CN110553076A - 一种电子水阀的控制方法 - Google Patents

一种电子水阀的控制方法 Download PDF

Info

Publication number
CN110553076A
CN110553076A CN201810552655.8A CN201810552655A CN110553076A CN 110553076 A CN110553076 A CN 110553076A CN 201810552655 A CN201810552655 A CN 201810552655A CN 110553076 A CN110553076 A CN 110553076A
Authority
CN
China
Prior art keywords
stepping motor
rotating speed
finished
electronic water
water valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810552655.8A
Other languages
English (en)
Other versions
CN110553076B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Sanhua Research Institute Co Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Priority to CN201810552655.8A priority Critical patent/CN110553076B/zh
Publication of CN110553076A publication Critical patent/CN110553076A/zh
Application granted granted Critical
Publication of CN110553076B publication Critical patent/CN110553076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0083For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种电子水阀的控制方法,电子水阀包括阀芯和步进电机,控制方法包括:第一过程,步进电机转速为第一转速;判断第一过程是否结束;当判断第一过程没有结束,则控制步进电机维持第一转速;当判断第一过程结束,则控制步进电机切换为第二转速,进入第二过程;其中,第二转速小于第一转速。本发明通过电机的转速变化,使电机的输出扭矩与电子水阀在不同阶段内的需求扭矩相匹配,减小了堵转的发生风险。

Description

一种电子水阀的控制方法
技术领域
本发明涉及流体控制技术领域,尤其涉及一种水阀的控制方法。
背景技术
电子水阀一般由两部分组成,一部分是阀体部分,另一部分是控制开 度的执行器。执行器包括驱动部,驱动部包括电机。
在阀芯处于不同位置时,阀座对阀芯的摩擦力矩可能会不同,驱动部 主要通过克服阀芯与阀座或阀壳之间的摩擦力矩使阀片继续转动。此时, 若驱动部的输出扭矩小于摩擦力矩或接近于摩擦力矩,则电子水阀可能会 发生堵转。水阀堵转会带来一系列的问题,例如电机过热、阀芯不能到达 指定位置等。
在全关时,阀座对阀芯的摩擦力距较大,中间过程摩擦力距较小,一 般的,步进电机采用低速启动一段时间后切换为高速度匀速运行,直至关 闭。但这种控制方法由于无法判断是否已经进入正常工作状态,存在发生 堵转的可能。
发明内容
为解决上述技术问题,本发明的技术方案提供一种电子水阀的控制方 法,所述电子水阀包括阀芯和步进电机,其特征在于,所述控制方法包括:
第一过程,所述步进电机转速为第一转速;
判断所述第一过程是否结束;
当判断所述第一过程没有结束,则控制所述步进电机维持第一转速;
当判断所述第一过程结束,则控制所述步进电机切换为第二转速,进 入所述第二过程;
其中,所述第二转速小于第一转速。本发明的技术方案先通过判断低 扭矩的第一过程是否结束,再进行转速切换至相对高扭矩的第二过程,使 电机的输出扭矩与电子水阀在不同阶段内的需求扭矩相匹配,减小了堵转 的发生风险。
附图说明
图1示出了采用传统控制方式中输出扭矩与一种需求扭矩的示意图;
图2示出了所述电子水阀控制***的第一种实施方式的示意图;
图3示出了电子水阀的控制方法第一种实施方式的流程示意图;
图4示出了图3中电子水阀的控制方法的优选方案的流程示意图;
图5示出了图4控制方法下电机转速与输出力矩示意图;
图6示出了控制方法第一种实施方式中输出扭矩与需求扭矩的示意图;
图7示出了采用传统控制方式中输出扭矩与另一种需求扭矩的示意图;
图8示出了控制方法第二种实施方式中电子水阀控制方法流程示意图;
图9示出了控制方法第二种实施方式中电机转速与输出力矩示意图;
图10示出了控制方法第二种实施方式中输出扭矩与需求扭矩的示意 图;
图11示出了控制方法第三种实施方式中电机速度与时间的示意图;
图12示出了阀体结构的第一实施方式的剖面示意图;
图13示出了阀体结构的第二实施方式的俯视示意图;
图14示出了图12所示电子水阀的阀芯位于第一位置的俯视示意图;
图15示出了图12所示电子水阀的阀芯运行过程中的俯视示意图;
图16示出了图12所示电子水阀的阀芯位于第二位置的俯视示意图;
图17示出了阀体结构的第三实施方式的俯视示意图;
图18示出了电子水阀控制***的第二实施方式的示意图;
图19示出了电子水阀控制***的第三实施方式的示意图;
图20示出了控制方法的第四种实施方式中电机转速与步进电机步数 的示意图;
图21示出了控制方法的第五种实施方式的流程示意图。
具体实施方式
实施例1
电子水阀至少包括阀芯和步进电机,步进电机的动力输出部与阀芯传 动连接或直接连接。
阀芯可为转动的形式。在开阀或者关阀时,在阀口完全关闭或者全开 后阀芯还运动一段距离,才达到停止转动的位置,此时需要较大的电机驱 动力矩。其中,第一、第二位置为机械结构所决定的阀芯停止转动的位置, 第一、第二位置分别位于阀芯行程的两端。具体地,在一种实施方式中, 如图12所示,阀芯为第一阀片22,第一阀片22为转动的形式,步进电机 可带动第一阀片22转动,第一、第二位置分别位于第一阀片22行程的两 端。如图14中所示,在此实施方式中第一位置处于阀口121全开的状态; 如图16,第二位置处于阀口121全闭的状态,可以看到第一阀片22在完 关闭阀口121后,还需转动一段距离(见图14中虚线圈出的部分)。
如图1,若将第一阀片转动角度设为θ,则第一阀片22的可转动角度 的范围为0~θ3,以第一阀片22达到第一位置的转动角度为0,到达第二 位置的转动角度为θ3。第一阀片转动角度在θ1~θ3(即图1中范围II)需要 的电机驱动力矩相对于转动角度在0~θ1(即图1中范围I)需要的电机驱 动力矩较大。
对于采用电机驱动的水阀,在传统控制方式的输出力矩中,步进电机 采用低速启动,启动一段时间后加速至目标速度。由于电机输出力矩与运 行速度成反比的关系,当第一阀片运行至摩擦力较大范围II时,因为步进 电机一直以较大的目标速度运行,此时输出力矩较小,会导致步进电机可 能堵转,进而有第一阀片关不严阀口而出现漏水现象。
因此,控制方法包括:
第一过程,步进电机转速为第一转速;
判断第一过程是否结束;
当判断第一过程没有结束,则控制步进电机维持第一转速;
当判断第一过程结束,则控制步进电机切换为第二转速,进入第二过 程;
其中,第二转速小于第一转速。步进电机在第二转速下的输出扭矩大 于在第一转速下的输出扭矩,使步进电机的转速与电子水阀的开启或运行 过程中所需的扭矩相匹配。如图1,第一过程中第一阀片22的运动范围包 含于第一范围I,第二过程中第一阀片22的运动范围包含于第二范围II。
如图5、图6所示,在第一阀片22的转动角接近第二范围II时开始第 二过程。通过降低运行速度来提高电机输出力矩,从而减少第一阀片22 在第二范围II内的堵转风险,保证第一阀片22可靠地达到位置并关闭阀 口或打开阀口。防止没有达到指定位置而减弱密封效果,进而减少泄漏。
这里应当说明,对于不同的***要求,第二转速V2可以为多个值, 也可以是一个变化的转速,但需满足第二转速V2小于第一转速V1。这里 应当说明,在V1和V2相转变的临界点,两者的速度可以是平滑的转变。
优选地,第一转速V1的取值范围满足250~400RPM的范围,例如 250RPM、260RPM、270RPM、280RPM、290RPM、300RPM、310RPM、 330RPM、350RPM、370RPM、390RPM、400RPM、410RPM、420RPM、 430RPM、440RPM、445RPM时,转速所对应的输出扭矩可满足在需求扭 矩较小区域(即第一范围I)的扭矩需求,同时较快的转速有利于带动第 一阀片在较短的时间内运行到指定位置。
第二转速V2的取值范围满足100~200RPM的范围,例如105RPM、 110RPM、120RPM、130RPM、140RPM、150RPM、160RPM、170RPM、 180RPM、190RPM、195RPM时,可以产生较大的电机输出扭矩,满足 在需求扭矩较大区域(即第二范围II)的扭矩需求,降低堵转风险,同时 又不至于使第一阀片转动过慢而导致运行时间过长。
在控制方法的一种实施方式中,第一过程是否结束主要参照当前由第 一位置向第二位置方向旋转的步进电机步数N,由于电机通过传动部与第 一阀片连接,且步进电机的误差不会积累,可通过步数N预测第一阀片的 转动角度θ,实现在简单控制结构下的较为精确的控制。当前步进电机的步 数N可以由发送给步进电机的脉冲数直接得到。
如图3,具体地,判断第一过程是否结束包括:
采集当前步进电机步数(N),判断当前步进电机步数(N)是否大于 等于第一步进电机预设步数(NS),若否,则判断第一过程没有结束,若 是,则判断第一过程结束。
NS为第一步进电机预设步数可以为多个值,可参考阀门的需求扭矩 曲线。在满足降低堵转风险、增强密封的情况下,选取尽可能大的第一步 进电机预设步数NS,使阀芯在尽量接近需求扭矩较大区域(即第二范围 II)时减速,可以将阀芯的运行时间减少,同时兼顾闭阀时的密封。
具体地,对于图13中的旋转三通阀,若转动角度θ2对应的步进电机 步数N2为0.9N3,则第一步进电机预设步数NF的取值范围可选择为 0.7N3~0.9N3,例如0.71N3、0.73N3、0.75N3、0.77N3、0.79N3、0.80N3、 0.81N3、0.83N3、0.85N3、0.87N3、0.89N3时,可以在减少运行时间与减 小堵转风险两个要求之间取得一个较好的平衡。
电子水阀具有电控部件3,如图2,电控部件3包括:信息处理模块 301,步进电机驱动模块302,信号接收/发送模块306,数据存储模块304。
电控部件3通过汽车总线与主控制器连接,并接收主控制器下发的总 线控制信号,信息处理模块301可提取总线控制信号内包含的步进电机动 作信息,生成相应的脉冲控制信号,输出至步进电机驱动模块302,步进 电机驱动模块302根据脉冲控制信号驱动步进电机4。由于步进电机4采 用开环控制,所以可通过计算步进电机运行步数的方式来预测阀芯位置。 数据存储模块304用于存储步进电机4的当前位置信息。其中,当前位置 信息可包括当前步进电机的实际转动步数N,或者其所对应的步进电机4 实际转动的角度。信息处理模块可以为单片机,数据储存模块可以为EEPROM或者RAM。
上述信息处理模块301、步进电机驱动模块302不限于设置在电子水 阀的控制盒中,也可以与主控制器集成。
优选地,如图19,电控部件3可包括步进电机监测模块305。
步进电机监测模块305用于监测步进电机4的线圈上的感应电动势是 否发生异常,如果是,发送异常信号至所述信息处理模块301。对应的, 信息处理模块301可以根据接收到的来自步进电机监测模块303的感应电 动势异常信号,计算得到步进电机4的当前位置信息,存储在数据存储模 块304中。
需要说明的是,数据存储模块304中不仅包括步进电机4的当前位置 信息,还包括步进电机4的期望位置信息、当前次需要的转动量、以及当 前次实际的转动量。当步进电机4没有按驱动信号(即为脉冲控制信号)转 动时,相应的步进电机4的某一线圈上的感应电动势会出现异常。由此可 以判断得到该步进电机4未正常转动,发生了失步现象。
对步进电机4发生的失步现象进行累计,得到失步累计值;根据所述 失步累计值,再结合当前次需要转动的步数,可以得到步进电机4当前实 际转动的步数N;再结合步进电机4转动步数与角位移的关系,计算得到 步进电机4实际转动的角度,保存在数据存储模块304中。
如图18,所述电子水阀还可包括位置传感器6。电控部件3通过汽车 总线与主控制器连接,并接收主控制器下发的总线控制信号。位置传感器 6用于检测步进电机转子的转动位置,对应的,信息处理模块301可以根 据接收到的来自位置传感器6的位置检测信号,计算得到步进电机当前的 位置信息,存储在数据存储模块304中。
在位置传感器6的一种实施方式中,位置传感器6包括霍尔元件以及 直接或间接固定于步进电机的动力输出部的磁性元件,霍尔元件能够与所 述磁性元件的磁极相互作用,而检测到反馈信号,具体地,反馈信号为高 低电平信号或脉冲信号或其他周期性变化信号。信息处理模块301可采集 上述反馈信号,并通过反馈信号的状态来判断步进电机的运行状态,步进 电机的运行状态至少包括步进电机正常运行状态、步进电机堵转状态。采用霍尔效应的位置传感器精度高,体积小,有利于小型化和精确控制。
或者,位置传感器包括光源、光电元件以及直接或间接固定于步进电 机转子的光学通路,信息处理模块根据光电元件上的感应电流的变化信号, 计算得到步进电机当前的位置信息,进而可得到对应的当前阀芯位置信息。
位置传感器6的形式包括但不限于以上的采用霍尔效应的位置传感器 以及光电效应的传感器,也可以采用其它传感器来检测步进电机的转动位 置。
一种采用上述电子水阀控制方法的电子水阀,其具有阀体1,阀体1 包括壳体11、阀座12。
在阀体1的第一种实施方式中,如图12,电子水阀可为二通阀。壳体 1仅包括第一出口管路113和一个进口管路114。当第一阀片22位于第一 位置时,第一阀片22全开第一流通阀口221;当第一阀片22位于第二位 置时,第一阀片22全关第一流通阀口121,且密封第一流通阀口121。
在阀体1的第二种实施方式中,如图13,电子水阀也可为三通阀。壳 体11包括第一出口管路113、第二出口管路115和一个进口管路114,阀 芯收容于内腔内,第一阀片22底侧与阀座12相接触。阀座12包括与出口 管路113相连通的第一流通阀口121、第二流通阀口122。第一阀片22相 对于阀座12在第一位置与第二位置之间动作。如图14,当第一阀片22位于第一位置时,该第一阀片打开第一流通阀口122、第一出口管路113导 通,并且关闭第二流通口212、第二出口管路114截止导通,如图16,当 第一阀片22位于第二位置时,该第一阀片打开第二流通阀口212、第二出 口管路114导通,并且关闭第一流通阀口122、第一出口管路113截止导 通。在运行过程中的阀座12与第一阀片22的状态见图15。当第一阀片22 位于第一位置或第二位置时,第一阀片与阀座之间密封设置。由于在全关 阀口或全开阀口之后还再将第一阀片转动一定角度,密封面积较第一阀片 全关阀口或全开阀口之后马上停止的方案更大,密封效果更好。如图7, 需求力矩随着第一阀片转动角度而变化,当第一阀片相对阀座位于第一位 置或第二位置附近时,需求力矩较第一阀片相对于阀座动作到第一、第二 位置之间时更大。
在阀体1的第三种实施方式中,如图17,电子水阀可为四通切换阀。 阀座12具有四个流通阀口,分别为第一流通阀口121、第二流通阀口122、 第三流通阀口123和第四流通阀口124,第一阀片的底侧具有凹槽。如图 17,第一阀片22位于第一位置时,第一流通阀口121与第二流通阀口122 连通,第三流通阀口与第四流通阀口连通;第一阀片转动一定角度达到第 二位置时,第一流通阀口与第三流通阀口连通,第二流通阀口与第四流通 阀口连通。
需要说明的是,根据是开阀过程还是闭阀过程,第一、第二位置可以 交换。具体地,在打开某一阀口的运行过程中,第一阀片22在第一位置是 处于某一阀口全闭的状态,第一阀片22在第二位置是处于某一阀口全开的 状态;在关闭某一阀口的运行过程中,第一阀片22在第一位置是处于某一 阀口全开的状态,第一阀片22在第二位置是处于某一阀口全闭的状态。其 中,本自然段所述的“某一阀口”指的是同一个阀口,这个“某一阀口” 可以是上述的第一流通阀口121或第二流通阀口122等等。
阀体1包括但不限于二通、三通、四通的形式,也可以为五通、六通 等其它多通道阀门形式。此外,第一阀片的形状包括但不限于扇形,也可 以为圆柱形或其他一切具有扁平密封面的阀片。此外,对于有类似需求扭 矩的阀门,不论是旋转式阀芯还是活塞式阀芯,都可以使用本专利的控制 方法。
如图7,对于采用电机驱动的水阀,在传统控制方式的输出力矩中, 步进电机采用低速启动,启动一段时间后加速至目标速度。由于电机输出 力矩与运行速度成反比的关系,在启动阶段,电机速度较低,而电机输出 力矩比较大,可以满足力矩需求。一般情况下是在运行设定时间后加速达 到目标速度,力矩下降较大,而如果此时阀芯还未运行出摩擦力较大范围 III,这样水阀会有堵转风险。
在控制方法的另一实施例中,如图8,控制方法还包括:
上电启动电子水阀;
控制阀芯复位至第一位置;
控制步进电机转速为第三转速,进入第三过程;
判断第三过程是否结束;
当判断第三过程没有结束,则控制步进电机维持第三转速;
当判断第三过程结束,则控制步进电机切换为第一转速,进入第一过 程;
其中,第三转速小于第一转速。步进电机在第三转速下的输出扭矩大 于在第一转速下的输出扭矩,使步进电机的转速与电子水阀的开启或运行 过程中所需的扭矩相匹配。如图7,第三过程中第一阀片22的运动范围包 含于第三范围III,第一过程中第一阀片22的运动范围包含于第一范围I。
具体地,如图9、图10所示,本实施例的第三过程中,步进电机4采 用低速启动方式,启动后未直接加速至目标速度,而是在较低的第三转速 V3下运行。此时由于速度较低,因此电机输出扭矩较大,可以满足第三范 围III中由于摩擦力矩较大而造成需求扭矩较大的要求,从而减少第三过程 的堵转风险。在第三过程的末段再加速至较高的第一转速V1运行,进入 第一过程。在摩擦力矩较小的运动范围(即第一范围I)内,步进电机4 在保证可靠运行的情况下以较大的速度运行,满足电子水阀运行时间尽量 短的要求。
优选地,第三转速的取值范围为100~200RPM。
第三转速V1取值满足100~200RPM的范围,例如105RPM、110RPM、 120RPM、130RPM、140RPM、150RPM、160RPM、170RPM、180RPM、 190RPM、195RPM时,可以产生较大的电机输出扭矩,满足在第三范围 III的较大扭矩需求,降低堵转风险,同时又不至于使第一阀片转动过慢而 导致运行时间过长。
这里应当说明,对于不同的***要求,第三转速V3、第一转速V1可 以为多个值,也可以是一个变化的转速,但需满足V1大于V3。这里应当 说明,在V3和V1相转变的临界点,两者的速度可以是平滑的转变。
优选地,步进电机转速从第一转速与第二转速之间进行切换、或者第 二转速与第三转速进行切换时,转速切换过程并不是突然变速,而是通过 一个时间段内的变速过程,优选地通过一个匀变速过程。具体地,控制步 进电机切换为第三转速包括:步进电机转速由上一过程的转速匀变速变化 至第三转速;控制步进电机切换为第一转速包括:步进电机转速由上一过 程的转速匀变速变化至第一转速;控制步进电机切换为第二转速包括:步进电机转速由上一过程的转速匀变速变化至第二转速。在转速变化的一种 实施方式中,如图11,在第三转速切换到第一转速的过程中,加速过程为 匀加速过程;在第一转速切换到第二转速的过程中,减速过程为匀减速过 程。优选地,加速过程用时大约为1.2s(如图11中ΔT1段),减速过程用 时为100ms以内(如图11中ΔT2段),可以减少堵转几率。需要说明的是,转速切换过程是在前一个过程结束之后才开始,例如在第一过程结束 之后才开始转速切换过程。
优选地,由于第一转速时步进电机力矩较小,反电势和速度变化产生 的跳动会增加步进电机堵转的机率,上述转速切换过程包括但不限于匀变 速过程,也可以为非匀速变速过程。
转速切换过程的另一种实施方式中,在由第三速度加速到第一速度的 过程中,让步进电机转速速率在接近第一转速时变化较加速之初平缓。这 种设置可以减小堵转几率。而减速的过程反之,减速之初可以让转速减少 比较快,接近第一转速的时候变化较减速之初平缓,同样可克服反电势和 惯量带来的影响。
转速切换过程的又一种实施方式中,步进电机转速速率先进入第一平 缓变化阶段,再进入急剧变化阶段,再进入第二平缓变化阶段,第一、第 二平缓变化阶段的加速度小于急剧变化阶段。具体地,如图20,步数在 Nx~Ny内为第一平缓变化阶段,Ny~Nz内为急剧变化阶段,Nz~Nk内为 第二平缓变化阶段。这种设置可以进一步减小堵转几率。
在控制方法的第一种实施方式中,第三过程是否结束主要参照当前由 第一位置向第二位置方向旋转的步进电机步数N,由于电机通过传动部与 第一阀片连接,且步进电机的误差不会积累。
具体地,如图4,判断第三过程是否结束包括:
采集当前步进电机步数(N),判断当前步进电机步数(N)是否大于 等于第二步进电机预设步数(NF),若否,则判断所述第三过程没有结束, 若是,则判断所述第三过程结束。
其中,NF为预设的第二步进电机预设步数。此外,由于步进电机4 通过传动部与第一阀片连接,意味着当前步进电机步数N对应于当前的第 一阀片的位置,第二步进电机预设步数NF对应于阀芯位于第一预设位置。 图5中第一阀片22从第一位置转动至第二位置的转动角度θ3对应为步进 电机的最大步数N3。需要说明的是,采集当前步进电机步数是一个实时反 馈的过程,其每次反馈的时间间隔一般小于1ms,可以满足控制的精度。
NF的值主要参考图1中阀门的需求扭矩曲线。若设图5中第一阀片 22的转动角度θ1对应的步进电机步数为N1,则NF须大于N1,可降低第 一阀片22在转动角度0~θ1范围(即第一范围I)内的堵转风险。
优选地,在满足NF大于N1的条件下,选取尽可能小的第二步进电机 预设步数NF,使第一阀片22在运行出0~θ1范围后及时加速,可以将第 一阀片的运行时间减少,同时兼顾减少堵转风险。
具体地,对于图13中的旋转三通阀,若θ1对应的步进电机步数N1 为0.1N3,则第二步进电机预设步数NF的取值范围可选择为0.1N3~0.3N3, 例如0.11N3、0.13N3、0.15N3、0.17N3、0.19N3、0.20N3、0.21N3、0.23N3、 0.25N3、0.27N3、0.29N3时,可以在减少运行时间与减小堵转风险两个要 求之间取得一个较好的平衡。
此外,由于某些带有流量调节功能的电子水阀需要将阀芯停止在特定 的角度以调节阀口的开度,因此在进入第二过程运行一段时间后,所述第 二过程可包括:
判断所述阀芯是否至第一开度位置;
若否,则控制步进电机维持第二转速;若是,则控制所述步进电机停 止,第二过程结束。此时,第一开度位置为所需要的阀口开度的阀芯位置, 即第一阀片停止于所需的阀口开度,且第一阀片角度位于第二范围II内。
在控制方法中,如图21,第二过程还可包括:
判断第二过程是否结束,
当判断第二过程没有结束,则控制步进电机维持第二转速;
当判断第二过程结束,阀芯位于第二位置,控制步进电机停止;
断电关闭电子水阀。
具体地,判断第二过程是否结束包括:采集当前步进电机步数(N), 判断当前步进电机步数是否大于等于步进电机的最大步数(N3)(即判断 阀芯2是否达到第二位置),若否,则判断所述第二过程没有结束,若是, 则判断所述第二过程结束。至此,整个闭阀过程或者开阀过程完成。
如图2,传动部可包括齿轮组51,步进电机可通过齿轮组51与阀芯传 动连接。步进电机与阀芯之间也可以设置为其他合适的传动方式,例如将 步进电机的转子与阀芯间设置为丝杆结构,或直接将转子与阀芯固定。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描 述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的 说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员 仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和 范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (10)

1.一种电子水阀的控制方法,所述电子水阀包括阀芯和步进电机,其特征在于,所述控制方法包括:
第一过程,所述步进电机转速为第一转速;
判断所述第一过程是否结束;
当判断所述第一过程没有结束,则控制所述步进电机维持第一转速;
当判断所述第一过程结束,则控制所述步进电机切换为第二转速,进入所述第二过程;
其中,所述第二转速小于第一转速。
2.根据权利要求1所述的电子水阀控制方法,其特征在于,判断所述第一过程是否结束包括:
采集当前步进电机步数(N),判断当前步进电机步数(N)是否大于等于第一步进电机预设步数(NS),若否,则判断所述第一过程没有结束,若是,则判断所述第一过程结束。
3.根据权利要求1-2所述的电子水阀控制方法,其特征在于,所述控制方法还包括:
上电启动所述电子水阀;
控制所述阀芯复位至第一位置;
控制所述步进电机转速为第三转速,进入第三过程;
判断所述第三过程是否结束;
当判断所述第三过程没有结束,则控制所述步进电机维持第三转速;
当判断所述第三过程结束,则控制所述步进电机切换为第一转速,进入第一过程;
其中,所述第二转速小于所述第一转速。
4.根据权利要求3所述的电子水阀控制方法,其特征在于,
判断第三过程是否结束包括:
采集当前步进电机步数(N),判断当前步进电机步数(N)是否大于等于第二步进电机预设步数(NF),若否,则判断所述第三过程没有结束,若是,则判断所述第三过程结束。
5.根据权利要求2所述的电子水阀控制方法,其特征在于,所述控制方法还包括:
判断所述第二过程是否结束,
当判断所述第二过程没有结束,则控制所述步进电机维持第二转速;
当判断所述第二过程结束,所述阀芯位于第二位置,控制所述步进电机停止;
断电关闭所述电子水阀。
6.根据权利要求5所述的电子水阀控制方法,其特征在于,判断所述第二过程是否结束包括:
采集当前步进电机步数(N),判断所述当前步进电机步数(N)是否大于等于步进电机最大步数(N3),
若否,则判断所述第二过程没有结束,若是,则判断所述第二过程结束。
7.根据权利要求4所述的电子水阀控制方法,其特征在于,
控制所述步进电机切换为第三转速包括:步进电机转速由上一过程的转速匀变速变化至第三转速;
控制所述步进电机切换为第一转速包括:步进电机转速由上一过程的转速匀变速变化至第一转速;
控制所述步进电机切换为第二转速包括:步进电机转速由上一过程的转速匀变速变化至第二转速;
所述第二转速的取值范围为250~400RPM,所述第一转速的取值范围为100~200RPM,所述第三转速的取值范围为100~200RPM。
8.根据权利要求4所述的电子水阀控制方法,其特征在于,
所述步进电机转速从所述第一转速与第二转速之间进行切换、或者第一转速与第三转速进行切换时,所述步进电机转速先进入第一平缓变化阶段,再进入急剧变化阶段,再进入第二平缓变化阶段,所述第一、第二平缓变化阶段的加速度小于急剧变化阶段的加速度;
所述第一转速的取值范围为250~400RPM,所述第二转速的取值范围为100~200RPM,所述第三转速的取值范围为100~200RPM。
9.根据权利要求1-8所述的电子水阀控制方法,其特征在于,
所述电子水阀具有电控部件,所述电控部件包括:信息处理模块,电机驱动模块,数据存储模块;所述数据存储模块用于存储步进电机的当前位置信息;所述电控部件通过汽车总线与主控制器连接,并接收主控制器下发的总线控制信号;所述信息处理模块可提取所述总线控制信号内包含的步进电机动作信息,结合从所述数据存储模块中读取的步进电机的当前位置信息,生成相应的脉冲控制信号,输出至所述步进电机驱动模块;所述步进电机驱动模块根据所述脉冲控制信号驱动所述步进电机。
10.根据权利要求9所述的电子水阀控制方法,其特征在于,所述电控部件还包括步进电机监测模块,用于监测步进电机的线圈上的感应电动势是否发生异常,如果是,发送异常信号至所述信息处理模块,对应的,所述信息处理模块可以根据接收到的来自所述步进电机监测模块的感应电动势异常信号,计算得到所述步进电机当前的位置信息,存储在所述数据存储模块中。
CN201810552655.8A 2018-05-31 2018-05-31 一种电子水阀的控制方法 Active CN110553076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810552655.8A CN110553076B (zh) 2018-05-31 2018-05-31 一种电子水阀的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810552655.8A CN110553076B (zh) 2018-05-31 2018-05-31 一种电子水阀的控制方法

Publications (2)

Publication Number Publication Date
CN110553076A true CN110553076A (zh) 2019-12-10
CN110553076B CN110553076B (zh) 2022-04-22

Family

ID=68734517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810552655.8A Active CN110553076B (zh) 2018-05-31 2018-05-31 一种电子水阀的控制方法

Country Status (1)

Country Link
CN (1) CN110553076B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163362A (zh) * 2022-06-24 2022-10-11 一汽解放汽车有限公司 燃油转换电磁阀及燃油加注***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207198A (ja) * 1985-03-08 1986-09-13 Nippon Carbureter Co Ltd ステツプモ−タの運転方法
US5059879A (en) * 1988-06-28 1991-10-22 Nippon Gear Co., Ltd. Electric actuator control apparatus
JP2005117854A (ja) * 2003-10-10 2005-04-28 Calsonic Kansei Corp ステッピングモータの制御方法およびそれを用いた車両用多方弁の流量制御装置
CN102374328A (zh) * 2010-08-27 2012-03-14 杭州三花研究院有限公司 一种电子膨胀阀、步进电机及换向阀
KR101383262B1 (ko) * 2014-01-10 2014-04-08 주식회사 아이토크콘트롤즈 액추에이터의 토크 제어 시스템
US20170130856A1 (en) * 2008-07-18 2017-05-11 Flowserve Management Company Variable-speed actuator
CN107859770A (zh) * 2016-09-22 2018-03-30 上海城投原水有限公司 一种阀门控制方法及一种电动开阀器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207198A (ja) * 1985-03-08 1986-09-13 Nippon Carbureter Co Ltd ステツプモ−タの運転方法
US5059879A (en) * 1988-06-28 1991-10-22 Nippon Gear Co., Ltd. Electric actuator control apparatus
JP2005117854A (ja) * 2003-10-10 2005-04-28 Calsonic Kansei Corp ステッピングモータの制御方法およびそれを用いた車両用多方弁の流量制御装置
US20170130856A1 (en) * 2008-07-18 2017-05-11 Flowserve Management Company Variable-speed actuator
CN102374328A (zh) * 2010-08-27 2012-03-14 杭州三花研究院有限公司 一种电子膨胀阀、步进电机及换向阀
KR101383262B1 (ko) * 2014-01-10 2014-04-08 주식회사 아이토크콘트롤즈 액추에이터의 토크 제어 시스템
CN107859770A (zh) * 2016-09-22 2018-03-30 上海城投原水有限公司 一种阀门控制方法及一种电动开阀器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163362A (zh) * 2022-06-24 2022-10-11 一汽解放汽车有限公司 燃油转换电磁阀及燃油加注***

Also Published As

Publication number Publication date
CN110553076B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US10844952B2 (en) Shift range control apparatus
JP5831766B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
CN102201768A (zh) 无刷电机的驱动装置及驱动方法
CN105556828A (zh) 3相无刷电动机的驱动装置
US20070251477A1 (en) Diagnosis system for vane-type variable valve timing controller
CN110553076B (zh) 一种电子水阀的控制方法
CN104702192A (zh) 控制设备和具有该控制设备的线控换档***
EP2282402B1 (en) Electric pump device
CN102472633A (zh) 用于确定调节部件的设定位置的方法
CN110553079B (zh) 一种电子水阀的控制方法
JP2013001237A (ja) ワイパ制御装置及びワイパ制御方法
CN104702193A (zh) 控制设备和具有该控制设备的线控换档***
KR920005387B1 (ko) 드로틀 작동기 제어장치
US6913122B2 (en) Brake for DC motor
CN110553077B (zh) 一种电子水阀的控制方法
CN111512074A (zh) 换挡挡位控制装置
CN110553078B (zh) 一种电子水阀的控制方法
CN209557371U (zh) 一种多功能油阀
CN109546901B (zh) 一种直流无刷电机换相方法
JP2020063804A (ja) シフトレンジ制御装置
US11316464B2 (en) Shift range control device
US20210180690A1 (en) Shift range control device
US20220190750A1 (en) Motor control device
CN111365823A (zh) 空调***及空调***的控制方法
KR100977085B1 (ko) 지능형 정렬을 이용한 센서리스 브러시리스 모터의 고속기동방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant