aaataagcag ttttattcag gctaaaatgg 2100
agaagccact gacccaccag aaatacaagc aagtagcctt ctgtctttgt acattttgca 2160
gctaaaccat gtatatcacc tatgagcagt tgtcggtggc attggatatg ccataggacc 2220
catgttcatc at                                                     2232
<210>  2
<211>  903
<212>  DNA
<213>  基因开放阅读框的核苷酸序列
<400>  2
atgattgcgg atgaagcaga ctgcagctct gtgtggacta gggagcagga taaggcattt 60
gaggatgccc ttgcaacata tcctgaggat gctgtagatc ggtgggagaa aattgctgct 120
gatgttcctg ggaaaacctt agaagagctt aaacttcact atgaacttct ggttgaagat 180
ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact actcttctat ggagggttca 240
ataagccaag ctggcgatga aggaactact aagaagggtg gtcaaatggg gcaccataac 300
agtgagtcta ctcatggaaa taaggcttca aggtcagatc aagaacgccg taaaggaatc 360
gcttggacag aggatgagca caggttattt cttcttggtt tggacaaata tgggaaaggt 420
gactggcgaa gtatttccag aaactttgtt gtgacaagga cacctacgca agtggcaagc 480
catgcacaaa aatatttcat tcgtttgaac tcgatgaaca aagataggag gcgttccagc 540
attcatgata tcaccagtgt tggcaatgga gatatttcag cgccacaagg accaataact 600
ggtcaaacaa atggttctgc tgcaggaggt tcctctggta aagctgctaa acaaccccct 660
caacacccta ctggacctcc aggagttggt gtttatggtc ctccgactat agggcaacct 720
ataggaggtc cccttgtctc agcagttggc acccctgtga atcttcctgc ccctgcacac 780
atggcttatg gcgttagagc tcctgtacca ggaacagtac cgggagctgt ggttcctggt 840
gcaccaatga tgaacatggg tcctatggca tatccaatgc caccgacaac tgctcatagg 900
tga                                                               903
<210>  3
<211>  300
<212>  PRT
<213>  基因开放阅读框的DNA编码的氨基酸序列
<400>  3
Met Ile Ala Asp Glu Ala Asp Cys Ser Ser Val Trp Thr Arg Glu Gln
1               5                   10                  15
Asp Lys Ala Phe Glu Asp Ala Leu Ala Thr Tyr Pro Glu Asp Ala Val
            20                  25                  30
Asp Arg Trp Glu Lys Ile Ala Ala Asp Val Pro Gly Lys Thr Leu Glu
        35                  40                  45
Glu Leu Lys Leu His Tyr Glu Leu Leu Val Glu Asp Leu Asn Gln Ile
    50                  55                  60
Glu Ala Gly Cys Val Pro Leu Pro Asn Tyr Ser Ser Met Glu Gly Ser
65                  70                  75                  80
Ile Ser Gln Ala Gly Asp Glu Gly Thr Thr Lys Lys Gly Gly Gln Met
                85                  90                  95
Gly His His Asn Ser Glu Ser Thr His Gly Asn Lys Ala Ser Arg Ser
            100                 105                 110
Asp Gln Glu Arg Arg Lys Gly Ile Ala Trp Thr Glu Asp Glu His Arg
        115                 120                 125
Leu Phe Leu Leu Gly Leu Asp Lys Tyr Gly Lys Gly Asp Trp Arg Ser
    130                 135                 140
Ile Ser Arg Asn Phe Val Val Thr Arg Thr Pro Thr Gln Val Ala Ser
145                 150                 155                 160
His Ala Gln Lys Tyr Phe Ile Arg Leu Asn Ser Met Asn Lys Asp Arg
                165                 170                 175
Arg Arg Ser Ser Ile His Asp Ile Thr Ser Val Gly Asn Gly Asp Ile
            180                 185                 190
Ser Ala Pro Gln Gly Pro Ile Thr Gly Gln Thr Asn Gly Ser Ala Ala
        195                 200                 205
Gly Gly Ser Ser Gly Lys Ala Ala Lys Gln Pro Pro Gln His Pro Thr
    210                 215                 220
Gly Pro Pro Gly Val Gly Val Tyr Gly Pro Pro Thr Ile Gly Gln Pro
225                 230                 235                 240
Ile Gly Gly Pro Leu Val Ser Ala Val Gly Thr Pro Val Asn Leu Pro
                245                 250                 255
Ala Pro Ala His Met Ala Tyr Gly Val Arg Ala Pro Val Pro Gly Thr
            260                 265                 270
Val Pro Gly Ala Val Val Pro Gly Ala Pro Met Met Asn Met Gly Pro
        275                 280                 285
Met Ala Tyr Pro Met Pro Pro Thr Thr Ala His Arg
    290                 295                 300

Claims (2)

1.小桐子MYB类转录因子JcMYB16基因在提高植物抗旱性的应用,其特征在于:所述植物为单子叶植物或双子叶植物,所述JcMYB16基因核苷酸序列为SEQ ID NO.1。
2.如权利要求1所述的小桐子MYB类转录因子JcMYB16基因在提高植物抗旱性的应用,其特征在于:所述单子叶植物为水稻,所述双子叶植物为小桐子、拟南芥,所述JcMYB16基因核苷酸序列为SEQ ID NO.1。
CN201911098741.7A 2019-11-08 2019-11-08 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用 Active CN110643618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (zh) 2019-11-08 2019-11-08 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (zh) 2019-11-08 2019-11-08 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用

Publications (2)

Publication Number Publication Date
CN110643618A CN110643618A (zh) 2020-01-03
CN110643618B true CN110643618B (zh) 2023-04-21

Family

ID=68995755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911098741.7A Active CN110643618B (zh) 2019-11-08 2019-11-08 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用

Country Status (1)

Country Link
CN (1) CN110643618B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501867B (zh) * 2021-07-14 2022-06-14 华中农业大学 玉米抗旱基因ZmMYBR38及其应用
CN114231541B (zh) * 2022-01-11 2022-12-06 沈阳农业大学 一种提高山新杨抗旱性的myb转录因子及其应用
CN114395023B (zh) * 2022-01-27 2022-12-13 广东省农业科学院果树研究所 小桐子早花基因JcRR1B及其应用
CN115927371B (zh) * 2022-07-25 2023-06-23 中国科学院华南植物园 海刀豆CrHsf7基因及其转录因子和应用
CN116855509A (zh) * 2023-07-11 2023-10-10 四川农业大学 一种禾草耐旱基因LmMYB1及其应用
CN117209583B (zh) * 2023-11-09 2024-03-22 吉林农业大学 基因ZmMYB86在提高植物抗旱性能中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (zh) * 2006-01-10 2006-07-26 中国科学院植物研究所 一个麻疯树盐诱导转录因子及其编码基因与应用
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (zh) * 2018-11-29 2019-03-12 周口师范学院 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (zh) * 2006-01-10 2006-07-26 中国科学院植物研究所 一个麻疯树盐诱导转录因子及其编码基因与应用
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (zh) * 2018-11-29 2019-03-12 周口师范学院 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"PREDICTED: Jatropha curcas transcription factor SRM1 (LOC105631171), transcript variant";NCBI;《NCBI》;20170406;第1-2页 *

Also Published As

Publication number Publication date
CN110643618A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110643618B (zh) 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
CN109456982B (zh) 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用
CN106868021B (zh) 控制水稻种子大小基因OsNAC1及其应用
CN108948164B (zh) 甘薯耐盐抗旱相关蛋白IbbZIP1及其编码基因与应用
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN112779234B (zh) 毛竹PeAPX5基因及应用
CN112876551B (zh) 一种调控番茄耐旱性的转录因子SpbHLH89及其应用
CN113025627A (zh) 水稻分蘖控制基因OsMYB27及其在育种上的应用
CN112126655A (zh) 一种亚洲棉GaNCED3基因在提高植物抗旱性中的应用
CN111979253B (zh) TrFQR1基因及其克隆、表达载体构建方法和应用
CN104278053B (zh) 一种提高植物耐旱能力的方法
CN107973844B (zh) 小麦抽穗期相关蛋白Ta-Hd4A及其应用
CN114560919B (zh) 一种与植物耐旱相关的转录因子VcMYB108及其编码基因与应用
CN102732553B (zh) 提高植物产量的基因工程方法及材料
CN113493793B (zh) 一种油菜耐旱性负调控基因及其应用
CN117264964A (zh) 小麦TaGSKB蛋白及其编码基因在调控植物耐逆性中的应用
CN114703199A (zh) 一种植物抗旱性相关的基因TaCML46及应用
CN114480341A (zh) 枳蛋白激酶PtrSnRK2.4在植物抗旱遗传改良中的应用
CN108948162B (zh) 一种花生逆境胁迫基因AhDOG1L及其应用
CN108866074B (zh) 一种抗除草剂基因par3(g311e)的应用
CN113322260B (zh) 高粱基因SbbZIP51在调控耐盐性中的应用
CN113173981B (zh) 毛竹PeDREB3基因及其在植物抗寒性调控中的应用
CN114717245B (zh) MsbHLH35基因及其编码蛋白在调控紫花苜蓿产量和耐渍性中的应用
CN114438103B (zh) 调控水稻对干旱和盐胁迫耐受性的转录因子OsNAC15基因及应用
CN114107333B (zh) 一种大麦受体类激酶HvSERK1在根毛生长中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant