CN110600470B - 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法 - Google Patents

一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法 Download PDF

Info

Publication number
CN110600470B
CN110600470B CN201910776876.8A CN201910776876A CN110600470B CN 110600470 B CN110600470 B CN 110600470B CN 201910776876 A CN201910776876 A CN 201910776876A CN 110600470 B CN110600470 B CN 110600470B
Authority
CN
China
Prior art keywords
gan
algan
epitaxial wafer
based laser
gan hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910776876.8A
Other languages
English (en)
Other versions
CN110600470A (zh
Inventor
田朋飞
闫春辉
林润泽
方志来
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naweilang Technology Shenzhen Co ltd
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201910776876.8A priority Critical patent/CN110600470B/zh
Publication of CN110600470A publication Critical patent/CN110600470A/zh
Application granted granted Critical
Publication of CN110600470B publication Critical patent/CN110600470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,包括:S1:在GaN基激光器衬底层上制备GaN基激光器、在第一衬底上制备第一AlGaN/GaN HEMT外延片;S2:通过干法刻蚀的方式顺序刻蚀获得激光器台面结构、AlGaN/GaN HEMT转移区、及AlGaN/GaN HEMT台面结构;S3:通过湿法刻蚀的方式去除所述第一AlGaN/GaN HEMT外延片的第一衬底,获得第二AlGaN/GaN HEMT外延片;S4:将所述第二AlGaN/GaN HEMT外延片转移至第二衬底,获得第三AlGaN/GaN HEMT外延片;S5:通过粘附材料键合第三AlGaN/GaN HEMT外延片与GaN基激光器;S6:制备钝化层及电极。本发明避免原有制备方法的隔离性差、安全性低的技术问题,实现了器件***安全性高、耐高频、耐高压、易批量生产的技术效果。

Description

一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法
技术领域
本发明涉及半导体光电器件领域,具体涉及激光器以及半导体电力电子器件芯片的制备
背景技术
近年来,基于AlGaN/GaN异质结结构的高电子迁移率晶体管器件(HEMT)得到了国内外的广泛关注。AlGaN/GaN HEMT基于AlGaN/GaN异质结结构,利用材料本身结构所引起的自发极化和压电极化效应,无需故意掺杂,就可在异质结处形成一个厚度仅为nm级别的高电子浓度导电沟道,即二维电子气结构。由于Ⅲ族氮化物本身具备大的禁带宽度,高电子饱和漂移速度等优异性质,与传统的Si基半导体电子器件相比,AlGaN/GaN HEMT更适应于对耐压值,响应频率,工作温度等有着高要求的工作场合,是新兴功率电子器件的热门研究方向之一。
同样基于Ⅲ族氮化物材料的GaN基激光器目前也备受关注。其超快速的响应频率以及对应的高光电调制带宽,使得GaN基激光器在不采用高阶调制的情况下即可实现单颗LD高达Gbps的数据传输速率。这使得其非常适用于可见光通信,特别是水下信道环境下的可见光通信。水下无线通信因其复杂的信道环境一直都是研究的热点与难点。传统的水下声波通信与水下射频通信由于本身的限制,难以同时实现长距离与高速两种性能兼备的无线水下通信,而海水对蓝绿光存在一个透射窗口,这给GaN基激光器实现水下长距离低损耗的高速通信提供了对应的理论基础。但GaN基激光器同样属于二极管结构,其整体的耐压能力等性能均有所不足,通过AlGaN/GaN HEMT与GaN基激光器的单片集成,可以充分结合与发挥二者的优势,在有效减少***体积与成本的同时,保证了***所具备的耐压性能,响应性能等,进而提高整体***的稳定性与安全性。
现有技术一为专利公开号为CN104377547A的中国专利申请,其器件结构如图1所示,1-GaN衬底,2-AlGaN下包层,3-GaN下波导层,4-InGaN注入层,5-有源层,6-AlGaN电子阻挡层,7-AlGaN上包层,8-AlGaN上包层,9-非掺杂GaN隔离层,10-非掺杂AlGaN层,11-非掺杂GaN通道层,12-AlN空间隔离层,13-非掺杂AlGaN势垒层。其中1-8层构成了激光器,10-13层为HEMT结构。其公开了一种垂直结构半导体激光器与HEMT的集成方法,通过外延生长的方式,将GaN基HEMT和LD集成在同一衬底上,实现单片集成GaN基HEMT和LD直接调制激光器。
现有技术一的缺点在于难以实现GaN基HEMT与LD的有效串联,后续在外延片上加工电极等结构时存在技术困难,不利于大规模器件生产。
现有技术二为专利公开号为CN106159671A的中国专利申请,其器件结构如图2所示。1-衬底,2-缓冲层,3-N型氮化镓,4-量子阱结构,5-有源层,6-P型氮化镓,7-本征氮化镓,8-二维电子气,9-势垒层,10-漏电极,11-栅电极,12-源电极,13-连接电极,14-P型电极,15-N型电极,其中1-6层构成了激光器,7-15层为HEMT结构。其公开了一种水平结构半导体激光器与HEMT的集成方法,通过外延生长以及刻蚀技术,在不改变GaN基LD体积的前提下,实现了GaN基HEMT与LD的单片集成。
现有技术二的缺点在于由于GaN基HEMT的本征氮化镓层(7层)与LD的P型氮化镓层(6层)之间没有有效的电气隔离,而是直接连接在了一起,使得器件工作过程中HEMT本征氮化镓层存在电位波动的可能性,进而影响器件整体的稳定性和可靠性。
发明内容
为克服现有技术的不足,避免原有AlGaN/GaN HEMT和GaN基激光器单片集成器件隔离性差、安全性低的技术问题,提出一种***安全性高、耐高频、耐高压的GaN基激光器和AlGaN/GaN HEMT集成器件制备方法。
一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,包括:
S1:在GaN基激光器衬底层上制备GaN基激光器、在第一衬底上制备第一AlGaN/GaNHEMT外延片;
S2:通过干法刻蚀的方式顺序刻蚀获得激光器台面结构、AlGaN/GaN HEMT转移区、及AlGaN/GaN HEMT台面结构;
S3:通过湿法刻蚀的方式去除所述第一AlGaN/GaN HEMT外延片的第一衬底,获得第二AlGaN/GaN HEMT外延片;
S4:将所述第二AlGaN/GaN HEMT外延片转移至第二衬底,获得第三AlGaN/GaNHEMT外延片;
S5:通过粘附材料键合第三AlGaN/GaN HEMT外延片与GaN基激光器;
S6:制备钝化层及电极。
优选的,所述步骤2包括:
S2.1:通过ICP干法刻蚀在所述GaN基激光器外延片刻蚀至n型GaN层,获得激光器台面结构;
S2.2:通过ICP干法刻蚀在所述激光器台面结构刻蚀至衬底,制备AlGaN/GaN HEMT转移区;
S2.3:通过ICP干法刻蚀在所述第一AlGaN/GaN HEMT外延片刻蚀至衬底,制备AlGaN/GaN HEMT台面结构。
优选的,所述第一衬底材料包括但不限于Si,GaN,SiC等;所述第二衬底材料包括但不限于聚二甲基硅氧烷等。
优选的,所述S6包括:
S6.1:采用PECVD在GaN基激光器及第三AlGaN/GaN HEMT外延片表面沉积SiO2钝化层;
S6.2:采用磁控溅射在GaN基激光器及第三AlGaN/GaN HEMT外延片表面沉积金属电极,所述金属电极包括:GaN基激光器的p型电极与n型电极,AlGaN/GaN HEMT的源电极、漏电极和栅电极;所述GaN基激光器的n型电极与所述AlGaN/GaN HEMT的漏电极相连。
优选的,所述步骤6.1包括:
根据金属电极位置及形状,采用CHF3气体进行干法刻蚀,BOE溶液进行湿法刻蚀顺序在所述SiO2钝化层开孔。
优选的,所述PECVD采用N2O,N2,SiH4的混合气体。
优选的,所述步骤2.1-2.3的ICP干法刻蚀所用掩膜为光刻胶掩膜,所用刻蚀气体为Cl2和BCl3的混合气体。
优选的,所述GaN基激光器的p型电极与n型电极,AlGaN/GaN HEMT的源电极、漏电极和栅电极材料为Ti、Al、Ni、Au、Ag、Pt、TiNX中的一种或多种混合。
优选的,所述S1、S5的GaN基激光器包括从下至上垂直设置的:GaN基激光器衬底层,GaN缓冲层,n型AlGaN光限制层,n型GaN下波导层,InGaN/GaN量子阱结构,GaN上波导层,AlGaN电子阻挡层,p型AlGaN光限制层;所述第三ALGAN/GAN HEMT HEMT外延片包括从下至上垂直设置的:高阻GaN缓冲层,GaN沟道层,AlGaN势垒层,第二衬底。
优选的,所述S5包括:通过粘附材料键合第三AlGaN/GaN HEMT外延片的高阻GaN缓冲层与GaN基激光器的GaN基激光器衬底层;去除第二衬底。
本发明利用器件转移的方式,实现AlGaN/GaN HEMT和GaN基激光器单片集成器件制备。本发明无需采用复杂的二次外延生长技术,在保证器件体积不变的情况下,实现GaN基激光器和AlGaN/GaN HEMT的单片串联集成,集成器件充分结合了二者的优势,提高了整体***安全性和稳定性的同时,还具备高频,强耐压等优势,适用于高速可见光通信***等应用场景。特别的,由于采用器件转移的方式,AlGaN/GaN HEMT和激光器之间除电极外并未有直接接触,二者具备良好的电气隔离,避免了二次外延生长方式制备的集成器件中由于AlGaN/GaN HEMT的GaN层与激光器的p型GaN层直接接触而可能引起的器件内部电位波动,提高了整体的稳定性和可靠性。
附图说明
图1为现有技术一结构示意图;
图2为现有技术二结构示意图;
图3为实施例一提供的GaN基激光器和AlGaN/GaN HEMT集成器件制备方法流程图
图4为实施例二中Si衬底AlGaN/GaN HEMT的外延片结构示意图;
图5为实施例二中GaN基激光器的外延片结构示意图;
图6为实施例二中一次刻蚀后的GaN基激光器的外延片结构示意图;
图7为实施例二中二次刻蚀后的GaN基激光器的外延片结构示意图;
图8为实施例二中AlGaN/GaN HEMT台面结构示意图;
图9为实施例二中去除Si衬底的HEMT外延片结构示意图;
图10为实施例二中AlGaN/GaN HEMT通过紫外固化胶键合至GaN基激光器外延片的结构示意图;
图11为实施例二中GaN基激光器和HEMT外延片表面SiO2钝化层示意图;
图12为实施例二中GaN基激光器和HEMT外延片表面金属电极示意图。
图中,100为Si(111)衬底;110为高阻GaN缓冲层;120为GaN沟道层;130为AlGaN势垒层;200为GaN基激光器衬底层;210为GaN缓冲层。220为n型AlGaN光限制层;230为n型GaN下波导层;240为InGaN/GaN量子阱结构;250为GaN上波导层;260为AlGaN电子阻挡层;270为p型AlGaN光限制层;300为PDMS临时衬底;400为Norland紫外固化胶;500为SiO2钝化层;600为p型电极;610为n型电极;620为漏电极;630为源电极;640为栅电极。
具体实施方式
下面详细说明本发明的具体实施,有必要在此指出的是,以下实施只是用于本发明的进一步说明,不能理解为对本发明保护范围的限制,该领域技术熟练人员根据上述本发明内容对本发明做出的一些非本质的改进和调整,仍然属于本发明的保护范围。
实施例一
本实施例提供一种基于转移工艺实现的GaN基激光器和AlGaN/GaN HEMT单片集成器件的制备方法,如图3所示,包括如下步骤:
步骤1:通过半导体标准工艺在衬底材料上分别制备GaN基激光器和AlGaN/GaNHEMT外延结构;
步骤2:利用ICP干法刻蚀工艺对制备完成的GaN基激光器外延片选定区域进行刻蚀至n型GaN层以制备激光器台面结构;
步骤3:再次利用ICP干法刻蚀工艺,在激光器台面结构基础上再次选定区域刻蚀至衬底,该结构作为后续HEMT外延片转移区域;
步骤4:同样利用ICP干法刻蚀工艺,在AlGaN/GaN HEMT外延结构上选定区域刻蚀至衬底以制备HEMT台面结构,便于后续器件转移;
步骤5:利用湿法刻蚀的方式刻蚀HEMT器件的衬底材料,实现HEMT器件外延结构的剥离;
步骤6:利用临时衬底材料粘附剥离的HEMT外延结构;
步骤7:通过键合技术以及Norland等粘附材料,将临时衬底上的HEMT外延结构键合在GaN基激光器外延片的选定区域;
步骤8:利用PECVD技术,在GaN基激光器和HEMT表面沉积SiO2钝化层;
步骤9:利用光刻以及湿法/干法刻蚀技术,在SiO2钝化层选定区域开孔以便于后续沉积金属电极。
步骤10:通过磁控溅射技术在GaN基激光器和HEMT表面开孔区域沉积金属电极,其中GaN基激光器的n型电极与HEMT的漏电极相连,实现器件的串联集成。
优选地,步骤1中,GaN基激光器和AlGaN/GaN HEMT的衬底材料包括但不限于Si,GaN,SiC等材料;
步骤2中,ICP干法刻蚀所用掩膜为光刻胶掩膜,采用Cl2和BCl3的混合气体进行刻蚀,刻蚀深度至n型GaN层。
步骤3中,ICP干法刻蚀所用掩膜为光刻胶掩膜,采用Cl2和BCl3的混合气体进行刻蚀,刻蚀深度至衬底层。
步骤6中,临时衬底材料包括但不限于PDMS等材料。
步骤8中,PECVD选用气体为N2O,N2,SiH4的混合气体。
步骤9中,采用CHF3气体进行干法刻蚀,再利用BOE溶液进行湿法刻蚀。
步骤10中,p型电极、n型电极、源电极、漏电极和栅电极为Ti、Al、Ni、Au、Ag、Pt、TiNX中的一种或多种材料。
由于先前利用外延生长方式实现的AlGaN/GaN HEMT与GaN基激光器单片集成器件中,HEMT与激光器非电极区域难以做到有效的电气隔离,本发明通过器件转移的方式,利用湿法刻蚀去除HEMT器件的原衬底,并利用PDMS临时衬底以及Norland等粘附材料,将HEMT转移至GaN基激光器上,再利用PECVD和磁控溅射技术,分别沉积SiO2钝化层和金属电极,在实现HEMT与激光器单片集成的同时,还保证了二者之间有效的电气隔离,提高了整体***的安全性和稳定性。
实施例二
本实施例提供一种基于转移工艺实现的GaN基激光器和AlGaN/GaN HEMT单片集成器件的制备方法,如图4-12所示,具体包括以下步骤:
步骤1:利用半导体标准工艺制备得到的AlGaN/GaN HEMT器件Si衬底100的厚度为1000μm;生长在Si衬底上的GaN高阻缓冲层110的厚度为4μm;生长在GaN高阻缓冲层上的GaN沟道层120为100nm;生长在GaN沟道层上的AlGaN势垒层130的厚度为30nm、Al的组分为0.25。利用半导体标准工艺制备得到的GaN基激光器在衬底200上生长的GaN缓冲层210的厚度为3μm,衬底200包括但不限于Si,GaN,SiC,蓝宝石等材料;生长在GaN缓冲层上的n型AlGaN光限制层220厚度为1μm,Al组分为0.1;生长在n型AlGaN光限制层上的n型GaN下波导层230厚度为100nm;生长在n型GaN下波导层上的InGaN/GaN量子阱结构240至少拥有一个InGaN/GaN量子阱,优选地,其可以采用包含两个及以上InGaN/GaN量子阱的多量子阱结构;生长在量子阱结构上的GaN上波导层250厚度为100nm;生长在GaN上波导层上的AlGaN电子阻挡层260厚度为20nm,Al组分为0.2;生长在AlGaN电子阻挡层上的p型AlGaN光限制层270厚度为400nm,Al组分为0.1。
步骤2:采用S1818光刻胶作为掩膜,通过反应耦合等离子刻蚀机(Oxford),利用Cl2、BCl3的混合气体对GaN基激光器外延片进行刻蚀,控制刻蚀深度至n型GaN层。
步骤3:采用S1818光刻胶作为掩膜,通过反应耦合等离子刻蚀机(Oxford),利用Cl2、BCl3的混合气体对上述GaN基激光器外延片进行第二次刻蚀,刻蚀采用过刻蚀,刻蚀深度至衬底材料。
步骤4:采用S1818光刻胶作为掩膜,通过反应耦合等离子刻蚀机(Oxford),利用Cl2、BCl3的混合气体对上述AlGaN/GaN HEMT外延片进行干法刻蚀,刻蚀采用过刻蚀,刻蚀深度至衬底材料。
步骤5:利用氢氟酸、硝酸、醋酸的混合溶液对Si衬底HEMT进行湿法刻蚀,刻蚀直至Si衬底被完全去除。
步骤6:利用PDMS材料充当临时衬底,利用材料间的分子力,将上述剥离衬底的HEMT外延结构粘附至PDMS材料300。
步骤7:通过器件转移技术,将PDMS上粘附的HEMT外延结构转移至上述GaN基激光器外延片上的选定区域,并通过Norland紫外固化胶连接,利用365nm的紫外光对该紫外固化胶进行固化,形成固化层400,实现GaN基激光器外延片和HEMT外延片的键合。
步骤8:使用等离子增强化学气相沉积机(Oxford),利用N2O,N2,SiH4的混合气体在上述GaN基激光器和HEMT器件表面沉积SiO2钝化层500。
步骤9:采用S1818光刻胶作为掩膜,通过反应耦合等离子刻蚀机(Oxford),利用CHF3气体对SiO2钝化层选定区域进行刻蚀,再通过BOE溶液进行湿法刻蚀,直至完全暴露出相应的电极沉积区域。
步骤10:采用S1818光刻胶作为掩膜,通过使用磁控溅射(Kurt J.Lesker),沉积p型电极600,n型电极610,漏电极620与源电极630,电极采用Ti/Al/Ni/Au四种金属组合,其中n型电极与漏电极之间串联。然后在870℃、N2气氛下快速退火30秒以形成良好的欧姆接触。
步骤11:采用S1818光刻胶作为掩膜,通过使用磁控溅射(Kurt J.Lesker),沉积栅电极640,电极采用Ni/Au两种金属组合,为肖特基接触。
本发明采用器件转移技术,实现了AlGaN/GaN HEMT和GaN基激光器的单片集成器件制备。集成器件充分结合了HEMT和Ⅲ族半导体激光器的优势,具备强耐压,高工作频率,大工作温度范围等独特优势,且由于采用集成技术,缩小了整体***的成本的尺寸的同时,还提高了***的可靠性和稳定性,适用于高速可见光通信等应用场合。此外,由于采用转移技术,HEMT和激光器之间存在良好的电气隔离,最大程度上避免了二者之间相互干扰而引起的器件不稳定,提高了***的安全性。此外,该转移方式具备可重复性,可用于大规模工业生产。
以上内容仅为结合本发明的实施例对本发明所作的描述说明,本发明具体实施例不仅限于此范围。凡是利用本发明书构思所作的简单替换,包括直接或间接运用相关技术,都应属于本发明保护范围。

Claims (6)

1. 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,包括:
S1:在GaN基激光器衬底层上制备GaN基激光器外延片、在第一衬底上制备第一AlGaN/GaN HEMT外延片;
所述S1包括:GaN基激光器外延片包括从下至上垂直设置的:GaN基激光器衬底层,GaN缓冲层,n型AlGaN光限制层,n型GaN下波导层,InGaN/GaN量子阱结构,GaN上波导层,AlGaN电子阻挡层,p型AlGaN光限制层;所述第一AlGaN/GaN HEMT外延片包括从下至上垂直设置的:第一衬底,高阻GaN缓冲层,GaN沟道层,AlGaN势垒层;
S2:通过干法刻蚀的方式顺序刻蚀获得激光器台面结构、AlGaN/GaN HEMT转移区、及AlGaN/GaN HEMT台面结构;
所述步骤S2包括:
S2.1:通过ICP干法刻蚀在GaN基激光器外延片刻蚀至n型GaN下波导层,获得激光器台面结构;
S2.2:通过ICP干法刻蚀在所述激光器台面结构外选定区域刻蚀至衬底,制备AlGaN/GaN HEMT转移区;
S2.3:通过ICP干法刻蚀在所述第一AlGaN/GaN HEMT外延片刻蚀至衬底,制备AlGaN/GaN HEMT台面结构;
S3:通过湿法刻蚀的方式去除所述第一AlGaN/GaN HEMT外延片的第一衬底,获得第二AlGaN/GaN HEMT外延片;
S4:将所述第二AlGaN/GaN HEMT外延片转移至第二衬底,获得第三AlGaN/GaN HEMT外延片;
S5:通过粘附材料键合第三AlGaN/GaN HEMT外延片与GaN基激光器;
所述S5包括:通过粘附材料键合第三AlGaN/GaN HEMT外延片的高阻GaN缓冲层与GaN基激光器的AlGaN/GaN HEMT转移区的衬底层;去除第二衬底;
S6:制备钝化层及电极;
所述S6包括:
S6.1:采用PECVD在GaN基激光器及第三AlGaN/GaN HEMT外延片表面沉积SiO2钝化层;根据金属电极位置及形状,采用CHF3气体进行干法刻蚀,BOE溶液进行湿法刻蚀顺序在所述SiO2钝化层开孔;
S6.2:采用磁控溅射在GaN基激光器及第三AlGaN/GaN HEMT外延片表面沉积金属电极,所述金属电极包括:GaN基激光器的p型电极与n型电极,AlGaN/GaN HEMT的源电极、漏电极和栅电极;所述GaN基激光器的n型电极与所述AlGaN/GaN HEMT的漏电极相连。
2.一种如权利要求1所述GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,所述第一衬底材料包括但不限于Si,GaN,SiC;所述第二衬底材料包括但不限于聚二甲基硅氧烷等。
3.一种如权利要求1所述GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,所述PECVD采用N2O,N2,SiH4的混合气体。
4.一种如权利要求1所述GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,所述步骤S2.1-S2.3的ICP干法刻蚀所用掩膜为光刻胶掩膜,所用刻蚀气体为Cl2和BCl3的混合气体。
5.一种如权利要求1所述GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,所述GaN基激光器的p型电极与n型电极,AlGaN/GaN HEMT的源电极、漏电极和栅电极材料为Ti、Al、Ni、Au、Ag、Pt、TiNX中的一种或多种混合。
6.一种如权利要求1所述GaN基激光器和AlGaN/GaN HEMT集成器件制备方法,其特征在于,所述第三AlGaN/GaN HEMT外延片包括从下至上垂直设置的:高阻GaN缓冲层,GaN沟道层,AlGaN势垒层,第二衬底。
CN201910776876.8A 2019-08-22 2019-08-22 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法 Active CN110600470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910776876.8A CN110600470B (zh) 2019-08-22 2019-08-22 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910776876.8A CN110600470B (zh) 2019-08-22 2019-08-22 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法

Publications (2)

Publication Number Publication Date
CN110600470A CN110600470A (zh) 2019-12-20
CN110600470B true CN110600470B (zh) 2021-10-22

Family

ID=68855099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910776876.8A Active CN110600470B (zh) 2019-08-22 2019-08-22 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法

Country Status (1)

Country Link
CN (1) CN110600470B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234123A (zh) * 2020-09-30 2021-01-15 深圳第三代半导体研究院 一种用于双向通信的集成器件及其制备方法
CN117153961B (zh) * 2023-10-31 2024-02-13 季华实验室 HEMT驱动MicroLED一体化背板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517700A (zh) * 2006-09-20 2009-08-26 伊利诺伊大学评议会 用于制造可转移半导体结构、器件和器件构件的松脱策略
CN105870265A (zh) * 2016-04-19 2016-08-17 京东方科技集团股份有限公司 发光二极管基板及其制备方法、显示装置
CN106252373A (zh) * 2016-09-09 2016-12-21 复旦大学 一种GaN基集成器件及其制备方法
CN108550683A (zh) * 2018-06-14 2018-09-18 华南理工大学 一种高电子迁移率晶体管与垂直结构发光二极管的单片集成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756084B2 (en) * 2015-03-26 2020-08-25 Wen-Jang Jiang Group-III nitride semiconductor device and method for fabricating the same
US20180286734A1 (en) * 2017-03-28 2018-10-04 X-Celeprint Limited Micro-device pockets for transfer printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517700A (zh) * 2006-09-20 2009-08-26 伊利诺伊大学评议会 用于制造可转移半导体结构、器件和器件构件的松脱策略
CN105870265A (zh) * 2016-04-19 2016-08-17 京东方科技集团股份有限公司 发光二极管基板及其制备方法、显示装置
CN106252373A (zh) * 2016-09-09 2016-12-21 复旦大学 一种GaN基集成器件及其制备方法
CN108550683A (zh) * 2018-06-14 2018-09-18 华南理工大学 一种高电子迁移率晶体管与垂直结构发光二极管的单片集成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High Breakdown (> 1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology;Bin Lu等;《IEEE Electron Device Letters》;20100930;第31卷(第9期);全文 *

Also Published As

Publication number Publication date
CN110600470A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
US10312360B2 (en) Method for producing trench high electron mobility devices
WO2014205003A1 (en) Trench high electron mobility transistor
CN102610638B (zh) 用于功率集成电路的SiC-BJT器件及其制作方法
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
CN110600990B (zh) 一种基于柔性衬底的GaN基激光器与HEMT的器件转移制备方法
CN104576872A (zh) 一种半导体发光二极管芯片及其制作方法
CN110600470B (zh) 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法
WO2022116915A1 (zh) 一种半导体器件及其应用与制造方法
CN103474478A (zh) 一种碳化硅sbd器件
CN106449661A (zh) 一种GaN基LED与TFT异质单片集成的LED微显示像素单元结构
CN104900747A (zh) 基于GaN的光电集成器件及其制备方法、外延结构
WO2021169411A1 (zh) 单片光电集成电路及其形成方法
WO2022199309A1 (zh) 具有p-GaN盖帽层的HEMT器件及制备方法
US20220310796A1 (en) Material structure for low thermal resistance silicon-based gallium nitride microwave and millimeter-wave devices and manufacturing method thereof
CN110600549A (zh) 一种增强型AlGaN/GaN MOS-HEMT器件结构及其制备方法
CN113555429B (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN108206220A (zh) 金刚石肖特基二极管的制备方法
CN204668309U (zh) 基于GaN的光电集成器件及其外延结构
CN212725306U (zh) 基于栅极保护的半导体电路及半导体器件
CN114582912A (zh) 一种单片集成式光电耦合器及制备方法
CN209843716U (zh) 一种增强型AlGaN/GaN MOS-HEMT器件结构
CN113690267A (zh) 一种贴片式hemt-led的单片集成方法
TW202044419A (zh) 半導體裝置的製作方法
CN103390709A (zh) 一种具有双重作用电极的发光二极管及其制作方法
CN112967923B (zh) 大尺寸晶圆上制备金刚石衬底太赫兹二极管的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230331

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Southern University of Science and Technology

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230707

Address after: Building 1, Building 409, No. 1310 Kukeng Sightseeing Road, Kukeng Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518109

Patentee after: Naweilang Technology (Shenzhen) Co.,Ltd.

Address before: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Southern University of Science and Technology