CN110615693B - 一种硫化氢气体传感材料、传感器及制备方法与使用方法 - Google Patents

一种硫化氢气体传感材料、传感器及制备方法与使用方法 Download PDF

Info

Publication number
CN110615693B
CN110615693B CN201910884324.9A CN201910884324A CN110615693B CN 110615693 B CN110615693 B CN 110615693B CN 201910884324 A CN201910884324 A CN 201910884324A CN 110615693 B CN110615693 B CN 110615693B
Authority
CN
China
Prior art keywords
sensitive layer
hydrogen sulfide
sulfide gas
ceramic substrate
type delafossite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910884324.9A
Other languages
English (en)
Other versions
CN110615693A (zh
Inventor
孟钢
童彬
邓赞红
方晓东
王时茂
陶汝华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201910884324.9A priority Critical patent/CN110615693B/zh
Publication of CN110615693A publication Critical patent/CN110615693A/zh
Application granted granted Critical
Publication of CN110615693B publication Critical patent/CN110615693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • C04B41/5032Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种硫化氢气体传感材料、传感器以及制备方法与使用方法。该传感材料包括p型铜铁矿CuAlO2颗粒和/或CuCrO2颗粒,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm。该传感器包括p型铜铁矿敏感层以及平面型陶瓷基板,平面型陶瓷基板表面沉积有叉指测试电极以及对p型铜铁矿敏感层进行加热的加热电极,所述p型铜铁矿敏感层涂覆在叉指测试电极上并与平面型陶瓷基板表面贴合,p型铜铁矿敏感层由CuAlO2颗粒和/或CuCrO2颗粒构成。本发明所述传感器,对H2S分子具有很高的灵敏度、选择性高、且响应快,p型铜铁矿敏感层不需复杂的形貌控制、缺陷调控或特殊的异质结构设计,制备方法简单。

Description

一种硫化氢气体传感材料、传感器及制备方法与使用方法
技术领域
本发明属于硫化氢气体传感器技术领域,具体是涉及一种硫化氢气体传感材料、传感器及制备方法与使用方法。
背景技术
硫化氢(H2S)是一种无色、易燃、有剧毒、有刺激性气味的气体,广泛应用于石化工业,是一种重要的化学原料。H2S是一种强烈的神经毒素,对粘膜、呼吸***、眼睛等组织有强刺激和腐蚀作用,根据中华人民共和国国家职业卫生标准(GBZ 2.1-2007)《工作场所有害因素职业接触限值化学有害因素》,在一个工作日内,H2S的最高容许浓度为10mg/m3(约7.2ppm)。氧化物半导体传感器具有体积小、功耗低、成本低、响应快、芯片兼容性好等优点,有望实现厂矿、园区等重要场所的实时、联网监测预警。近些年来,基于氧化物半导体的H2S敏感材料(包括SnO2、ZnO、WO3、CuO、NiO等)受到了广泛关注、并在灵敏度等关键性能指标方面获得了较大进步,所述传感材料在使用时需要作如下设计,复杂的形貌调控——如多孔分级的ZnO中空管(Large-scale synthesis of hierarchically porous ZnO hollowtubule for fast response to ppb-Level H2S gas,ACS Applied MaterialsInterfaces 2019,11,11627-11635)、掺杂——如Cr掺杂的WO3(Low-temperature H2Sdetection with hierarchical Cr-doped WO3microspheres.ACS Applied MaterialsInterfaces 2016,8,9674-9683)或者异质结——如SnO2纳米线/NiO纳米颗粒异质结(Giant enhancement of H2S gas response by decorating n-type SnO2 nanowireswith p-type NiO nanoparticles,Applied Physics Letters,2012,101,253106)、SnO2纳米线/CuO纳米颗粒异质结(Heterostructured p-CuO(nanoparticle)/n-SnO2(nanowire)devices for selective H2S detection.Sensors Actuators B:Chemical 2013,181,130-135)以此来增强传感材料对H2S分子的灵敏度。传统高灵敏的H2S氧化物半导体气体传感器的不足之处:第一,传感材料设计复杂;第二,传感材料设计在提升H2S的灵敏度的同时往往也会增强传感材料对其它气体分子的电学响应(多孔分级结构或纳米颗粒修饰通常会增加表面活性位点,会同时增强多种气体分子的响应)。
发明内容
为了解决上述技术问题,本发明提供一种硫化氢气体传感材料。该传感材料不仅对H2S分子的灵敏度高,且无需复杂的形貌调控、掺杂或者异质结设计。
为了实现本发明的目的,本发明采用了以下技术方案:
一种硫化氢气体传感材料,该传感材料包括p型铜铁矿CuAlO2颗粒和/或CuCrO2颗粒,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm。
本发明的第二个目的是提供一种硫化氢气体传感器,包括p型铜铁矿敏感层以及平面型陶瓷基板,所述平面型陶瓷基板表面布置有叉指测试电极以及对p型铜铁矿敏感层进行加热的加热电极,所述p型铜铁矿敏感层涂覆在叉指测试电极上并与平面型陶瓷基板表面贴合,所述p型铜铁矿敏感层由CuAlO2颗粒和/或CuCrO2颗粒构成,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm。
进一步的技术方案,所述p型铜铁矿敏感层厚度0.5~100μm。
进一步的技术方案,所述平面型陶瓷基板由高纯氧化铝陶瓷片构成,所述叉指测试电极为Pt或Au叉指测试电极,所述加热电极为Pt或Au或RuO2加热电极。
本发明的第三个目的是提供一种所述的硫化氢气体传感器的制备方法,包括以下步骤:
步骤1,将乙醇或异丙醇加入CuAlO2和/或CuCrO2颗粒中,研磨5~30min,制成p型铜铁矿敏感层浆料;
另外,利用紫外臭氧或者氧等离子体清洗机对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度;
步骤4,利用所述平面型陶瓷基片表面的加热电极对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度100~450℃,老化时间1~5周。
进一步的技术方案,所述CuAlO2和/或CuCrO2颗粒与乙醇或异丙醇的重量比为1:(2~10)。
本发明的第四个目的是提供一种所述的硫化氢气体传感器的使用方法,即该传感器在使用时,通过所述加热电极将所述p型铜铁矿敏感层加热至150~205℃。
本发明的有益效果在于:
通过本发明提供的传感材料制备获得的传感器在160℃的工作温度下,对H2S分子具有很高的灵敏度,10ppm H2S的灵敏度(RH2S/R空气)达到4600;另外选择性高,对多种常见的还原性气体如10~100ppm的NH3、乙醇、丙酮、甲醛、正己烷、二甲苯的灵敏度却小于2,比H2S的灵敏度低三个数量级,表明传感器有出色的H2S选择性;并且,传感器响应(电阻在约13秒内增加3个数量级)、恢复快(约37秒)。本发明p型铜铁矿敏感层不需复杂的形貌控制、缺陷调控或特殊的异质结构设计,制备方法简单。
附图说明
图1为本发明硫化氢气体传感器整体以及分解结构示意图,其中图1中标记的含义为:1-p型铜铁矿敏感层,2-加热电极,3-叉指测试电极,4-平面型陶瓷基片。
图2为CuAlO2颗粒结构的形貌与结构表征,图2中(a)为扫描电子显微镜(SEM)图;图2中(b)为X射线衍射图谱,CuAlO2颗粒为铜铁矿3R与2H型复合结构,以3R型为主;图2中(c)为低倍透射电子显微镜(TEM)图;图2中(d)为高分辨透射电子显微镜(HRTEM)图,(012)晶面间距清晰可见;图2中(e)为选区电子衍射(SAED)图,衍射斑点/环对应(012)、(018)及(110)晶面。
图3为CuAlO2对H2S气敏响应性能结果示意图,图3中(a)为不同温度下传感器对50ppm H2S的响应;图3中(b)为传感器灵敏度、响应、脱附时间与工作温度的依赖关系;图3中(c)为传感器在160℃的工作温度下,对10~50ppm H2S的动态响应曲线;图3中(d)为传感器灵敏度与H2S浓度的对应关系。
图4中(a)为CuAlO2传感器在160℃的工作温度下,对不同气体的灵敏度;(b)为传感器典型的重复性曲线,工作温度为160℃,H2S浓度为10ppm,循环次数为8次。
具体实施方式
下面对本发明技术方案做出更为具体的说明:
本发明硫化氢气体传感材料,包括p型铜铁矿CuAlO2颗粒和/或CuCrO2颗粒,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm。图2所示为CuAlO2颗粒结构的形貌与结构表征,根据图2可知:通过溶胶-凝胶方法制备的CuAlO2颗粒无规则外形,粒径尺寸在几十纳米到约10μm,X射线衍射及透射电子显微镜选区电子衍射表明CuAlO2颗粒为铜铁矿3R与2H型复合结构,以3R型为主。
本发明所述硫化氢气体传感器,如图1所示:包括p型铜铁矿敏感层以及平面型陶瓷基板,所述平面型陶瓷基板表面布置有叉指测试电极以及对p型铜铁矿敏感层进行加热的加热电极,所述p型铜铁矿敏感层涂覆在叉指测试电极上并与平面型陶瓷基板表面贴合,所述p型铜铁矿敏感层由CuAlO2颗粒和/或CuCrO2颗粒构成,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm。所述p型铜铁矿敏感层厚度0.5~100μm。
所述平面型陶瓷基板由高纯氧化铝陶瓷片构成,所述叉指测试电极为Pt或Au叉指测试电极,所述加热电极为Pt或Au或RuO2加热电极。本发明所述叉指测试电极可以在传感器使用时用于测试p型铜铁矿敏感层中电流或电阻的变化,并以此获得被测环境中H2S分子的浓度,达到工作场所H2S的最高容许浓度约7.2ppm时,进行快速预警。本发明所述加热电极一方面可以在制备过程中对p型铜铁矿敏感层进行加热老化处理,另一方面可以在传感器使用过程中,对p型铜铁矿敏感层进行加热,以使得p型铜铁矿敏感层对H2S分子的灵敏度达到最高。
本发明所述的硫化氢气体传感器的制备方法,包括以下步骤:
步骤1,取1g CuAlO2粉末到玛瑙研钵,滴入2~10g乙醇或异丙醇,研磨5~30min,制成均匀分散的p型铜铁矿敏感层浆料;
关于乙醇或异丙醇的用量:乙醇或异丙醇量多时,CuAlO2浆料稀一些、也会均匀一些,但是需要刷多次,才能达到所需p型铜铁矿敏感层厚度;乙醇或异丙醇量少时,浆料稠,可以减少刷浆料次数,但浆料有可能不均匀;实际操作需要考虑涂刷p型铜铁矿敏感层的均匀性及涂刷的次数;
关于研磨时间:研磨时间太短,浆料可能不匀,研磨时间延长时均匀性会提升,但时间太久(如>30分钟),溶剂挥发明显,浆料会变稠、不均匀;
另外,利用紫外臭氧或者氧等离子体清洗机对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料通过滴涂或刮涂或蘸涂的方式均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
所述叉指测试电极与加热电极用Pt或Au浆料通过丝网印刷、流平、烧结后沉积于平面型陶瓷基片表面;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度;
步骤4,利用所述平面型陶瓷基片表面的加热电极、或者管式炉/箱式炉/热台对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度100~400℃,老化时间1~5周。
由于CuAlO2粉末/酒***料附着力弱,敏感层很容易从陶瓷基片上脱落,老化处理可以显著增强CuAlO2敏感层在陶瓷基片上的粘附性;此外,老化也可提升器件对气体响应的重复性与稳定性。老化温度太低时,热能不足以使CuAlO2颗粒间、及CuAlO2颗粒同底电极之间黏合,器件粘附性、稳定性、重复性不高;老化温度太高时,尽管CuAlO2颗粒间能形成牢固的粘结层、及稳定的导电通路,但可能会导致颗粒表面台阶、增原子等活性位点的迁移(消失),从而导致器件的灵敏度下降。因而,较低温度(如100~400℃)、长老化时间(1~5周)有利于兼顾器件的灵敏度、稳定性与重复性。
本发明所述的硫化氢气体传感器的使用方法,即该传感器在使用时,通过所述加热电极将所述p型铜铁矿敏感层加热至150~205℃。即p型铜铁矿敏感层在150~205℃工作时,对H2S分子的灵敏度达到最高(对5~50ppm H2S电阻变化3个数量级),对多种还原性气体的灵敏度小于1个数量级,而使得传感器选择性和测试精度更高。
实施例1
步骤1,将乙醇加入CuAlO2颗粒中,研磨5min,制成p型铜铁矿敏感层浆料;所述CuAlO2颗粒与乙醇的重量比为1:2;
另外,利用紫外臭氧对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度0.5μm;
步骤4,利用所述平面型陶瓷基片表面的加热电极对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度100℃,老化时间1周,获得硫化氢气体传感器。
实施例2
步骤1,将异丙醇加入CuCrO2颗粒中,研磨30min,制成p型铜铁矿敏感层浆料;所述CuCrO2颗粒与异丙醇的重量比为1:10;
另外,利用氧等离子体清洗机对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度100μm;
步骤4,利用所述平面型陶瓷基片表面的加热电极对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度450℃,老化时间5周,获得硫化氢气体传感器。
实施例3
步骤1,将乙醇加入CuAlO2颗粒中,研磨15min,制成p型铜铁矿敏感层浆料;所述CuAlO2颗粒与乙醇的重量比为1:5;
另外,利用紫外臭氧对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度50μm;
步骤4,利用所述平面型陶瓷基片表面的加热电极对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度300℃,老化时间3周,获得硫化氢气体传感器。
本发明上述实施例中制备所得的传感器对H2S分子的气敏响应性能测试如图3所示,根据图3可知:CuAlO2传感器对50ppm H2S的灵敏度随工作温度的升高,在160℃时达到峰值4600,温度进一步升高灵敏度开始下降;在160℃的工作温度下,传感器对50ppm H2S的响应时间(电阻上升到90%(RH2S最大-R空气)所需时间)约为200秒、电阻在约13秒内增加3个数量级,脱附时间(电阻下降到90%(RH2S最大-R空气))约为37秒;传感器对5~50ppm的H2S的灵敏度都在1000以上;表明传感器可用作工作场所最高容许浓度(约7.2ppm)的实时、快速、准确监测预警。
本发明上述实施例中制备所得的传感器对不同气体的气敏响应性能测试如图4所示,根据图4可知:CuAlO2传感器对10~100ppm的多种还原性气体(氨气、乙醇、丙酮、甲醛、正己烷、二甲苯)的灵敏度小于2,比H2S的灵敏度低三个数量级,表明传感器有出色的H2S选择性;此外,CuAlO2传感器对H2S的循环稳定性测试表明传感器有出色的重复性。
由于CuAlO2颗粒与CuCrO2颗粒的结构以及性能相似,所以由CuCrO2颗粒或者CuAlO2颗粒与CuCrO2颗粒混合形成的p型铜铁矿敏感层构成的传感器,同样具有对H2S分子灵敏度高,且无需复杂的形貌调控、掺杂或者异质结设计的特点。

Claims (5)

1.一种硫化氢气体传感器在监测硫化氢气体上的用途,其特征在于,该传感器包括p型铜铁矿敏感层以及平面型陶瓷基板,所述平面型陶瓷基板表面布置有叉指测试电极以及对p型铜铁矿敏感层进行加热的加热电极,所述p型铜铁矿敏感层涂覆在叉指测试电极上并与平面型陶瓷基板表面贴合,所述p型铜铁矿敏感层由CuAlO2颗粒和/或CuCrO2颗粒构成,所述CuAlO2颗粒、CuCrO2颗粒的粒径为10nm~20μm,该传感器在使用时,通过所述的加热电极将所述p型铜铁矿敏感层加热至150~205℃。
2.如权利要求1所述的硫化氢气体传感器在监测硫化氢气体上的用途,其特征在于,所述p型铜铁矿敏感层厚度0.5~100μm。
3.如权利要求1所述的硫化氢气体传感器在监测硫化氢气体上的用途,其特征在于,所述平面型陶瓷基板由高纯氧化铝陶瓷片构成,所述叉指测试电极为Pt或Au叉指测试电极,所述加热电极为Pt或Au或RuO2加热电极。
4.如权利要求1所述的硫化氢气体传感器在监测硫化氢气体上的用途,其特征在于,该传感器的制备方法包括以下步骤:
步骤1,将乙醇或异丙醇加入CuAlO2和/或CuCrO2颗粒中,研磨5~30min,制成p型铜铁矿敏感层浆料;
另外,利用紫外臭氧或者氧等离子体清洗机对所述平面型陶瓷基片进行清洗及亲水处理;
步骤2,将p型铜铁矿敏感层浆料均匀涂覆在所述平面型陶瓷基片表面的叉指测试电极上,自然晾干;
步骤3,重复步骤2直到p型铜铁矿敏感层达到所需厚度;
步骤4,利用所述平面型陶瓷基片表面的加热电极对所述p型铜铁矿敏感层在空气中进行老化处理,老化温度100~450℃,老化时间1~5周。
5.如权利要求1所述的硫化氢气体传感器在监测硫化氢气体上的用途,其特征在于,所述CuAlO2和/或CuCrO2颗粒与乙醇或异丙醇的重量比为1:(2~10)。
CN201910884324.9A 2019-09-19 2019-09-19 一种硫化氢气体传感材料、传感器及制备方法与使用方法 Active CN110615693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910884324.9A CN110615693B (zh) 2019-09-19 2019-09-19 一种硫化氢气体传感材料、传感器及制备方法与使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910884324.9A CN110615693B (zh) 2019-09-19 2019-09-19 一种硫化氢气体传感材料、传感器及制备方法与使用方法

Publications (2)

Publication Number Publication Date
CN110615693A CN110615693A (zh) 2019-12-27
CN110615693B true CN110615693B (zh) 2022-03-08

Family

ID=68923329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910884324.9A Active CN110615693B (zh) 2019-09-19 2019-09-19 一种硫化氢气体传感材料、传感器及制备方法与使用方法

Country Status (1)

Country Link
CN (1) CN110615693B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112323017B (zh) * 2020-09-18 2022-10-04 中国科学院合肥物质科学研究院 一种氧化铜桥连纳米线器件及其制备方法和应用
CN113376221A (zh) * 2021-06-15 2021-09-10 上海航天科工电器研究院有限公司 一种丙酮气体传感器及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115955B2 (ja) * 1992-10-15 2000-12-11 新コスモス電機株式会社 酸化窒素ガスセンサ
EP2966033B1 (en) * 2014-07-09 2016-08-24 Honeywell Romania S.R.L. Methods for forming metal oxide nanocomposite heterostructures and for fabricating hydrogen sulfide sensors including the same
CN110554074B (zh) * 2019-09-12 2020-06-30 江南大学 检测内源性h2s的电化学传感器的构建方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Oxygen Vacancy Defects Boosted High Performance p‑TypeDelafossite CuCrO2 Gas Sensors;Bin Tong;《applied materials and interfaces》;20180912;第34727-34734页 *
Surface oxygen vacancy defect engineering ofp-CuAlO2 via Ar&H2 plasma treatment for enhancing VOCs sensing performances;Bin Tong;《chemistry communications》;20190904;第11691-11694页 *
液相燃烧法合成CuCrO2及其与WO3复合后的光催化产氢性能;刘先平;《硅酸盐学报》;20150131;第43卷(第1期);第109-115页 *

Also Published As

Publication number Publication date
CN110615693A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
Urasinska-Wojcik et al. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment
Liu et al. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit
Song et al. Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers
Santra et al. ZnO nanowires grown on SOI CMOS substrate for ethanol sensing
Yang et al. Facile synthesis of novel 3D nanoflower-like Cu x O/multilayer graphene composites for room temperature NO x gas sensor application
Qin et al. Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic
US9133549B2 (en) Gas sensor using metal oxide nanoparticles, and method for manufacturing same
KR101191386B1 (ko) 센서용 산화물 반도체 나노섬유 제조 방법 및 그를 이용한 가스 센서
Liu et al. Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures
Mane et al. Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection
Kaur et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique
CN110615693B (zh) 一种硫化氢气体传感材料、传感器及制备方法与使用方法
Yi et al. A novel approach to fabricate metal oxide nanowire-like networks based coplanar gas sensors array for enhanced selectivity
Meng et al. Ppb-level triethylamine gas sensors based on palladium nanoparticles modified flower-like In 2 O 3 grown on rGO nanosheets operating at low temperature
CN108872325A (zh) 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用
KR101671405B1 (ko) 반도체 가스센서용 금속/반도체 코어-쉘구조의 나노입자 혼합형 가스감지물질 및 이를 이용한 반도체 가스센서
Çorlu et al. Effect of doping materials on the low-level NO gas sensing properties of ZnO thin films
CN105606660A (zh) 一种检测no2的气敏材料及其气敏元件的制作方法
CN104990961A (zh) 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法
CN108508062A (zh) 一种基于MoO3纳米敏感材料的三乙胺传感器、制备方法及其应用
Samerjai et al. NO2 gas sensing of flame-made Pt-loaded WO3 thick films
Diao et al. Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO 2 nanotube heterostructures
Misra et al. Study of activation energy and humidity sensing application of nanostructured Cu-doped ZnO thin films
Liewhiran et al. The monitoring of H 2 S and SO 2 noxious gases from industrial environment with sensors based on flame-spray-made SnO 2 nanoparticles
Liu et al. High-sensitivity SO2 gas sensor based on noble metal doped WO3 nanomaterials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant