CN110443255B - 用于图像特征提取的图像识别方法 - Google Patents

用于图像特征提取的图像识别方法 Download PDF

Info

Publication number
CN110443255B
CN110443255B CN201910513242.3A CN201910513242A CN110443255B CN 110443255 B CN110443255 B CN 110443255B CN 201910513242 A CN201910513242 A CN 201910513242A CN 110443255 B CN110443255 B CN 110443255B
Authority
CN
China
Prior art keywords
matrix
equation
image
feature extraction
relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910513242.3A
Other languages
English (en)
Other versions
CN110443255A (zh
Inventor
赖志辉
包嘉琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910513242.3A priority Critical patent/CN110443255B/zh
Publication of CN110443255A publication Critical patent/CN110443255A/zh
Application granted granted Critical
Publication of CN110443255B publication Critical patent/CN110443255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供了一种用于图像特征提取的图像识别方法,建立松弛局部保持性回归模型。本发明的有益效果是:提出了松弛局部保持性回归模型,该模型不仅可以融合基于图的流形结构来探索基于局部邻域下的潜在关系,而且可以利用标签信息进行低维子空间的判别,提高了图像(例如人脸)识别的性能,除此之外,本发明利用L2,1范数提高了算法鲁棒性,从而更稳定地分析各种条件下获取的原始样本数据。

Description

用于图像特征提取的图像识别方法
技术领域
本发明涉及人脸识别,尤其涉及一种用于图像特征提取的图像识别方法。
背景技术
随着科学的发展,人们的生活也与科技密不可分。“互联网+”、“智慧城市”等理念的提出,意味着人们传统生活方式已经受到重大改变。人工智能作为新时代的产物,已经在社会各方面做出了重大贡献,比如身份验证,视频监控,遥感和医学诊断等。在计算机视觉领域中,许多人脸识别算法已经能够对人脸数据精准识别。其中较为经典的有脊回归和最小二乘回归。然而,这些线性回归模型在处理高维数据时效果很不理想。因为在实际应用中,收集到的数据样本存在大量的冗余信息,这不仅加大了分析成本,也大大影响了正确率。
因此,如何从高维原始样本中提取有效特征并减少数据维度对优化算法的性能非常关键。
基于这种想法,在近十多年里,许多线性维数约减技术被提出。其中最经典的有主成分分析技术PCA和线性鉴别技术LDA。为了更好的利用高维数据集的局部几何结构,稀疏持续投影SPP,ISOMAP,拉普拉斯特征映射技术等经典降维方法相继被提出。随着流形学习技术的发展,He等人也提出了局部保持投影LPP和正交LPP。之后,邻域保持嵌入技术NPE和正交邻域嵌入技术ONPE也被提出。这几个基于图像局部结构的特征提取方法有效地提高了人脸样本的识别率和计算效率,减少了算法的计算成本。然而,由于样本中存在这大量的噪音和污染,真正的几何关系或潜在的结构很难被获得,这在一定程度上影响了算法的精确度。
为了更好地获得训练样本的内在关系,人们开始关注研究基于图像的拉普拉斯正则技术。通过构造数据空间的相似性权重矩阵,局部线性嵌入技术LLE可以实现数据结构的重构。Yin等将局部图形结构和寻找最优低秩表示问题相结合,提出了一种非负稀疏超拉普拉斯低秩模型NSHLRR。然而,现有的大部分局部邻域保持方法都是使用L2或Frobenius范数作为模型度量,因此这些方法对污染的数据和异常值敏感,这一点限制了识别效果的上限。在实际应用中,不同的光照,角度,姿势和遮挡都对算法的识别率进行了挑战。局部性维持投影会将原始的二维数据转换为一维的向量再进行处理,从而会使得特征维数增加,还会造成丢失原始样本信息和小样本问题,甚至产生奇异值。
对于多类分类问题,我们通常期望当样本投影到低维子空间时,不同类之间的距离可以尽可能地增大。Xiang等人提出了一个判别最小二乘回归DLSR框架,通过嵌入松弛矩阵可以使不同类的数据点反向移动从而达到目标。基于上述思想,Fang等通过结合松弛二元标签矩阵和相似性图,构造了一个正则化标签松弛模型RLR。该技术在获得类间最大距离的同时还避免了过拟合问题。
以上介绍的基于二维图像的特征提取技术仍然存在一些缺陷,主要是以下两点:1、不具备决策能力。许多流形学习模型侧重于寻找训练数据的局部性和相似性,而忽略了对标签信息的挖掘,从而限制了算法的识别能力。此外,我们还希望能够松弛数据样本的二元标签结构,使其更具决策性,从而扩大属于不同类别的样本之间的距离。2、鲁棒性不足。在实际操作中,我们获得清晰且完整图像是非常困难的,而且大部分识别技术都是将L2或Frobenius范数当做矩阵度量,对于被污染的图像数据非常敏感,算法的性能也因此降低。
因此,如何提高图像(例如人脸)识别的性能以及鲁棒性是本领域技术人员所亟待解决的技术问题。
发明内容
为了解决现有技术中的问题,本发明提供了一种用于图像特征提取的图像识别方法。
本发明提供了一种用于图像特征提取的图像识别方法,建立松弛局部保持性回归模型。
假设输入大小为m×n的训练样本X=[x1,x2,...,xn],及训练样本对应的n×c大小的类标签矩阵Y,其中
Figure GDA0002915652250000031
用L2,1范数作为基本度量,则模型为:
Figure GDA0002915652250000032
Figure GDA0002915652250000033
其中,⊙表示矩阵B和M的点积运算,M∈Rn×c是待优化的弹性标签矩阵(Mji代表第i类的第j个点的松弛值),b∈Rc是一个投影向量,α是一个权重参数,
Figure GDA0002915652250000041
以及en=[1,1,...,1]T∈Rn。此外,将回归矩阵W∈Rm×c分解为W=P·A(P∈Rm×s以及A∈Rs×c),通过使用投影矩阵W以获得c个样本,P·A获得s(s≥c)个投影。同时,为了保持数据的局部邻域结构,在(1)中嵌入基于图的正则项,得到:
Figure GDA0002915652250000042
其中我们定义
Figure GDA0002915652250000043
Dii=∑j Gij,L=D-G
对于方程(2),定义E=Y+B⊙M-XTPA,然后利用交替方向法将方程(2)转化为:
Figure GDA0002915652250000044
其中,μ>0是惩罚参数,C是拉格朗日乘子。
对方程(3)进行处理,假设除了P其他变量固定不变,则获得以下式子:
Figure GDA0002915652250000045
于是解得
Figure GDA0002915652250000046
对于方程(3),假设除了A其他变量不变,则获得以下优化问题:
Figure GDA0002915652250000051
上述问题利用奇异值分解得到:
Figure GDA0002915652250000052
则最优的A为:
A=UVT (8)
其中U为左奇异向量,V为右奇异向量;
通过固定其他变量来更新并计算变量M,则得到:
Figure GDA0002915652250000053
于是解得
Figure GDA0002915652250000054
为了优化E,方程(3)转化为:
Figure GDA0002915652250000055
于是解得
Figure GDA0002915652250000056
其中Ω是收缩算子,在每次迭代中,乘子C和μ分别按以下式子更新:
C←C+μ(Y+B⊙M-XTPA-E) (13)
μ←min(ρμ,μmax) (14)
其中ρ和μ是常数,设为任意值。
作为本发明的进一步改进,进行以下迭代优化步骤:
第一步:输入训练样本X=[x1,x2,...,xn],及训练样本对应的类标签矩阵Y,迭代次数为T,维数为s,正则项参数α,二进制常量矩阵B∈Rn×c,拉普拉斯矩阵L;
第二步:给定其他矩阵,来优化投影矩阵P:
Figure GDA0002915652250000061
第三步:给定其他矩阵,利用下式来优化系数矩阵A:
A=UVT
其中,U为
Figure GDA0002915652250000062
中的左酉阵,V为右酉阵
第四步:给定其他矩阵,利用下式来优化M:
Figure GDA0002915652250000063
第五步:给定其他矩阵,利用下式来优化E:
Figure GDA0002915652250000064
第六步:在每次迭代中,乘子C和μ可以分别用以下式子来更新:
C←C+μ(Y+B⊙M-XTPA-E); (18)
μ←min(ρμ,μmax); (19)
第五步:重复步骤第二步到第六步,直到达到迭代次数T;
第六步:输出获得的最优投影矩阵P。
作为本发明的进一步改进,将训练样本输入松弛局部保持性回归模型中,学习投影矩阵并进行特征提取;所提取的特征再用于训练分类器,之后,用学习到的投影矩阵对测试样本进行特征提取并同样输入给分类器,最终得到识别结果。
本发明的有益效果是:提出了松弛局部保持性回归模型,该模型不仅可以融合基于图的流形结构来探索基于局部邻域下的潜在关系,而且可以利用标签信息进行低维子空间的判别,提高了图像(例如人脸)识别的性能,除此之外,本发明利用L2,1范数提高了算法鲁棒性,从而更稳定地分析各种条件下获取的原始样本数据。
附图说明
图1是本发明一种用于图像特征提取的图像识别方法的流程图。
图2是实验PIE数据库部分样本。
图3是实验Yale数据库部分样本。
具体实施方式
下面结合附图说明及具体实施方式对本发明作进一步说明。
如图1所示,一种用于图像特征提取的图像识别方法,建立松弛局部保持性回归(relaxed local preserving regression简称RLPR)模型,首先将训练样本输入本发明的RLPR模型中,学习投影矩阵并进行特征提取;所提取的特征再用于训练分类器。之后,用学习到的投影矩阵对测试样本进行特征提取并同样输入给分类器,最终得到识别结果。
假设输入大小为m×n的训练样本X=[x1,x2,...,xn],及训练样本对应的n×c大小的类标签矩阵Y,其中
Figure GDA0002915652250000071
用L2,1范数作为基本度量,则模型为:
Figure GDA0002915652250000081
Figure GDA0002915652250000082
其中,⊙表示矩阵B和M的点积运算,M∈Rn×c是待优化的弹性标签矩阵(Mji代表第i类的第j个点的松弛值),b∈Rc是一个投影向量,α是一个权重参数,
Figure GDA0002915652250000083
以及en=[1,1,...,1]T∈Rn。此外,将回归矩阵W∈Rm×c分解为W=P·A(P∈Rm×s以及A∈Rs×c),通过使用投影矩阵W以获得c个样本,P·A获得s(s≥c)个投影。同时,为了保持数据的局部邻域结构,我们在(1)中嵌入基于图的正则项,我们便得到最终的优化问题:
Figure GDA0002915652250000084
其中
Figure GDA0002915652250000085
Dii=∑j Gij,L=D-G
对于模型(2)我们定义E=Y+B⊙M-XTPA,然后我们利用交替方向法(alternatingdirection method简称ADM)可以将(2)转化为:
Figure GDA0002915652250000086
其中,μ>0是惩罚参数,C是拉格朗日乘子。
我们对方程(3)进行处理,假设除了P其他变量不变,则获得以下式子:
Figure GDA0002915652250000091
于是解得
Figure GDA0002915652250000092
对于方程(3),假设除了A其他变量不变,则获得以下优化问题:
Figure GDA0002915652250000093
上述问题可以利用奇异值分解得到:
Figure GDA0002915652250000094
则最优的A为:
A=UVT (8)
其中U为左奇异向量,V为右奇异向量。
我们可以通过固定其他变量来更新并计算变量M,则可以得到:
Figure GDA0002915652250000095
于是解得
Figure GDA0002915652250000096
为了优化E,方程(3)可以转化为:
Figure GDA0002915652250000097
于是解得
Figure GDA0002915652250000098
其中Ω是收缩算子。
在每次迭代中,乘子C和μ可以分别按以下式子更新:
C←C+μ(Y+B⊙M-XTPA-E) (13)
μ←min(ρμ,μmax) (14)
其中ρ和μ是常数,可以设为任意值。
下面给出迭代优化RLPR的关键步骤:
第一步:输入训练样本X=[x1,x2,...,xn],及他们对应的类标签矩阵Y,迭代次数为T,维数为s,正则项参数α,二进制常量矩阵B∈Rn×c,拉普拉斯矩阵L。
第二步:给定其他矩阵,来优化投影矩阵P:
Figure GDA0002915652250000101
第三步:给定其他矩阵,利用下式来优化系数矩阵A:
A=UVT
其中,U为
Figure GDA0002915652250000102
中的左酉阵,V为右酉阵
第四步:给定其他矩阵,利用下式来优化M:
Figure GDA0002915652250000103
第五步:给定其他矩阵,利用下式来优化E:
Figure GDA0002915652250000104
第六步:在每次迭代中,乘子C和μ可以分别用以下式子来更新:
C←C+μ(Y+B⊙M-XTPA-E); (18)
μ←min(ρμ,μmax); (19)
第五步:重复步骤第二步到第六步,直到达到迭代次数T;
第六步:输出获得的最优投影矩阵P。
接下来,本发明将用六种不同的特征提取方法在PIE和Yale数据库中进行实验,其中在PIE数据库图像上随机加入了7x7大小的遮挡块,在Yale数据库上加上了密度为0.15的高斯噪声,实验的部分样本就如图2和图3所示。六种不同的特征提取方法包括PCA(主成分分析法),LPP(局部邻域持续保持),LDA(线性决策分析),DLSR和RLPR。在实验中,我们随机地选择L张图片作为训练样本,剩余的则作为测试样本。
表1六种特征提取方法在PIE上的平均识别率和对应训练样本数
L PCA LPP LDA DLSR RLPR
6 60.8578 69.3137 44.8203 82.1895 83.6275
5 55.4567 66.1842 38.4211 77.5310 79.6053
4 52.0221 62.7941 32.3824 74.9044 77.6029
表2六种特征提取方法在Yale上的平均识别率和对应训练样本数
L PCA LPP LDA DLSR RLPR
6 58.0409 56.0817 41.8990 48.2933 67.4639
5 53.6458 51.4583 34.5139 39.6412 63.9583
4 48.5491 47.5446 29.1295 33.1473 58.6942
由表1和表2可知,提出方法的平均识别率明显优于这些PCA、LPP、LDA等经典降维算法。其原因可能是RLPR不仅利用DLSR中ε-draggings技术的弹性因子来解决过拟合问题,而且嵌入了邻接图作为正则项来保持样本在投影空间的相似性。DLSR和我们提出的模型都考虑了用弹性标签来提高效率,但实验结果表明,RLPR对异常值或噪声具有较强的鲁棒性。这个事实进一步说明了在回归中探索数据点之间潜在的相似结构的重要性以及用L2,1范数作为矩阵度量的优越性。
本发明提供的一种用于图像特征提取的图像识别方法,利用L2,1范数作为基本度量并引入拉普拉斯权图作为正则化项。通过引入弹性类标签矩阵,所提出的模型不仅可以使不同类的样本之间的距离达到最大,而且可以使同类的不同样本之间在低维空间保持局部性和相似性。
本发明提供的一种用于图像特征提取的图像识别方法,其优点是:许多流形学习模型侧重于寻找变换空间下训练样本的局部性和相似性,而忽略了对标签信息的挖掘。因此,本发明不仅能够松弛严格的二元标签结构而使其更具判别性,而且尽可能地扩大了在新投影空间下不同类样本的距离。我们继承了DLSR模型的优点,提出了一种新的非负松弛标签回归模型。该模型不仅可以融合基于图的流形结构来探索基于局部邻域下的潜在关系,而且可以利用标签信息进行低维子空间的判别。除此之外,本发明利用L2,1范数提高了算法鲁棒性,从而更稳定地分析各种条件下获取的原始样本数据。
线性回归及其变式在模式识别领域得到了广泛的应用。然而,大部分线性回归模型在实际应用中存在着两大缺点。首先,传统线性回归模型忽略了数据集中的局部结构,即无法进一步探究样本间的潜在信息。其次,这一类方法对于原始样本中可能存在的噪音和异常值非常敏感。因此,本发明通过给线性模型嵌入一种基于相似性图的正则项来探究数据内部结构信息。同时,还利用一个松弛标签矩阵去扩大样本类与类之间的距离去提高分类效果。最后,为了进一步提升线性回归算法的鲁棒性,利用L2,1范数作为基本测量方法来减少噪声对识别效率的影响。我们设计了一种迭代算法去获得此模型的最优解。实验结果表明,本发明提高了人脸识别的性能以及鲁棒性。
本发明提供的一种用于图像特征提取的图像识别方法,可应用于人脸识别技术领域,具体涉及的是利用松弛标签保持局部信息的线性回归模型来提取人脸图像特征方法。该方法不仅可以实现自动对输入的图片样本进行分类提取,还可以做进一步分析和识别,是一种生物特征识别技术领域的人脸比对的方法。此外,本发明还可以进行多方面的应用,比如指纹识别,医学诊断,遥感图像识别等。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (1)

