CN110442110A - 一种基于二阶滑模观测器的航天器故障诊断方法 - Google Patents

一种基于二阶滑模观测器的航天器故障诊断方法 Download PDF

Info

Publication number
CN110442110A
CN110442110A CN201810418429.0A CN201810418429A CN110442110A CN 110442110 A CN110442110 A CN 110442110A CN 201810418429 A CN201810418429 A CN 201810418429A CN 110442110 A CN110442110 A CN 110442110A
Authority
CN
China
Prior art keywords
spacecraft
sliding mode
order sliding
mode observer
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810418429.0A
Other languages
English (en)
Other versions
CN110442110B (zh
Inventor
高升
张伟
何旭
刘英丽
黄昊
丁靓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN201810418429.0A priority Critical patent/CN110442110B/zh
Publication of CN110442110A publication Critical patent/CN110442110A/zh
Application granted granted Critical
Publication of CN110442110B publication Critical patent/CN110442110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种基于二阶滑模观测器的航天器故障诊断方法,采用罗德里格参数建立刚体航天器姿态数学模型,根据刚体航天器姿态数学模型建立非线性动力学方程,并将非线性动力学方程进行改写,根据改写的非线性动力学方程设计二阶滑模观测器;对二阶滑模观测器的等价注入项进行低通滤波处理,估计故障的外轮廓,将故障的估计值与设定的阈值进行比较,完成***故障诊断。本发明使得航天器***在发生故障后,能够及时得到故障信息及具体的故障情况,同时抑制了外部干扰对故障诊断结果的影响,因此,可以有效地提高***故障诊断效率,提高航天器运行的安全性和可靠性。

Description

一种基于二阶滑模观测器的航天器故障诊断方法
技术领域
本发明涉及航天器故障诊断领域,具体地说是一种基于二阶滑模观测器的航天器故障诊断方法。
背景技术
航天器***结构复杂、由为数众多的器件和部件组成,并且需要长时间的工作在恶劣的空间环境中,受到多种环境因素的影响,难免在飞行过程中出现这样那样的问题,因此,故障诊断技术在航天器***的发射和运行中是非常重要的。
姿态控制***是航天器***中最复杂的一个分***,其任务是获取航天器的姿态信息并保持其在太空中的姿态定向,一旦姿态控制***运行出错,航天器会有极大的概率在短时间内丢失姿态失去控制,这对于在轨任务往往是致命的。而故障诊断技术可以有效地提高***可靠性,增强***的安全性及可维护性。因此姿控***的故障诊断研究具有非常重要的意义。
现有航天器姿态控制方法以及故障诊断方法均需姿态与角速度全反馈信息。然而航天工程中并不是所有状态信息都是高精度可测量的。角速率敏感器发生故障时,有可能导致错误的角速度测量值;另一方面角速率敏感器噪声也将导致不精确的角速度测量值。本发明提出一种无需角速度信息的基于二阶滑模观测器的故障诊断方法,以解决角速度无法获得时的航天器***的故障诊断问题。
发明内容
针对现有技术的不足,本发明提供一种基于二阶滑模观测器的航天器故障诊断方法,解决航天器***在发生故障后,不能够及时得到故障信息及具体的故障情况,以及外部干扰影响故障诊断结果的问题。
本发明为实现上述目的所采用的技术方案是:
一种基于二阶滑模观测器的航天器故障诊断方法,包括以下步骤:
采用罗德里格参数建立刚体航天器姿态数学模型,根据刚体航天器姿态数学模型建立非线性动力学方程,并将非线性动力学方程进行改写,根据改写的非线性动力学方程设计二阶滑模观测器;
对二阶滑模观测器的等价注入项进行低通滤波处理,估计故障的外轮廓,将故障的估计值与设定的阈值进行比较,完成***故障诊断。
所述刚体航天器姿态数学模型为:
其中,σ为航天器姿态信息;为σ的导数;σT为σ的转置;σ×为σ的叉乘矩阵;F(σ)为σ的状态矩阵;ω为航天器角速度信息;为ω的导数;ω×为ω的叉乘矩阵;J为航天器的转动惯量矩阵;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩;I为单位矩阵。
所述非线性动力学方程为:
其中,σ为航天器姿态信息;为σ的导数;为σ的二阶导数;J*(σ)为σ的对称正定矩阵;为σ和的状态矩阵;G(σ)为σ的转换矩阵;GT(σ)为G(σ)的转置;d为作用于航天器的干扰力矩;为转换后的干扰力矩;F(σ)为σ的状态矩阵;为F(σ)的导数;J为航天器的转动惯量矩阵;"×"为求叉乘矩阵符号。
所述将非线性动力学方程进行改写为:
y=x1
其中,x1为σ的符号表示;x2的符号表示;为x1的导数;为x2的导数;J*(x1)为对称正定矩阵;C(x1,x2)为状态矩阵;GT(x1)为转换矩阵;τ为作用于航天器的控制力矩;Δτ为作用于航天器的故障力矩值;y为***输出;d为作用于航天器的干扰力矩。
所述二阶滑模观测器为:
其中,x1为σ的符号表示;x2的符号表示;为x1的估计值,的导数;为x2的估计值,的导数;z1和z2均为二阶滑模观测器的等价注入项,其中z1为二阶滑模观测器的第一等价注入项;z2为二阶滑模观测器的第二等价注入项;J*(x1)为对称正定矩阵,(J*(x1))-1为J*(x1)的逆矩阵;为状态矩阵;GT(x1)为转换矩阵;λ为z1的比例系数,α为z2的比例系数;sign()为符号函数;max()为取最大值函数;f+为估计常数;m,n,p为正整数,且m/n的最优值为0.5;为对取绝对值;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩。
所述对二阶滑模观测器的等价注入项进行低通滤波处理为:
其中,z2为二阶滑模观测器的等价注入项;为z2进行低通滤波后的值;ε为z2之间的差值。
所述故障的外轮廓可估计为:
其中,为z2进行低通滤波后的值;Δτ为作用于航天器的故障力矩值。
所述将故障的估计值与设定的阈值进行比较包括:
其中,r为航天器***故障指示值,当“r=1”时表示***发生故障;“r=0”表示***未发生故障;为对取绝对值;T为设定的阈值。
本发明具有以下有益效果及优点:
本发明应用滑模控制方法设计二阶滑模观测器,并基于该观测器设计了相应的故障诊断策略,使得航天器***在发生故障后,能够及时得到故障信息及具体的故障情况,同时抑制了外部干扰对故障诊断结果的影响,因此,可以有效地提高***故障诊断效率,提高航天器运行的安全性和可靠性。同时本发明提出的故障诊断方法不需要***的角速度信息,可以很好地以解决角速度敏感器故障时不能提供角速度测量信息的航天器姿态控制问题,提高了该方法在实际工程中应用的价值,其对于实际姿控***的控制具有更强的适用性。
附图说明
图1是本发明的方法流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示为本发明的方法流程图,本发明提出了一种基于二阶滑模观测器的航天器故障诊断方法,包括以下步骤:
步骤1:采用罗德里格参数建立刚体航天器姿态数学模型。
所述航天器姿态数学模型为:
其中,σ为航天器姿态信息;为σ的导数;σT为σ的转置;σ×为σ的叉乘矩阵;F(σ)为σ的状态矩阵;ω为航天器角速度信息;为ω的导数;ω×为ω的叉乘矩阵;J为航天器的转动惯量矩阵;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩;I为单位矩阵。
步骤2:根据航天器姿态数学模型建立非线性动力学方程。
根据所述的航天器姿态数学模型建立非线性动力学方程,所建立的非线性动力学方程:
其中,J*(σ)为σ的对称正定矩阵;为σ的二阶导数;为σ和的状态矩阵;G(σ)为σ的转换矩阵;GT(σ)为G(σ)的转置;为转换后的干扰力矩;为F(σ)的导数;J为航天器的转动惯量矩阵;"×"为求叉乘矩阵符号。
步骤3:为设计二阶滑模观测器将上述非线性动力学方程进行改写。
改写后的非线性动力学方程为:
y=x1
其中,x1为σ的符号表示;x2的符号表示;为x1的导数;为x2的导数;J*(x1)为对称正定矩阵;C(x1,x2)为状态矩阵;GT(x1)为转换矩阵;τ为作用于航天器的控制力矩;Δτ为作用于航天器的故障力矩值;y为***输出;d为作用于航天器的干扰力矩。
步骤4:根据改写的非线性动力学方程设计二阶滑模观测器;
根据改写的非线性动力学方程,所述的二阶滑模观测器设计为:
其中,x1为σ的符号表示;x2的符号表示;为x1的估计值,的导数;为x2的估计值,的导数;z1为二阶滑模观测器的等价注入项1;z2为二阶滑模观测器的等价注入项2;J*(x1)为对称正定矩阵,(J*(x1))-1为J*(x1)的逆矩阵;为状态矩阵;GT(x1)为转换矩阵;λ为z1的比例系数,α为z2的比例系数;sign()为符号函数;max()为取最大值函数;f+为估计常数;m,n,p为正整数,且m/n的最优值为0.5;为对取绝对值;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩。
步骤5:进一步对滑模观测器的等价注入项2进行低通滤波处理,估计故障的外轮廓。
所述的等价注入项2低通滤波处理为:
其中,z2为滑模观测器的等价注入项2;为z2进行低通滤波后的值;ε为z2之间的差值。
所述故障的外轮廓可估计为:
其中,为z2进行低通滤波后的值;Δτ为作用于航天器的故障力矩值。
步骤6:设计故障诊断策略,将故障的估计值与设定的阈值进行比较,完成***故障诊断。
所述的故障诊断策略设计为:
其中,r为航天器***故障指示值,当“r=1”时表示***发生故障;“r=0”表示***未发生故障;为对取绝对值;T为设定的阈值。

Claims (8)

1.一种基于二阶滑模观测器的航天器故障诊断方法,其特征在于:包括以下步骤:
采用罗德里格参数建立刚体航天器姿态数学模型,根据刚体航天器姿态数学模型建立非线性动力学方程,并将非线性动力学方程进行改写,根据改写的非线性动力学方程设计二阶滑模观测器;
对二阶滑模观测器的等价注入项进行低通滤波处理,估计故障的外轮廓,将故障的估计值与设定的阈值进行比较,完成***故障诊断。
2.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述刚体航天器姿态数学模型为:
其中,σ为航天器姿态信息;为σ的导数;σT为σ的转置;σ×为σ的叉乘矩阵;F(σ)为σ的状态矩阵;ω为航天器角速度信息;为ω的导数;ω×为ω的叉乘矩阵;J为航天器的转动惯量矩阵;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩;I为单位矩阵。
3.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述非线性动力学方程为:
其中,σ为航天器姿态信息;为σ的导数;为σ的二阶导数;J*(σ)为σ的对称正定矩阵;为σ和的状态矩阵;G(σ)为σ的转换矩阵;GT(σ)为G(σ)的转置;d为作用于航天器的干扰力矩;为转换后的干扰力矩;F(σ)为σ的状态矩阵;为F(σ)的导数;J为航天器的转动惯量矩阵;"×"为求叉乘矩阵符号。
4.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述将非线性动力学方程进行改写为:
y=x1
其中,x1为σ的符号表示;x2的符号表示;为x1的导数;为x2的导数;J*(x1)为对称正定矩阵;C(x1,x2)为状态矩阵;GT(x1)为转换矩阵;τ为作用于航天器的控制力矩;Δτ为作用于航天器的故障力矩值;y为***输出;d为作用于航天器的干扰力矩。
5.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述二阶滑模观测器为:
其中,x1为σ的符号表示;x2的符号表示;为x1的估计值,的导数;为x2的估计值,的导数;z1和z2均为二阶滑模观测器的等价注入项,其中z1为二阶滑模观测器的第一等价注入项;z2为二阶滑模观测器的第二等价注入项;J*(x1)为对称正定矩阵,(J*(x1))-1为J*(x1)的逆矩阵;为状态矩阵;GT(x1)为转换矩阵;λ为z1的比例系数,α为z2的比例系数;sign()为符号函数;max()为取最大值函数;f+为估计常数;m,n,p为正整数;为对取绝对值;τ为作用于航天器的控制力矩;d为作用于航天器的干扰力矩。
6.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述对二阶滑模观测器的等价注入项进行低通滤波处理为:
其中,z2为二阶滑模观测器的等价注入项;为z2进行低通滤波后的值;ε为z2之间的差值。
7.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述故障的外轮廓可估计为:
其中,为z2进行低通滤波后的值;Δτ为作用于航天器的故障力矩值。
8.根据权利要求1所述的基于二阶滑模观测器的航天器故障诊断方法,其特征在于:所述将故障的估计值与设定的阈值进行比较包括:
其中,r为航天器***故障指示值,当“r=1”时表示***发生故障;“r=0”表示***未发生故障;为对取绝对值;T为设定的阈值。
CN201810418429.0A 2018-05-04 2018-05-04 一种基于二阶滑模观测器的航天器故障诊断方法 Active CN110442110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810418429.0A CN110442110B (zh) 2018-05-04 2018-05-04 一种基于二阶滑模观测器的航天器故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810418429.0A CN110442110B (zh) 2018-05-04 2018-05-04 一种基于二阶滑模观测器的航天器故障诊断方法

Publications (2)

Publication Number Publication Date
CN110442110A true CN110442110A (zh) 2019-11-12
CN110442110B CN110442110B (zh) 2020-06-30

Family

ID=68428113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810418429.0A Active CN110442110B (zh) 2018-05-04 2018-05-04 一种基于二阶滑模观测器的航天器故障诊断方法

Country Status (1)

Country Link
CN (1) CN110442110B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284732A (zh) * 2020-03-13 2020-06-16 北京航空航天大学 一种基于事件触发通信的航天器抗干扰姿态协同控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059118A1 (en) * 2004-11-18 2008-03-06 Sarah Spurgeon Sliding Mode Method for Device Predictive Diagnostics
CN103399493A (zh) * 2013-08-07 2013-11-20 长春工业大学 可重构机械臂传感器故障实时诊断和容错***及其方法
CN103699131A (zh) * 2013-12-26 2014-04-02 北京控制工程研究所 一种卫星控制***离散积分滑模容错控制方法
CN104467595A (zh) * 2014-12-05 2015-03-25 沈阳工业大学 直接驱动伺服***的二阶滑模控制***及其控制方法
CN106055770A (zh) * 2016-05-26 2016-10-26 南京航空航天大学 一种基于滑模理论的航空发动机气路故障诊断方法
CN106647693A (zh) * 2016-11-17 2017-05-10 南京邮电大学 刚体航天器执行器多故障的诊断与容错控制方法
CN107942653A (zh) * 2017-10-30 2018-04-20 南京航空航天大学 航空电动燃油泵流量控制***传感器故障鲁棒容错方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059118A1 (en) * 2004-11-18 2008-03-06 Sarah Spurgeon Sliding Mode Method for Device Predictive Diagnostics
CN103399493A (zh) * 2013-08-07 2013-11-20 长春工业大学 可重构机械臂传感器故障实时诊断和容错***及其方法
CN103699131A (zh) * 2013-12-26 2014-04-02 北京控制工程研究所 一种卫星控制***离散积分滑模容错控制方法
CN104467595A (zh) * 2014-12-05 2015-03-25 沈阳工业大学 直接驱动伺服***的二阶滑模控制***及其控制方法
CN106055770A (zh) * 2016-05-26 2016-10-26 南京航空航天大学 一种基于滑模理论的航空发动机气路故障诊断方法
CN106647693A (zh) * 2016-11-17 2017-05-10 南京邮电大学 刚体航天器执行器多故障的诊断与容错控制方法
CN107942653A (zh) * 2017-10-30 2018-04-20 南京航空航天大学 航空电动燃油泵流量控制***传感器故障鲁棒容错方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRITOPHER EDWARDS ETC.: "Sliding Mode observers for fault detection and isolation", 《AUTOMATICA》 *
冉德超: "航天器姿态控制***故障诊断与容错控制技术研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
林壮 等: "基于二阶滑模的刚体航天器姿态跟踪控制", 《***工程与电子技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284732A (zh) * 2020-03-13 2020-06-16 北京航空航天大学 一种基于事件触发通信的航天器抗干扰姿态协同控制方法

Also Published As

Publication number Publication date
CN110442110B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
CN111290366B (zh) 一种航天器姿控***多故障诊断方法
CN103488092B (zh) 基于t-s模糊模型与学习观测器的卫星故障诊断与容错控制方法
Ghalamchi et al. Real-time vibration-based propeller fault diagnosis for multicopters
CN105843240B (zh) 一种考虑执行器故障的航天器姿态积分滑模容错控制方法
Bateman et al. Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV
CN103676941B (zh) 基于运动学和动力学模型的卫星控制***故障诊断方法
CN102735259B (zh) 一种基于多层状态估计器的卫星控制***故障诊断方法
CN105045105B (zh) 一种针对状态时滞的四旋翼直升机容错控制装置及方法
CN103676918B (zh) 一种基于未知输入观测器的卫星执行机构故障诊断方法
Saied et al. Actuator fault diagnosis in an octorotor UAV using sliding modes technique: Theory and experimentation
CN109426238A (zh) 一种基于滑模观测器的航天器姿控***多故障诊断方法
CN110554606B (zh) 一种用于高超音速飞行器的自适应容错控制方法
CN104808653A (zh) 基于滑模的电机伺服***加性故障检测和容错控制方法
Rotondo et al. Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers
CN111897221B (zh) 一种基于组合观测器的航天器故障诊断方法
CN104765312A (zh) 飞行器可重构控制***实现方法
Gao et al. EKF‐Based Actuator Fault Detection and Diagnosis Method for Tilt‐Rotor Unmanned Aerial Vehicles
Zhaohui et al. Engineering implementation on fault diagnosis for quadrotors based on nonlinear observer
CN110442110A (zh) 一种基于二阶滑模观测器的航天器故障诊断方法
Lu et al. Active fault-tolerant control system using incremental backstepping approach
CN112528492B (zh) 一种机翼损伤情况下的故障检测方法及装置
Mouhssine et al. Quadrotor fault detection and isolation based on nonlinear analytical redundancy relations
Bellali et al. Parameter estimation for fault diagnosis in nonlinear systems by ANFIS
Rao et al. Reliable H infinity observer-controller design for sensor and actuator failure in TRMS
Freeman et al. Analytical fault detection for a small UAV

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant