CN110467457A - 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用 - Google Patents

一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用 Download PDF

Info

Publication number
CN110467457A
CN110467457A CN201910747296.6A CN201910747296A CN110467457A CN 110467457 A CN110467457 A CN 110467457A CN 201910747296 A CN201910747296 A CN 201910747296A CN 110467457 A CN110467457 A CN 110467457A
Authority
CN
China
Prior art keywords
lead plumbate
preparation
hafnium
membrane process
antiferroelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910747296.6A
Other languages
English (en)
Inventor
杨同青
晁雯娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201910747296.6A priority Critical patent/CN110467457A/zh
Publication of CN110467457A publication Critical patent/CN110467457A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用,该铪酸铅基反铁电材料的化学通式为(Pb1‑3z/2Laz)(Hf1‑x‑ySnxTiy)O3,其中,0<z≤0.04,0<x<1.0,0<y<1.0;制备方法:1)将相应金属氧化物按照(Pb1‑3z/2Laz)(Hf1‑x‑ySnxTiy)O3中相应的化学计量比混合研磨;2)烘干预烧;3)二次研磨烘干;4)与粘合剂混合,并粗轧、精轧及裁切;5)进行排粘处理及烧结处,即制得铪酸铅基反铁电材料;该材料可用于制备脉冲功率电容器、储能电容器、换能器。与现有技术相比,本发明制备方法简单易行,操作简便,适合批量化生产;本发明样品尺寸可调,适用范围广,耐击穿性能强和储能密度高,具有很好的应用价值。

Description

一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用
技术领域
本发明属于电子材料技术领域,涉及一种基于轧膜工艺的铪酸铅基反铁电材料及其制备方法与应用。
背景技术
近年来,脉冲功率技术在医疗保健、激光技术和污染治理等领域得到广泛应用,而储能电容器作为脉冲功率***的核心组成部分,是科研工作者的研究重点。常见的用于储能电容器的介质材料包括铁电材料,反铁电材料和线性电介质材料。与铁电体和线性电介质材料相比,反铁电体由于其特有的AFE-FE相变,具有更加优异的储能和充放电特性,因而被认为是优异的储能材料。
在储能应用方面,为了提高反铁电材料的储能密度,主要有两种措施。第一种措施是根据容忍因子公式,对陶瓷进行掺杂改性,增大开关场并提高饱和极化强度。第二种是提高其击穿场强,使其AFE-FE相变可以更充分。由于储能密度与击穿电场的平方成正比,因此提高材料的击穿电场是主要的研究方向。目前,报道的反铁电陶瓷块体的储能密度一般较低,由于固相合成的陶瓷块体积较大,内部出现缺陷的几率增加,导致击穿场强较低,储能性能无法提高。对比其他制备工艺,流延工艺和丝网印刷工艺同样可以制备反铁电材料,但加入的粘合剂较多,烧纸过程中由于粘合剂挥发孔洞较多,致密性较差,且对工艺环境要求较高。
目前,对反铁电体的研究主要集中在制备工艺成熟、储能性能优良的镧改性的锆钛酸铅基反铁电材料,但是与之相似的铪酸铅(PbHfO3)基反铁电材料的储能性能却鲜有报道。虽然早在1953年PbHfO3就被确认为反铁电体,但是关于PbHfO3反铁电体的文献报道仍然很少。PbHfO3陶瓷具有高AFE-FE相变开关场(EF>200kV/cm)、较高的饱和极化强度(Pmax可达45μC/cm2)、高击穿场强(Eb可达270kV/cm)以及相对较小的电滞(ΔE~46kV/cm),关于PbHfO3陶瓷的制备工艺的介绍相对较少,目前多数采用传统的固相合成法,但是固相合成法制备的样品的储能密度较低,限制了反铁电材料的进一步应用。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于轧膜工艺的铪酸铅基反铁电材料及其制备方法与应用,通过一种新型的制备铪酸铅基陶瓷的工艺,提高陶瓷样品的均匀性和致密度,进而提高样品的击穿场强,最终达到提高材料的储能密度的目的,并且制备工艺简单,操作简便,成本较低,适合工业生产铪酸铅基反铁电材料。
本发明的目的可以通过以下技术方案来实现:
一种基于轧膜工艺的铪酸铅基反铁电材料,其化学通式为(Pb1-3z/2Laz)(Hf1-x- ySnxTiy)O3,其中,z的取值范围为0<z≤0.04,x的取值范围为0<x<1.0,y的取值范围为0<y<1.0,x+y<1。若x、y、z不在设定范围内,将无法得到性能良好的反铁电材料。
进一步地,z的取值范围为0.01≤z≤0.04,x的取值范围为0.18≤x≤0.68,y的取值范围为0.02≤y≤0.06。
材料是以铪酸铅陶瓷体系为基体,通过部分元素掺杂进入基体。
铪酸铅基反铁电材料中还可根据需要添加其他金属元素,如钡、铌、锶、锰或稀土金属等元素,以进一步提高材料的实际应用价值。
一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,所述的铪酸铅基反铁电材料的化学通式为(Pb1-3z/2Laz)(Hf1-x-ySnxTiy)O3,其中,z的取值范围为0≤z≤0.04,x的取值范围为0≤x<1.0,y的取值范围为0≤y<1.0,x+y<1;
所述的制备方法包括以下步骤:
1)将金属氧化物的混合物料进行一次研磨处理。
2)将一次研磨处理后的物料于110-130℃下烘干,并在850-900℃下恒温2-4h以进行预烧处理;预烧的目的是经过一次高温作用,使各原料发生预反应,初步形成目标产物,以确保最终产品的质量。温度过高,样品失去活性,过低则不能预反应形成目标产物。
3)将预烧处理后的物料进行二次研磨处理,之后于110-130℃下烘干。
4)将烘干后的物料与粘合剂以质量比1:(0.2-0.25)混合,先在轧膜机上进行1-2h的粗轧,再精轧至所需厚度,之后裁切至所需尺寸,得到素坯片。轧膜用的有机粘合剂配方如下:聚乙烯醇(20wt%)、去离子水(72wt%)、无水乙醇(8wt%)。在此基础上,可外加12wt%的甘油作为增塑剂。若加入的粘合剂太多,在后续烧结时残留过多有机溶剂易造成孔洞,致密性下降;但若加入的粘合剂太少,则胚片比较干裂,不易轧制大面积的胚片。轧制成功的素胚片应尽量在一定湿度的环境内保存,防止干燥裂化。
5)将素坯片置于马弗炉中先以0.5-2℃/min(优选为1℃/min)的升温速率升温至500-700℃(优选为600℃),并恒温2-5h以进行排粘处理,目的在于以缓慢升温速率去除胚体中的水分和有机粘合剂,避免在烧结中因升温过快而造成孔洞和缺陷,防止翘边现象;再在1200-1300℃下恒温2-4h以进行烧结处理,即制得铪酸铅基反铁电材料。
进一步地,步骤1)中,所述的金属氧化物的混合物料包括氧化铅及氧化铪。
进一步地,步骤1)中,所述的金属氧化物的混合物料还包括氧化镧、氧化锡或氧化钛中的一种或多种。
进一步地,步骤1)中的一次研磨处理及步骤3)中的二次研磨处理均为在球磨罐中进行的球磨处理,所述的球磨处理的工艺条件为:球磨介质为无水乙醇,研磨体、待处理物料及球磨介质的质量比为(1.5-3):(0.5-1.5):1,转速为300-350转/分钟,球磨时间为12-24h。球磨的作用是通过不断研磨原料,让原料颗粒度更细的同时,将各原料混合均匀,使预烧反应进行更充分,时间不宜过短或过长。
所述的待处理物料为步骤1)中金属氧化物的混合物料或步骤3)中的预烧处理后的物料。
作为优选的技术方案,步骤3)中物料进行二次球磨前,先通过研钵打碎。
一种如上所述的基于轧膜工艺的铪酸铅基反铁电材料,可通过磁控溅射仪镀金电极或在500-600℃下热处理20-40min涂覆银电极,进而进行性能测试或制备脉冲功率电容器、储能电容器或换能器。
与现有技术相比,本发明具有以下特点:
1)本发明采用轧膜法制备铪酸铅陶瓷,制备方法简单易行,操作简便,适合大规模,批量化生产,便于后期成型剪裁,可用于工业化生产;
2)本发明样品尺寸可调,轧膜完的材料厚度范围一般为0.08-2mm,可满足不同实际应用需要;
3)本发明适用范围广,可用于各种铪酸铅基反铁电材料配方;
4)本发明同现有的其他制备方法相比,由于滚轮之间存在巨大的剪切力和挤压力,采用本发明技术方案可显著增加材料的致密度,进而提高耐击穿性能和储能密度,击穿场强可达270-350kV/cm,储能密度为5-7J/cm3,具有很好的应用价值。
附图说明
图1为实施例1中制备得到的PbHfO3的SEM图;
图2为实施例1中制备得到的PbHfO3的电滞回线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
用纯度分别为分析纯的PbO,HfO2,按照PbHfO3中的Pb与Hf的化学计量比进行称量配料,将配好的料放入球磨罐中,球料及介质比为2:1:1。球磨时间24h,球磨后取出烘干,在850℃下预烧2h,接着再次球磨12h,烘干并过筛。然后加入25%粘合剂,在轧膜机上首先反复粗轧1h,最后精轧至0.26mm,切成10mm*10mm的素坯片。最后将排粘后的素坯片,放置于密闭的氧化铝干锅内,并用薄的氧化铝板置于样品上方以避免弯曲,其周围撒上适量氧化铅粉料,以避免铅的流失。将盛有素坯片的氧化铝坩埚放入马弗炉中,在600℃排粘4h,升温速率1℃每分钟,然后逐渐升温至1300℃下并保温4h,烧结完成后得到PbHfO3,进行表面形貌分析,使用磁控溅射仪对样品镀一层金电极进行相关铁电性能测试。制备的样品测试结果如图1和2所示。通过图1可以看出本实施例制备的反铁电材料表面整洁、致密,晶粒尺寸较小,使得材料可以承受相比块体材料更高的击穿电场。从图2可以看出PbHfO3陶瓷的正向开关场EF较高,大约为230-240kV/cm,且PbHfO3陶瓷样品的饱和极化强度很大,可达到45μC/cm2,大的EF以及可观的Pmax值显示了PbHfO3陶瓷优异的储能潜能。
实施例2:
用纯度分别为分析纯的PbO、La2O3、HfO2、SnO2按照(Pb0.97La0.02)(Hf0.45Sn0.55)0.995O3中Pb、La、Hf、Sn的化学计量比进行称量配料,将配好的料放入球磨罐中,球料及介质比为2:1:1。球磨时间24h,球磨后取出烘干,在850℃下预烧2h,接着再次球磨12h,烘干并过筛。然后加入25%粘合剂,在轧膜机上首先反复粗轧1h,最后精轧至0.26mm,切成10mm*10mm的素坯片。最后将排粘后的素坯片,放置于密闭的氧化铝干锅内,并用薄的氧化铝板置于样品上方以避免弯曲,其周围撒上同组分的原料,以更进一步避免铅在高温时的挥发。将盛有素坯片的氧化铝坩埚放入马弗炉中,在600℃排粘4h,升温速率1℃每分钟,然后逐渐升温至1150℃下并保温2.5h,烧结完成后,使用磁控溅射仪镀一层金电极进行测试。
实施例3:
一种基于轧膜工艺的铪酸铅基反铁电材料,以(Pb0.04La0.04)(Hf0.26Sn0.68Ti0.06)O3为基体,制备方法如下:
1)将氧化铅、氧化铪、氧化镧、氧化锡及氧化钛按照(Pb0.04La0.04)(Hf0.26Sn0.68Ti0.06)O3中相应的Pb、Hf、La、Sn、Ti的化学计量比进行混合,得到混合物料,并在球磨罐中进行一次球磨处理;
2)将一次研磨后的物料于130℃下烘干,并在850℃下恒温2h以进行预烧处理;
3)将预烧处理后的物料先通过研钵打碎,再在球磨罐中进行二次球磨处理,并于130℃下烘干;
4)将烘干后的物料与粘合剂以质量比0.2:1混合,先在轧膜机上进行1h的粗轧,再精轧至所需厚度,之后裁切至所需尺寸,得到素坯片;
5)将素坯片先以0.5℃/min的升温速率升温至500℃,并恒温2h以进行排粘处理,再在1200℃下恒温2h以进行烧结处理;即制得铪酸铅基反铁电材料。
球磨处理的处理条件为:球磨介质为无水乙醇,研磨体、待处理物料及球磨介质的质量比为1.5:0.5:1,转速为300转/分钟,球磨时间为12h,所述的待处理物料为步骤1)中的混合物料或步骤3)中的预烧处理后的物料。
将铪酸铅基反铁电材料在550℃下热处理30min以涂覆银电极进行性能测试。
实施例4:
一种基于轧膜工艺的铪酸铅基反铁电材料,以(Pb0.9854La0.01)(Hf0.8Sn0.18Ti0.02)O3为基体,制备方法如下:
1)将氧化铅、氧化铪、氧化镧、氧化锡及氧化钛按照(Pb0.9854La0.01)(Hf0.8Sn0.18Ti0.02)O3中相应的Pb、Hf、La、Sn、Ti的化学计量比进行混合,得到混合物料,并在球磨罐中进行一次球磨处理;
2)将一次研磨后的物料于120℃下烘干,并在900℃下恒温4h以进行预烧处理;
3)将预烧处理后的物料先通过研钵打碎,再在球磨罐中进行二次球磨处理,并于120℃下烘干;
4)将烘干后的物料与粘合剂以质量比0.25:1混合,先在轧膜机上进行2h的粗轧,再精轧至所需厚度,之后裁切至所需尺寸,得到素坯片;
5)将素坯片先以2℃/min的升温速率升温至700℃,并恒温5h以进行排粘处理,再在1200-1300℃下恒温2-4h以进行烧结处理,即制得铪酸铅基反铁电材料。
球磨处理的处理条件为:球磨介质为无水乙醇,研磨体、待处理物料及球磨介质的质量比为3:1.5:1,转速为350转/分钟,球磨时间为24h,所述的待处理物料为步骤1)中的混合物料或步骤3)中的预烧处理后的物料。
将铪酸铅基反铁电材料在600℃下热处理30min以涂覆银电极进行性能测试。
实施例5:
一种基于轧膜工艺的铪酸铅基反铁电材料,以(Pb0.97La0.02)(Hf0.76Sn0.2Ti0.04)O3为基体,制备方法如下:
1)将氧化铅、氧化铪、氧化镧、氧化锡及氧化钛按照(Pb0.97La0.02)(Hf0.76Sn0.2Ti0.04)O3中相应的Pb、Hf、La、Sn、Ti的化学计量比进行混合,得到混合物料,并在球磨罐中进行一次球磨处理;
2)将一次研磨后的物料于110℃下烘干,并在880℃下恒温3h以进行预烧处理;
3)将预烧处理后的物料先通过研钵打碎,再在球磨罐中进行二次球磨处理,并于110℃下烘干;
4)将烘干后的物料与粘合剂以质量比0.2-0.25:1混合,先在轧膜机上进行1-2h的粗轧,再精轧至所需厚度,之后裁切至所需尺寸,得到素坯片;
5)将素坯片先以1℃/min的升温速率升温至600℃,并恒温4h以进行排粘处理,再在1250℃下恒温3h以进行烧结处理,即制得铪酸铅基反铁电材料。
球磨处理的处理条件为:球磨介质为无水乙醇,研磨体、待处理物料及球磨介质的质量比为2:1:1,转速为320转/分钟,球磨时间为15h,所述的待处理物料为步骤1)中的混合物料或步骤3)中的预烧处理后的物料。
将铪酸铅基反铁电材料在560℃下热处理20min以涂覆银电极进行性能测试。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种基于轧膜工艺的铪酸铅基反铁电材料,其特征在于,该铪酸铅基反铁电材料的化学通式为(Pb1-3z/2Laz)(Hf1-x-ySnxTiy)O3,其中,z的取值范围为0<z≤0.04,x的取值范围为0<x<1.0,y的取值范围为0<y<1.0。
2.根据权利要求1所述的一种基于轧膜工艺的铪酸铅基反铁电材料,其特征在于,z的取值范围为0.01≤z≤0.04,x的取值范围为0.18≤x≤0.68,y的取值范围为0.02≤y≤0.06。
3.一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,所述的铪酸铅基反铁电材料的化学通式为(Pb1-3z/2Laz)(Hf1-x-ySnxTiy)O3,其中,z的取值范围为0≤z≤0.04,x的取值范围为0≤x<1.0,y的取值范围为0≤y<1.0;
所述的制备方法包括以下步骤:
1)将金属氧化物的混合物料进行一次研磨处理;
2)将一次研磨处理后的物料于110-130℃下烘干,并进行预烧处理;
3)将预烧处理后的物料进行二次研磨处理,之后于110-130℃下烘干;
4)将烘干后的物料与粘合剂混合,通过粗轧、精轧及裁切,得到素坯片;
5)将素坯片依次进行排粘处理及烧结处理,即制得铪酸铅基反铁电材料。
4.根据权利要求3所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,步骤1)中,所述的金属氧化物的混合物料包括氧化铅及氧化铪。
5.根据权利要求4所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,所述的金属氧化物的混合物料还包括氧化镧、氧化锡或氧化钛中的一种或多种。
6.根据权利要求3所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,步骤1)中的一次研磨处理及步骤3)中的二次研磨处理均为在球磨罐中进行的球磨处理,所述的球磨处理的工艺条件为:球磨介质为无水乙醇,研磨体、待处理物料及球磨介质的质量比为(1.5-3):(0.5-1.5):1,转速为300-350转/分钟,球磨时间为12-24h。
7.根据权利要求3所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,步骤2)中,所述的预烧处理的工艺条件为:温度850-900℃,预烧时间2-4h。
8.根据权利要求3所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,步骤4)中,所述的粘合剂的与烘干后的物料的质量比为0.2-0.25:1。
9.根据权利要求3所述的一种基于轧膜工艺的铪酸铅基反铁电材料的制备方法,其特征在于,步骤5)中,所述的排粘处理的工艺条件为:以0.5-2℃/min的升温速率升温至500-700℃,并恒温2-5h;所述的烧结处理的工艺条件为:在1200-1300℃下恒温2-4h。
10.一种如权利要求1或2所述的基于轧膜工艺的铪酸铅基反铁电材料在制备脉冲功率电容器、储能电容器或换能器中的应用。
CN201910747296.6A 2019-08-14 2019-08-14 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用 Pending CN110467457A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910747296.6A CN110467457A (zh) 2019-08-14 2019-08-14 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910747296.6A CN110467457A (zh) 2019-08-14 2019-08-14 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用

Publications (1)

Publication Number Publication Date
CN110467457A true CN110467457A (zh) 2019-11-19

Family

ID=68510774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910747296.6A Pending CN110467457A (zh) 2019-08-14 2019-08-14 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用

Country Status (1)

Country Link
CN (1) CN110467457A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993332A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种铪酸铅反铁电薄膜电容器的制备方法
CN111056849A (zh) * 2019-12-16 2020-04-24 中国科学院上海硅酸盐研究所 一种高分散反铁电亚微米陶瓷粉体及其制备方法
CN112573916A (zh) * 2020-12-21 2021-03-30 西安交通大学 一种PbHfO3基陶瓷材料及其制备方法
CN113213923A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN113213925A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种基于热等静压法制备铪钛酸铅基陶瓷材料的方法
CN115465890A (zh) * 2022-08-29 2022-12-13 北京科技大学 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用
CN115872735A (zh) * 2022-11-18 2023-03-31 广东工业大学 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187181A (zh) * 2016-07-21 2016-12-07 同济大学 一种基于轧膜工艺的pzt基反铁电材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187181A (zh) * 2016-07-21 2016-12-07 同济大学 一种基于轧膜工艺的pzt基反铁电材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIROSŁAW MACZK等: "Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO3:Sn", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
林亚丽等: "Pb(Hf0.3Ti0.7)O3铁电薄膜的制备与性能研究", 《功能材料》 *
田野等: "钙钛矿反铁电氧化物的研究进展", 《物理学进展》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111056849A (zh) * 2019-12-16 2020-04-24 中国科学院上海硅酸盐研究所 一种高分散反铁电亚微米陶瓷粉体及其制备方法
CN110993332A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种铪酸铅反铁电薄膜电容器的制备方法
CN110993332B (zh) * 2019-12-23 2021-10-01 广东工业大学 一种铪酸铅反铁电薄膜电容器的制备方法
CN112573916A (zh) * 2020-12-21 2021-03-30 西安交通大学 一种PbHfO3基陶瓷材料及其制备方法
CN113213923A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN113213925A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种基于热等静压法制备铪钛酸铅基陶瓷材料的方法
CN115465890A (zh) * 2022-08-29 2022-12-13 北京科技大学 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用
CN115465890B (zh) * 2022-08-29 2023-08-29 北京科技大学 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用
CN115872735A (zh) * 2022-11-18 2023-03-31 广东工业大学 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
CN115872735B (zh) * 2022-11-18 2024-01-16 广东工业大学 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用

Similar Documents

Publication Publication Date Title
CN110467457A (zh) 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN106187181A (zh) 一种基于轧膜工艺的pzt基反铁电材料及其制备方法
CN102476949A (zh) 一种低温制备电性能可控的氧化锌压敏电阻材料的方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN103787653B (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN110451955A (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN113526950A (zh) 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用
CN105418068A (zh) 一种新型铌酸盐基玻璃陶瓷储能材料及其制备方法和应用
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN114455944B (zh) 一种铋层状结构压电陶瓷材料及其制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN109694247B (zh) 一种高效率的储能线性电介质陶瓷材料及其制备方法
KR19990008442A (ko) 산화아연배리스터용 측면고저항제와 그것을 사용한 산화아연배리스터와 이산화아연배리스터의 제조방법
CN102432291B (zh) 电容正电压系数反铁电陶瓷材料及其制作方法
CN106045499A (zh) 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法
CN103880416B (zh) 钛酸铋钠基无铅压电陶瓷的低温烧结制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN116425543A (zh) 作为电介质材料的具有高储能和充放电性能的b位高熵陶瓷及制备方法
CN111153696A (zh) 一种低温烧结的锆钛酸钡钙基无铅高储能效率陶瓷材料
CN114573338B (zh) 一种高储能密度介电陶瓷的制备方法及应用
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN115000288A (zh) 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法
CN105742056A (zh) 一种高储能硼磷酸盐微晶玻璃介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191119

RJ01 Rejection of invention patent application after publication