1.一种用于图像特征提取的图像识别方法,其特征在于:建立松弛局部保持性回归模型,
假设输入大小为m×n的训练样本X=[x1,x2,...,xn],及训练样本对应的n×c大小的类标签矩阵Y∈[y1,y2,...,yc],其中
Figure FDA0003261189190000011
用L2,1范数作为基本度量,则模型为:
Figure FDA0003261189190000012
s.t.M≥0
Figure FDA0003261189190000013
其中,⊙表示矩阵B和M的点积运算,M∈Rn×c是待优化的弹性标签矩阵,Mji代表第i类的第j个点的松弛值,b∈Rc是一个投影向量,α是一个权重参数,
Figure FDA0003261189190000014
以及en=[1,1,...,1]T∈Rn
此外,将回归矩阵W∈Rm×c分解为W=P·A,其中P∈Rm×s,A∈Rs×c,通过这种分解,本来矩阵W只能最多获得c个样本,但分解后的投影矩阵P可以获得至少s个投影,其中s≥c,同时,为了保持数据的局部邻域结构,还在方程(1)中嵌入基于图的正则项,最终得到:
Figure FDA0003261189190000015
s.t.M≥0,ATA=I
其中我们定义
Figure FDA0003261189190000016
Dii=∑jGij,L=D-G对于方程(2),定义E=Y+B⊙M-XTPA,然后利用交替方向法将方程(2) 转化为:
Figure FDA0003261189190000021
其中,μ>0是惩罚参数,C是拉格朗日乘子;
对方程(3)进行处理,假设除了P其他变量固定不变,则获得以下式子:
Figure FDA0003261189190000022
于是解得
Figure FDA0003261189190000023
对于方程(3),假设除了A其他变量不变,则获得以下优化问题:
Figure FDA0003261189190000024
上述问题利用奇异值分解得到:
Figure FDA0003261189190000025
则最优的A为:
A=UVT (8)
其中U为左奇异向量,V为右奇异向量;
通过固定其他变量来更新并计算变量M,则得到:
Figure FDA0003261189190000026
于是解得
Figure FDA0003261189190000031
为了优化E,方程(3)转化为:
Figure FDA0003261189190000032
于是解得
Figure FDA0003261189190000033
其中Ω是收缩算子,在每次迭代中,乘子C和μ分别按以下式子更新:
C←C+μ(Y+B⊙M-XTPA-E) (13)
μ←min(ρμ,μmax) (14)
其中ρ是常数,设为任意值;
将训练图像样本输入松弛局部保持性回归模型中,学习投影矩阵并进行特征提取;所提取的特征再用于训练分类器,之后,用学习到的投影矩阵对测试图像样本进行特征提取并同样输入给分类器,最终得到图像识别结果。
CN201910513242.3A 2019-06-14 2019-06-14 用于图像特征提取的图像识别方法 Active CN110443255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910513242.3A CN110443255B (zh) 2019-06-14 2019-06-14 用于图像特征提取的图像识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910513242.3A CN110443255B (zh) 2019-06-14 2019-06-14 用于图像特征提取的图像识别方法

Publications (2)

Publication Number Publication Date
CN110443255A CN110443255A (zh) 2019-11-12
CN110443255B true CN110443255B (zh) 2022-04-15

Family

ID=68429170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910513242.3A Active CN110443255B (zh) 2019-06-14 2019-06-14 用于图像特征提取的图像识别方法

Country Status (1)

Country Link
CN (1) CN110443255B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111476272B (zh) * 2020-03-11 2023-02-21 重庆邮电大学 一种基于结构约束对称低秩保留投影的降维方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224918A (zh) * 2015-09-11 2016-01-06 深圳大学 基于双线性联合稀疏判别分析的步态识别方法
CN105335732A (zh) * 2015-11-17 2016-02-17 西安电子科技大学 基于分块及鉴别非负矩阵分解的有遮挡人脸识别方法
CN106682606A (zh) * 2016-12-23 2017-05-17 湘潭大学 一种人脸确认方法及安全认证装置
CN107392128A (zh) * 2017-07-13 2017-11-24 南京邮电大学 基于双低秩表示和局部约束矩阵回归的鲁棒图像识别方法
CN108121964A (zh) * 2017-12-21 2018-06-05 深圳大学 基于矩阵的联合稀疏局部保持投影人脸识别方法
CN108133465A (zh) * 2017-12-29 2018-06-08 南京理工大学 基于空谱加权tv的非凸低秩松弛的高光谱图像恢复方法
CN108197650A (zh) * 2017-12-30 2018-06-22 南京理工大学 局部相似性保持的高光谱图像极限学习机聚类方法
CN109389174A (zh) * 2018-10-23 2019-02-26 四川大学 一种人群聚集敏感图像检测方法
CN109447123A (zh) * 2018-09-28 2019-03-08 昆明理工大学 一种基于标签一致性约束与拉伸正则化字典学习的行人再识别方法
CN109766863A (zh) * 2019-01-18 2019-05-17 南京邮电大学 一种基于局部和稀疏非局部正则的人脸图像超分辨率方法
CN109815889A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于特征表示集的跨分辨率人脸识别方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160342743A1 (en) * 2015-05-20 2016-11-24 Isaak E. van Kempen Incident Prevention System
US10956823B2 (en) * 2016-04-08 2021-03-23 Cognizant Technology Solutions U.S. Corporation Distributed rule-based probabilistic time-series classifier
US20170358148A1 (en) * 2016-06-14 2017-12-14 Cubic Corporation Machine learned biometric token

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224918A (zh) * 2015-09-11 2016-01-06 深圳大学 基于双线性联合稀疏判别分析的步态识别方法
CN105335732A (zh) * 2015-11-17 2016-02-17 西安电子科技大学 基于分块及鉴别非负矩阵分解的有遮挡人脸识别方法
CN106682606A (zh) * 2016-12-23 2017-05-17 湘潭大学 一种人脸确认方法及安全认证装置
CN107392128A (zh) * 2017-07-13 2017-11-24 南京邮电大学 基于双低秩表示和局部约束矩阵回归的鲁棒图像识别方法
CN108121964A (zh) * 2017-12-21 2018-06-05 深圳大学 基于矩阵的联合稀疏局部保持投影人脸识别方法
CN108133465A (zh) * 2017-12-29 2018-06-08 南京理工大学 基于空谱加权tv的非凸低秩松弛的高光谱图像恢复方法
CN108197650A (zh) * 2017-12-30 2018-06-22 南京理工大学 局部相似性保持的高光谱图像极限学习机聚类方法
CN109447123A (zh) * 2018-09-28 2019-03-08 昆明理工大学 一种基于标签一致性约束与拉伸正则化字典学习的行人再识别方法
CN109389174A (zh) * 2018-10-23 2019-02-26 四川大学 一种人群聚集敏感图像检测方法
CN109766863A (zh) * 2019-01-18 2019-05-17 南京邮电大学 一种基于局部和稀疏非局部正则的人脸图像超分辨率方法
CN109815889A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于特征表示集的跨分辨率人脸识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Locality Preserving Based Data Regression and its Application for Soft Sensor Modeling;Aimin Miao等;《The Canadian Journal of Chemical Engineering》;20161231;第1-28页 *
对偶算法在紧框架域TV-L1去模糊模型中的应用;李旭超等;《中国图象图形学报》;20151231;第1434-1445页 *

Also Published As

Publication number Publication date
CN110443255A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Abavisani et al. Multimodal sparse and low-rank subspace clustering
Liu et al. Enhancing low-rank subspace clustering by manifold regularization
Litany et al. Deep functional maps: Structured prediction for dense shape correspondence
Cherian et al. Riemannian dictionary learning and sparse coding for positive definite matrices
Xiao et al. Robust kernel low-rank representation
Fan et al. Matrix completion by least-square, low-rank, and sparse self-representations
Abdelkader et al. Silhouette-based gesture and action recognition via modeling trajectories on riemannian shape manifolds
Jing et al. Learning robust affinity graph representation for multi-view clustering
CN111738143B (zh) 一种基于期望最大化的行人重识别方法
Jin et al. Low-rank matrix factorization with multiple hypergraph regularizer
CN107392107B (zh) 一种基于异构张量分解的人脸特征提取方法
Zheng et al. Discriminative dictionary learning via Fisher discrimination K-SVD algorithm
JPH08339445A (ja) 確率的固有空間解析を用いた複雑な対象物の検出、認識、及び符号化方法及び装置
Peng et al. Kernel two-dimensional ridge regression for subspace clustering
Yuan et al. Non-negative dictionary based sparse representation classification for ear recognition with occlusion
Cheng et al. Person re-identification by articulated appearance matching
Fang et al. Feature learning via partial differential equation with applications to face recognition
Wang et al. Maximum mutual information regularized classification
Qian et al. Image decomposition based matrix regression with applications to robust face recognition
Prates et al. Kernel cross-view collaborative representation based classification for person re-identification
Li et al. Transformation invariant subspace clustering
Wan et al. Low-rank 2D local discriminant graph embedding for robust image feature extraction
Song et al. MPPCANet: A feedforward learning strategy for few-shot image classification
Song et al. Efficient robust conditional random fields
Khodadadzadeh et al. A hybrid capsule network for hyperspectral image classification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant