CN110534353B - 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用 - Google Patents

一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN110534353B
CN110534353B CN201910888117.0A CN201910888117A CN110534353B CN 110534353 B CN110534353 B CN 110534353B CN 201910888117 A CN201910888117 A CN 201910888117A CN 110534353 B CN110534353 B CN 110534353B
Authority
CN
China
Prior art keywords
ethylenedioxythiophene
congo red
graphene nanoribbon
graphene
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910888117.0A
Other languages
English (en)
Other versions
CN110534353A (zh
Inventor
李宝铭
杜圆圆
王小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910888117.0A priority Critical patent/CN110534353B/zh
Publication of CN110534353A publication Critical patent/CN110534353A/zh
Application granted granted Critical
Publication of CN110534353B publication Critical patent/CN110534353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种刚果红掺杂聚3,4‑乙撑二氧噻吩键合石墨烯纳米带的制备方法及其应用,属于超级电容器用电极材料制备技术领域。所述刚果红掺杂聚3,4‑乙撑二氧噻吩键合石墨烯纳米带是先用2‑乙胺噻吩和酰氯化石墨烯纳米带反应制备噻吩基石墨烯纳米带,再将噻吩基石墨烯纳米带、刚果红和三氯化铁加入到氯仿中配置混合液,最后将3,4‑乙撑二氧噻吩滴加到上述混合液中,经化学氧化聚合制备而成。本发明制得的刚果红掺杂聚3,4‑乙撑二氧噻吩键合石墨烯纳米带具有较高的比电容和较优异的循环稳定性,主要用于制备超级电容器的电极,具有显著的经济价值和社会效益。

Description

一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用
技术领域
本发明属于超级电容器用电极材料制备技术领域,具体涉及一种刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的制备方法及其应用。
背景技术
聚3,4-乙撑二氧噻吩(PEDOT)具有成膜性好、不易被氧化、电导率可调和环境热稳定性良好等优点,在超级电容器的电极材料方面具有广阔的应用前景。但是PEDOT的理论比电容小,单体在水中溶解度低,且聚合过程中容易发生团聚,这些都限制了PEDOT在用做超级电容器的电极材料方面的应用。王敏超(王敏超; 聚(3,4-乙撑二氧噻吩)与石墨烯、碳纳米管复合材料的制备及性能研究, 乌鲁木齐: 新疆大学, 2016)通过对单壁碳纳米管表面进行功能化,分别在碳纳米管表面接枝不同的噻吩类基团后再与聚3,4-乙撑二氧噻吩复合,制备了不同比例的2位噻吩修饰单壁碳纳米管/聚3,4-乙撑二氧噻吩、3位噻吩修饰单壁碳纳米管/聚3,4-乙撑二氧噻吩和3,4-乙撑二氧噻吩修饰单壁碳纳米管/聚3,4-乙撑二氧噻吩。探讨了不同的噻吩类基团修饰单壁碳纳米管对材料结构及电化学性能的影响,以及复合物中不同含量功能化单壁碳纳米管对材料结构及电化学性能的影响。结果表明3位噻吩修饰单壁碳纳米管/聚3,4-乙撑二氧噻吩的比电容为190 F/g。但是单壁碳纳米管一方面在反应过程中易层叠和团聚;另一方面比表面积较小,不能为聚3,4-乙撑二氧噻吩提供足够的支撑空间,造成聚3,4-乙撑二氧噻吩的团聚。石墨烯纳米带是将二维的碳纳米管通过氧化方法沿纵向解开,形成卷曲状的石墨烯材料。石墨烯纳米带具有部分类似碳纳米管的管状结构同时也具有类似石墨烯的层状结构,这种特殊的结构保证了石墨烯纳米带在使用过程中不易层叠和团聚。因此,石墨烯纳米带比碳纳米管具有更大的比表面积,比石墨烯具有更小的分子间作用力。Feng-Hao Hsu(Feng-Hao Hsu, Jyun-Wei Huang, Tzong-MingWu; Electrochemical characteristics of graphene nanoribbon/polypyrrolecomposite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate), Materials Chemistry and Physics, 2015, 161: 265-270.)在表面活性剂PSS的存在下,制备了石墨烯纳米带/聚吡咯复合材料,测试结果显示,该复合材料的比电容能达到881 F/g,循环稳定性也有一定程度提高。但是,通过普通的机械混合或者是简单的静电结合,不能使聚3,4-乙撑二氧噻吩均匀分散,也不能充分发挥石墨烯纳米带的巨大比表面积的优势,并且通常的物理复合导致聚3,4-乙撑二氧噻吩与石墨烯纳米带之间的作用力很小,循环稳定性较差。
发明内容
针对以上碳纳米材料易层叠和聚3,4-乙撑二氧噻吩易团聚的问题,本发明提供了一种刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的制备方法。本发明制得的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带具有较高的比电容和较优异的循环稳定性,主要用于制备超级电容器的电极,具有显著的经济价值和社会效益。
为实现上述目的,本发明采用如下技术方案:
一种刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带是先用2-乙胺噻吩和酰氯化石墨烯纳米带反应制得噻吩基石墨烯纳米带,再将噻吩基石墨烯纳米带、刚果红和三氯化铁加入到氯仿中配置混合液,最后将3,4-乙撑二氧噻吩滴加到上述混合液中,经化学氧化聚合制备而成。
所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的制备方法具体包括以下步骤:
(1)将0.5~1 g酰氯化石墨烯纳米带(Bakhshali Massoumi, Mehdi Jaymand,Reza SamadiAli, Akbar Entezami; In situ chemical oxidative graftpolymerization of thiophene derivatives from multi-walled carbon nanotubes,Journal of Polymer Research, 2014, 21: 442)加入到200~400 mL四氢呋喃中,在室温下超声30~60 min后,加入0.5~2 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应24~48h,经离心、乙醇洗涤、-50 ℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.2~0.4 g噻吩基石墨烯纳米带加入到100~200 mL氯仿中,在室温下超声30~60 min,再加入0.05~0.2 g刚果红,在室温下继续超声20~60 min,最后加入0.25~2.5 g三氯化铁,在0 ℃下继续超声30~90 min,制得噻吩基石墨烯纳米带、刚果红和三氯化铁的混合液;
(3)向上述混合液中以10~40滴/min的速度逐滴滴加5~40 mL 3,4-乙撑二氧噻吩溶液,在10~30 ℃下,磁力搅拌反应12~24 h;反应结束后,将反应混合液倒入250~500 mL甲醇中,在室温下磁力搅拌30~60 min后,静置12~36 h;经过滤、甲醇和去离子水交叉洗涤、60℃真空干燥24 h,制得所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
所述3,4-乙撑二氧噻吩溶液的浓度为20 g/L,溶剂为氯仿。
进一步地,将制备得到的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带应用于制备超级电容器的电极中。
本发明的显著优点在于:
(1)石墨烯纳米带具有类似碳纳米管的管状结构和类似石墨烯的层状结构,在使用过程中不易层叠和团聚。本发明以石墨烯纳米带为载体,可以避免聚3,4-乙撑二氧噻吩发生团聚,提高聚3,4-乙撑二氧噻吩的比电容。另外,通过聚3,4-乙撑二氧噻吩和石墨烯纳米带之间的化学键合,借助石墨烯纳米带稳定的三维结构,提高聚3,4-乙撑二氧噻吩的循环稳定性。
(2)本发明制得的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带具有较高的比电容和较优异的循环稳定性,在充放电电流密度分别为1 A/g、2 A/g、4 A/g和8 A/g时,比电容分别为257~275 F/g、243~257 F/g、232~244 F/g和229~238 F/g,循环2000次后,比电容的保持率为85~88 %,主要用于制备超级电容器的电极,具有显著的经济价值和社会效益。
附图说明
图1为实施例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的红外光谱;
图2为实施例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的扫描电镜照片;
图3为对比例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩/石墨烯纳米带复合材料的扫描电镜照片;
图4为对比例2制备的聚3,4-乙撑二氧噻吩键合石墨烯纳米带的扫描电镜照片;
图5为对比例3制备的刚果红掺杂聚3,4-乙撑二氧噻吩的扫描电镜照片。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)将0.8 g酰氯化石墨烯纳米带加入到320 mL四氢呋喃中,在室温下超声45 min后,加入1.2 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应36 h,经离心、乙醇洗涤、-50 ℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.3 g噻吩基石墨烯纳米带加入到150 mL氯仿中,在室温下超声45 min,再加入0.1 g刚果红,在室温下继续超声40 min,最后加入1 g三氯化铁,在0 ℃下继续超声60min,制得噻吩基石墨烯纳米带、刚果红和三氯化铁的混合液;
(3)向上述混合液中以20滴/min的速度逐滴滴加18 mL 3,4-乙撑二氧噻吩溶液,在20 ℃下,磁力搅拌反应18 h;反应结束后,将反应混合液倒入300 mL甲醇中,在室温下磁力搅拌45 min后,静置24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
图1为实施例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的红外光谱。从图中可以看出,在3435 cm-1处出现了石墨烯纳米带上羟基的O-H振动吸收峰,在2930 cm-1和2850 cm-1处出现了噻吩环上C-H的伸缩振动吸收峰,在1480 cm-1和1310 cm-1处出现了噻吩环上C=C和C-C的伸缩振动吸收峰,在1514 cm-1和979 cm-1处出现了3,4-乙撑二氧噻吩上C-O-C的伸缩振动吸收峰,在1185 cm-1和1070 cm-1处出现了刚果红上-SO3 -的特征吸收峰,这说明说明刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带被成功制备。
图2为实施例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的扫描电镜照片。从图中可以看出,因为噻吩基石墨烯纳米带在氯仿中的分散性较好以及刚果红作为表面活性剂的分散作用,所以噻吩基石墨烯纳米带在氯仿中舒展成片层结构,聚合生成的刚果红掺杂聚3,4-乙撑二氧噻吩较均匀地包覆在石墨烯纳米带表面。另外,由于噻吩基石墨烯纳米带的噻吩基团主要分布在石墨烯纳米带的边缘,因此从图2中还可以发现,在石墨烯纳米带边缘包覆的刚果红掺杂聚3,4-乙撑二氧噻吩的量较多。
实施例2
(1)将0.5 g酰氯化石墨烯纳米带加入到200 mL四氢呋喃中,在室温下超声30 min后,加入0.5 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应24 h,经离心、乙醇洗涤、-50 ℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.2 g噻吩基石墨烯纳米带加入到100 mL氯仿中,在室温下超声30 min,再加入0.05 g刚果红,在室温下继续超声20 min,最后加入0.25 g三氯化铁,在0 ℃下继续超声30 min,制得噻吩基石墨烯纳米带、刚果红和三氯化铁的混合液;
(3)向上述混合液中以10滴/min的速度逐滴滴加5 mL 3,4-乙撑二氧噻吩溶液,在10 ℃下,磁力搅拌反应24 h;反应结束后,将反应混合液倒入250 mL甲醇中,在室温下磁力搅拌30 min后,静置12 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
实施例3
(1)将1 g酰氯化石墨烯纳米带加入到400 mL四氢呋喃中,在室温下超声60 min后,加入2 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应48 h,经离心、乙醇洗涤、-50℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.4 g噻吩基石墨烯纳米带加入到200 mL氯仿中,在室温下超声60 min,再加入0.2 g刚果红,在室温下继续超声60 min,最后加入2.5 g三氯化铁,在0 ℃下继续超声90 min,制得噻吩基石墨烯纳米带、刚果红和三氯化铁的混合液;
(3)向上述混合液中以40滴/min的速度逐滴滴加40 mL 3,4-乙撑二氧噻吩溶液,在30 ℃下,磁力搅拌反应12 h;反应结束后,将反应混合液倒入500 mL甲醇中,在室温下磁力搅拌60 min后,静置36 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
对比例1
(1)将0.3 g石墨烯纳米带加入到150 mL氯仿中,在室温下超声45 min,再加入0.1g刚果红,在室温下继续超声40 min,最后加入1 g三氯化铁,在0 ℃下继续超声60 min,制得石墨烯纳米带、刚果红和三氯化铁的混合液;
(2)向上述混合液中以20滴/min的速度逐滴滴加18 mL 3,4-乙撑二氧噻吩溶液,在20 ℃下,磁力搅拌反应18 h;反应结束后,将反应混合液倒入300 mL甲醇中,在室温下磁力搅拌45 min后,静置24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得刚果红掺杂聚3,4-乙撑二氧噻吩/石墨烯纳米带复合材料。
图3为对比例1制备的刚果红掺杂聚3,4-乙撑二氧噻吩/石墨烯纳米带复合材料的扫描电镜照片。从图中可以看出,由于刚果红掺杂聚3,4-乙撑二氧噻吩和石墨烯纳米带之间没有化学键合,并且石墨烯纳米带在氯仿中的分散性较差,所以聚合生成的刚果红掺杂聚3,4-乙撑二氧噻吩和石墨烯纳米带之间存在明显的分离现象。
对比例2
(1)将0.8 g酰氯化石墨烯纳米带加入到320 mL四氢呋喃中,在室温下超声45 min后,加入1.2 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应36 h,经离心、乙醇洗涤、-50 ℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.3 g噻吩基石墨烯纳米带加入到150 mL氯仿中,在室温下超声45 min,再加入1 g三氯化铁,在0 ℃下继续超声60 min,制得噻吩基石墨烯纳米带和三氯化铁的混合液;
(3)向上述混合液中以20滴/min的速度逐滴滴加18 mL 3,4-乙撑二氧噻吩溶液,在20 ℃下,磁力搅拌反应18 h;反应结束后,将反应混合液倒入300 mL甲醇中,在室温下磁力搅拌45 min后,静置24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
图4为对比例2制备的聚3,4-乙撑二氧噻吩键合石墨烯纳米带的扫描电镜照片。从图中可以看出,由于缺乏刚果红作为表面活性剂的分散作用,噻吩基石墨烯纳米带在氯仿中形成蓬松的卷曲结构,聚合生成的聚3,4-乙撑二氧噻吩较均匀地包覆在卷曲的石墨烯纳米带表面。
对比例3
(1)将0.1 g刚果红加入到150 mL氯仿中,在室温下超声40 min,再加入1 g三氯化铁,在0 ℃下继续超声60 min,制得刚果红和三氯化铁的混合液;
(2)向上述混合液中以20滴/min的速度逐滴滴加18 mL 3,4-乙撑二氧噻吩溶液,在20 ℃下,磁力搅拌反应18 h;反应结束后,将反应混合液倒入300 mL甲醇中,在室温下磁力搅拌45 min后,静置24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得刚果红掺杂聚3,4-乙撑二氧噻吩。
图5为对比例3制备的刚果红掺杂聚3,4-乙撑二氧噻吩的扫描电镜照片。从图中可以看出,刚果红掺杂聚3,4-乙撑二氧噻吩呈现疏松的颗粒结构并具有多孔形貌。
将80wt %产物、15 wt%乙炔炭黑和5wt %聚偏氟乙烯混合均匀涂在不锈钢网上作为工作电极,以铂丝作为对电极,以饱和甘汞电极作为参比电极,以1 mol/L硫酸水溶液作为电解液,利用恒流充放电方法测试实施例和对比例所制备产物的比电容,利用循环伏安法测试实施例和对比例所制备产物的电化学循环稳定性,其中,电压范围为-0.2 V~0.8 V,充放电电流密度分别为1 A/g、2 A/g、4 A/g和8 A/g,扫描速率为100 mV/s,测试结果如表1所示。
Figure 323086DEST_PATH_IMAGE002
从三组实施例和三组对比例的测试结果可以看出,先用2-乙胺噻吩和酰氯化石墨烯纳米带反应制备噻吩基石墨烯纳米带,再将噻吩基石墨烯纳米带、刚果红和三氯化铁加入到氯仿中配置混合液,最后将3,4-乙撑二氧噻吩滴加到上述混合液中,经化学氧化聚合可以制备具有较高比电容和较优异循环稳定性的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的制备方法,其特征在于:先用2-乙胺噻吩和酰氯化石墨烯纳米带反应制得噻吩基石墨烯纳米带,再将噻吩基石墨烯纳米带、刚果红和三氯化铁加入到氯仿中配置混合液,最后将3,4-乙撑二氧噻吩滴加到上述混合液中,经化学氧化聚合制备而成;具体包括以下步骤:
(1)将0.5~1 g酰氯化石墨烯纳米带加入到200~400 mL四氢呋喃中,在室温下超声30~60 min后,加入0.5~2 g 2-乙胺噻吩,在室温和氮气保护下磁力搅拌反应24~48 h,经离心、乙醇洗涤、-50 ℃冷冻干燥48 h,制得噻吩基石墨烯纳米带;
(2)将0.2~0.4 g噻吩基石墨烯纳米带加入到100~200 mL氯仿中,在室温下超声30~60min,再加入0.05~0.2 g刚果红,在室温下继续超声20~60 min,最后加入0.25~2.5 g三氯化铁,在0 ℃下继续超声30~90 min,制得噻吩基石墨烯纳米带、刚果红和三氯化铁的混合液;
(3)向上述混合液中以10~40滴/min的速度逐滴滴加5~40 mL 3,4-乙撑二氧噻吩溶液,在10~30 ℃下,磁力搅拌反应12~24 h;反应结束后,将反应混合液倒入250~500 mL甲醇中,在室温下磁力搅拌30~60 min后,静置12~36 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制得所述刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带。
2.根据权利要求1所述的刚果红掺杂聚3,4-乙撑二氧噻吩键合石墨烯纳米带的制备方法,其特征在于:所述3,4-乙撑二氧噻吩溶液的浓度为20 g/L,溶剂为氯仿。
CN201910888117.0A 2019-09-19 2019-09-19 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用 Active CN110534353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910888117.0A CN110534353B (zh) 2019-09-19 2019-09-19 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910888117.0A CN110534353B (zh) 2019-09-19 2019-09-19 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110534353A CN110534353A (zh) 2019-12-03
CN110534353B true CN110534353B (zh) 2020-11-03

Family

ID=68669328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910888117.0A Active CN110534353B (zh) 2019-09-19 2019-09-19 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110534353B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470629A (zh) * 2018-04-26 2018-08-31 福州大学 一种镍离子掺杂聚噻吩/石墨烯复合电极材料及其制备方法
CN108570229A (zh) * 2018-05-09 2018-09-25 东华大学 一种石墨烯纳米带-聚苯胺纳米带复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470629A (zh) * 2018-04-26 2018-08-31 福州大学 一种镍离子掺杂聚噻吩/石墨烯复合电极材料及其制备方法
CN108570229A (zh) * 2018-05-09 2018-09-25 东华大学 一种石墨烯纳米带-聚苯胺纳米带复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Capacitive behavior and material characteristics of congo red doped poly(3,4-ethylene dioxythiophene)";Mengdi Bai等;《Electrochimica Acta》;20180703;第283卷;第590-596页 *
Electrochemical characteristics of graphene nano ribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly(sodium 4-styrenesulfonate;Feng-Hao Hsu等;《Materials Chemistry and Physics》;20150701;第161卷;第1-6页 *

Also Published As

Publication number Publication date
CN110534353A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Yang et al. Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline
Zhou et al. Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors
CN102250324B (zh) 聚(3,4-二氧乙基)噻吩包覆碳纳米管的复合材料的制备方法
CN104973596A (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
Fu et al. Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors
Song et al. Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes
CN103112238B (zh) 一种导电聚合物复合薄膜的制备方法
Hu et al. One-step preparation of flexible nanocellulose-based composite hydrogel supercapacitors with high specific capacitance
CN104176783B (zh) 一种氮碳材料包覆二氧化锰纳米线的制备及应用方法
CN102516538B (zh) 界面聚合制备纤维网络结构导电聚吡咯膜的方法
Zhang et al. Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance
Fu et al. Novel non-covalent sulfonated multiwalled carbon nanotubes from p-toluenesulfonic acid/glucose doped polypyrrole for electrochemical capacitors
CN106504910A (zh) 一种蒽醌分子共接枝碳/导电聚合物复合材料及其制备方法
CN107742695A (zh) 一种用于柔性锂离子电池的三维多孔复合极片的制备方法
CN104979103A (zh) 一种螺旋线形非对称超级电容器制备方法
Shah et al. Conducting Polymers Based Nanocomposites for Supercapacitors
CN102010594B (zh) 一种导电聚合物/倍半硅氧烷复合电极材料的制备方法
Han et al. Experimental study on synthesis and microstructure of poly (p-phenylenediamine)/graphene oxide/Au and its performance in supercapacitor
CN108039283A (zh) 一种基于原位聚合的富氮掺杂多级孔碳材料及其制备方法与应用
CN108470629B (zh) 一种镍离子掺杂聚噻吩/石墨烯复合电极材料及其制备方法
Huang et al. Controllable synthesis of hierarchically porous polyaniline/MnO2 composite with wide potential window towards symmetric supercapacitor
Huang et al. Facile synthesis of 3D porous polyaniline composite with MnO2-decorated fiber morphology and enhanced electrochemical performance
CN103421188A (zh) 一种高电导率片状聚吡咯的制备方法
CN110534353B (zh) 一种聚3,4-乙撑二氧噻吩复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant