CN110408384B - 一种稀土金属有机框架材料的制备及应用 - Google Patents

一种稀土金属有机框架材料的制备及应用 Download PDF

Info

Publication number
CN110408384B
CN110408384B CN201910834594.9A CN201910834594A CN110408384B CN 110408384 B CN110408384 B CN 110408384B CN 201910834594 A CN201910834594 A CN 201910834594A CN 110408384 B CN110408384 B CN 110408384B
Authority
CN
China
Prior art keywords
mof
solution
rare earth
earth metal
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910834594.9A
Other languages
English (en)
Other versions
CN110408384A (zh
Inventor
郭昊
吴宁
王明玥
徐梦妮
杨武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201910834594.9A priority Critical patent/CN110408384B/zh
Publication of CN110408384A publication Critical patent/CN110408384A/zh
Application granted granted Critical
Publication of CN110408384B publication Critical patent/CN110408384B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种稀土金属有机框架材料的制备方法,先以1,4,5,8‑萘四甲酸与硝酸锶为原料,以乙醇和水为溶剂,通过溶剂热法制得Sr‑MOF,再以Sr‑MOF为母体框架,通过后合成修饰将Eu3+封装到Sr‑MOF的孔中,得到稀土金属有机框架材料Eu3+@Sr‑MOF。Eu3+@Sr‑MOF水溶液在紫外灯下呈红色荧光。在Eu3+@Sr‑MOF水溶液中分别加入K+、Na+、Hg2+、Mg2+、Pd2+、Ag+、Zn2+、Ca2+、Cu2+、Cd2+、Co2+、Ni2+、Fe2+、Cr3+溶液,只有Cr3+加入对于Eu3+@Sr‑MOF溶液具有很好的荧光猝灭效应,因此,可用于荧光检测Cr3+

Description

一种稀土金属有机框架材料的制备及应用
技术领域
本发明涉及一种稀土金属有机框架材料的制备,尤其涉及一种通过后合成修饰制备稀土金属有机框架材料的方法;本发明同时涉及该稀土金属有机框架材料在荧光检测Cr3+的应用,属于金属有机聚合物合成领域及金属离子检测领域。
背景技术
金属有机骨架材料(MOFs)是由金属离子(簇)与有机配体组装而成,是一种非常有前途的多孔杂化材料,由于这种材料具有超高的孔隙率,大的表面积,金属中心和官能团多样性,结构有序,结构和孔径可调等优点而备受关注,广泛应用于催化、光电、气体存储与分离、吸附、化学传感、荧光检测、药物存储与释放、分离分析等方面。荧光金属有机框架由于其有机和无机部分都可以作为发光单元,它们之间通过天线敏化或者电子转移能产生协同发光。稀土有机框架材料(Ln-MOFs)作为MOFs的分支因其镧系元素的4f电子配置具有优异的光学性质而受到越来越多的关注。然而,由于镧系元素具有高的配位数以及开放的镧系元素位点(在活化/去溶剂化过程中原位形成)倾向于与来自有机连接体的氧/氮供体结合形成稠合结构,因此合理设计和制备所需的Ln-MOF仍然是一个巨大的挑战。
铬广泛应用于工业和化学加工,但这些离子的大量滥用给空气,土壤和水带来了严重的污染。铬具有两种常见氧化态即Cr(III)和Cr(VI),不同化合价态Cr的毒性也极为不同。Cr(III)离子是人体营养中必不可少的生物微量元素,但是它们可以非特异性地与DNA结合,过量的Cr(III)离子可能导致突变或恶性细胞。因此发展具有高灵敏度和高选择性的Cr(III)检测方法对环境和人体健康具有重要意义。
发明内容
本发明的目的是提供了一种通过后合成修饰构建稀土金属有机框架材料的方法;
本发明的另一目的是提供上述方法制备的稀土金属有机框架材料在荧光检测Cr3+中的具体应用。
一、稀土金属有机框架材料的制备
将1,4,5,8-萘四甲酸与硝酸锶溶解在乙醇-水混合溶剂中,超声分散均匀后,在125~130℃反应70~72小时;反应结束后过滤,用无水乙醇洗涤,空气中干燥,得Sr-MOF;再将Sr-MOF分散在Eu(NO3)3·6H2O水溶液中,室温反应45~48h,过滤,所得固体产物用蒸馏水完全洗涤以除去残留的Eu3+离子;然后在70~80℃下真空干燥20~24小时,得到Eu3+@Sr-MOF。
1,4,5,8-萘四甲酸与硝酸锶的摩尔比为1:0.8~1:1.2。
乙醇-水混合溶剂中,乙醇和水溶液的体积比为1:1~1:1.5。
Eu(NO3)3·6H2O水溶液的浓度为0.5~1.5mmol/L。
二、Eu3+@Sr-MOF的表征
1、PXRD分析
图1为本发明制备的Eu3+@Sr-MOF、原始框架Sr-MOF材料以及模拟的粉末衍射(PXRD)图。如图1所示,合成的原始框架Sr-MOF和Eu3+@Sr-MOF的PXRD图谱与模拟的PXRD图谱一致,说明了Sr-MOF成功地合成,也表明添加Eu3+后Sr-MOF的母体骨架结构没有改变,因此Eu3+位于Sr-MOF的通道而不是其骨架上。
2、FT-IR分析
图2为本发明制备的Eu3+@Sr-MOF与原始框架Sr-MOF材料的FT-IR图。在FT-IR光谱中,3345cm-1处的宽峰是化合物中含有水的O-H伸缩振动吸收峰,3578cm-1处出现的尖峰,由未配位的游离O-H引起;在1594cm-1、1396cm-1和1346cm-1处分别观察到羧基的对称伸缩振动峰νsCOO-和反对称伸缩振动峰νasCOO-,这意味着羧基与Sr2+配位。加入Eu3+之前,在1768~1700cm-1范围内的C=O伸缩振动仍然存在,表明羧基仅与部分Sr2+配位,但是加入Eu3+之后C=O消失,这说明了Eu3+@Sr-MOF成功合成。
3、扫描电镜图
图3为本发明制备的Sr-MOF和Eu3+@Sr-MOF材料的扫描电镜图。其中图a为Sr-MOF在2μm尺寸下的扫描电镜图,可以看到它是呈现矩形状的晶体,图b为Sr-MOF在200μm尺寸下的扫描电镜图,可以看出矩形截面疏松多孔,这进一步为Eu3+封装到Sr-MOF的孔中提供了可能性。图c为Eu3+@Sr-MOF在200μm下的扫描电镜图,经过封装后,颗粒变得分明,形状不均一,但是结构没有发生变化,只是形貌发生改变。Sr-MOF具有大的共轭体系,永久的多孔结构以及含有未配位羧基,因此这种母体框架是用于敏化和容纳Eu3+的有效框架。封装成功后,Sr-MOF中有机配体可以有效的吸收能量并通过分子间的能量传递方式将能量传递给Eu3+后实现荧光发射。
4、热重分析
图4为本发明制备的Sr-MOF和Eu3+@Sr-MOF材料的热重分析图。对比Sr-MOF和Eu3+@Sr-MOF的失重趋势曲线图,可以发现当Eu3+成功封装进Sr-MOF后,由于所含水分量的不同,室温到300℃之前曲线趋势略有不同,但是在300℃之后他们的趋势基本相同,都是在468℃左右骨架开始坍塌。因此通过热分析图表明,本发明制备的Eu3+@Sr-MOF材料依旧保持较高的热稳定性。
三、Eu3+@Sr-MOF荧光检测Cr3+
1、金属离子的检测
取一定量Eu3+@Sr-MOF材料,配置成浓度为4mg/mL的水溶液,该溶液在紫外灯下呈红色荧光。分别移取Eu3+@Sr-MOF水溶液于15个比色管中,分别加入K+、Na+、Hg2+、Mg2+、Pd2+、Ag+、Zn2+、Ca2+、Cu2+、Cd2+、Co2+、Ni2+、Fe2+、Cr3+离子溶液,观察各溶液的荧光效应。
图5为Eu3+@Sr-MOF材料对于金属离子的荧光效应柱状图。从图5中可以看出,只有Cr3+离子的加入对于Eu3+@Sr-MOF溶液具有很好的荧光猝灭效应,其他金属离子的加入虽然在一定程度上减弱了Eu3+@Sr-MOF溶液的荧光强度,但都不能使Eu3+@Sr-MOF溶液发生荧光猝灭效应。因此,Eu3+@Sr-MOF可以选择性荧光识别Cr3+
荧光滴定实验表明,Eu3+@Sr-MOF检测Cr3+的最低检测限为:0.15μmol。
2、抗干扰检测
图6为Eu3+@Sr-MOF材料用于抗干扰检测的荧光强度对比图。这意味着Cr3+对水介质中Eu3+@Sr-MOF的猝灭作用不受共存离子的影响,进一步表明Eu3+@Sr-MOF可以单一选择性地荧光检测水溶液中的Cr3+
综上所述,本发明以1,4,5,8-萘四甲酸与硝酸锶为原料,以乙醇和水为溶剂,通过溶剂热法首先制备晶体Sr-MOF,再以Sr-MOF作为母体框架,通过后合成修饰将Eu3+离子封装到Sr-MOF的孔中,得到Eu3+@Sr-MOF。该材料可以发射稀土Eu3+离子的特征峰,将其用于荧光检测金属离子,可以对Cr3+离子进行特异性检测。
附图说明
图1为本发明制备的Sr-MOF和Eu3+@Sr-MOF的粉末衍射谱图。
图2为本发明制备的Sr-MOF和Eu3+@Sr-MOF的红外光谱图。
图3为本发明制备的Sr-MOF和Eu3+@Sr-MOF的扫描电镜图。
图4为本发明制备的Sr-MOF和Eu3+@Sr-MOF的热重分析图。
图5为本发明制备的Eu3+@Sr-MOF材料金属离子的检测图。
图6为本发明制备的Eu3+@Sr-MOF材料金属离子抗干扰检测。
具体实施方式
下面通过具体实施例对本发明通过后合成修饰构建稀土金属有机框架材料的方法作进一步说明。
将1,4,5,8-萘四甲酸(0.1 mmol, 30.4 mg)与硝酸锶(0.1 mmol,21.2 mg)溶解在乙醇(3mL)和水(4mL)溶液中,超声处理10min;将混合溶液转移至不锈钢高压反应釜中,保持125~130℃反应70~72小时,过滤用无水乙醇洗涤三次后,在空气中干燥,得到矩Sr-MOF;
取Sr-MOF(100mg)分散在10毫升Eu(NO3)3·6H2O水溶液(1mmol/L)中浸泡两天,过滤,所得固体用大量蒸馏水完全洗涤以除去残留的Eu3+离子,然后在70~80℃下真空干燥20~24小时,得到Eu3+@Sr-MOF。
取一定量的Eu3+@Sr-MOF材料,分散于蒸馏水中配制成浓度4mg/mL的溶液;在365nm紫外灯下,该溶液有肉眼可见的红色荧光输出。
取一定量的Eu3+@Sr-MOF材料,分散于蒸馏水中配制成浓度4mg/mL的溶液;分别在Eu3+@Sr-MOF溶液中加入K+、Na+、Hg2+、Mg2+、Pd2+、Ag+、Zn2+、Ca2+、Cu2+、Cd2+、Co2+、Ni2+、Fe2+、Cr3+的硝酸盐水溶液(10-2M),若紫外灯下溶液的红色荧光完全猝灭,则说明加入的是Cr3+溶液。

Claims (6)

1.一种稀土金属有机框架材料的制备方法,是将1,4,5,8-萘四甲酸与硝酸锶溶解在乙醇-水混合溶剂中,超声分散均匀后,在125~130℃反应70~72小时;反应结束后过滤,用无水乙醇洗涤,空气中干燥,得母体框架Sr-MOF;再将Sr-MOF分散在Eu(NO3)3·6H2O水溶液中,室温反应45~48h,过滤,所得固体产物用蒸馏水完全洗涤以除去残留的Eu3+离子;然后在70~80℃下真空干燥20~24小时,得到Eu3+@Sr-MOF。
2.如权利要求1所述一种稀土金属有机框架材料的制备方法,其特征在于:1,4,5,8-萘四甲酸与硝酸锶的摩尔比为1:0.8~1:1.2。
3.如权利要求1所述一种稀土金属有机框架材料的制备方法,其特征在于:乙醇-水混合溶剂中,乙醇和水溶液的体积比为1:1~1:1.5。
4.如权利要求1所述一种稀土金属有机框架材料的制备方法,其特征在于:Eu(NO3)3·6H2O水溶液的浓度为0.5~1.5mmol/L。
5.如权利要求1所述方法制备的稀土金属有机框架材料在荧光检测Cr3+中的应用。
6.如权利要求5所述稀土金属有机框架材料在荧光检测Cr3+中的应用,其特征在于:在Eu3+@Sr-MOF材料的水溶液中,分别加入K+、Na+、Hg2+、Mg2+、Pd2+、Ag+、Zn2+、Ca2+、Cu2+、Cd2+、Co2 +、Ni2+、Fe2+、Cr3+离子溶液,只有Cr3+的加入能使Eu3+@Sr-MOF溶液的红色荧光猝灭。
CN201910834594.9A 2019-09-05 2019-09-05 一种稀土金属有机框架材料的制备及应用 Expired - Fee Related CN110408384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910834594.9A CN110408384B (zh) 2019-09-05 2019-09-05 一种稀土金属有机框架材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910834594.9A CN110408384B (zh) 2019-09-05 2019-09-05 一种稀土金属有机框架材料的制备及应用

Publications (2)

Publication Number Publication Date
CN110408384A CN110408384A (zh) 2019-11-05
CN110408384B true CN110408384B (zh) 2021-04-20

Family

ID=68370183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910834594.9A Expired - Fee Related CN110408384B (zh) 2019-09-05 2019-09-05 一种稀土金属有机框架材料的制备及应用

Country Status (1)

Country Link
CN (1) CN110408384B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938215A (zh) * 2019-12-26 2020-03-31 烟台大学 Eu3+-MOF材料制备方法及其应用
CN112094416B (zh) * 2020-09-23 2022-04-26 中国药科大学 一种用于血浆中唾液酸荧光检测的镧系配位聚合物荧光探针、制法和检测方法
CN114682304B (zh) * 2022-04-13 2023-05-12 江苏理工学院 具有可见光催化降解性能的CuCd-MOF/GO-x复合材料及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978585A (zh) * 2006-12-01 2007-06-13 南开大学 稀土-主族元素三金属配合物型光致发光材料及其制备方法与应用
CN107043391A (zh) * 2016-02-05 2017-08-15 中央研究院 含碱土金属族金属-有机架构物的有机电致发光材料及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978585A (zh) * 2006-12-01 2007-06-13 南开大学 稀土-主族元素三金属配合物型光致发光材料及其制备方法与应用
CN107043391A (zh) * 2016-02-05 2017-08-15 中央研究院 含碱土金属族金属-有机架构物的有机电致发光材料及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Novel Tb@Sr-MOF as Self-Calibrating Luminescent Sensor for Nutritional Antioxidant;Yi Wang等;《Nanomaterials》;20181007;第8卷;796(1-14) *
Electrically Driven White Light Emission from Intrinsic Metal−Organic Framework;Golam Haider等;《ACS Nano》;20160831;第10卷;8366-8375 *
Eu3+/Tb3+ functionalized Bi-based metal–organic frameworks toward tunable white-light emission and fluorescence sensing applications;Lifei Xu 等;《Dalton Trans.》;20181101;第47卷;16696-16703 *
Sensitive luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal-organic framework and its lanthanide(III) post-functionalizations;Ji-Yong Zou等;《Dyes and Pigments》;20180704;第159卷;429-438 *

Also Published As

Publication number Publication date
CN110408384A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN110408384B (zh) 一种稀土金属有机框架材料的制备及应用
Xu et al. Exchange reactions in metal-organic frameworks: New advances
Yuan et al. Metallosalen-based crystalline porous materials: Synthesis and property
Gao et al. A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium
Modak et al. Porphyrin based porous organic polymer as bi-functional catalyst for selective oxidation and Knoevenagel condensation reactions
Yang et al. An alkaline-resistant Ag (i)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO 2
CN108355611B (zh) 一种mof配合物及其合成和在吸附废水中有机染料的应用
Wu et al. Adsorption mechanism study of multinuclear metal coordination cluster Zn5 for anionic dyes congo red and methyl orange: Experiment and molecular simulation
Steenhaut et al. Aluminium-based MIL-100 (Al) and MIL-101 (Al) metal–organic frameworks, derivative materials and composites: synthesis, structure, properties and applications
Yi et al. Ionic liquid modified covalent organic frameworks for efficient detection and adsorption of ReO4–/TcO4–
Zhu et al. Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis
Dutta et al. Ionic metal–organic frameworks (iMOFs): progress and prospects as ionic functional materials
CN114773550B (zh) 刚柔相济的共价有机框架材料及其制备方法和用途
Liu et al. Cationic Zr-based metal-organic framework via post-synthetic alkylation for selective adsorption and separation of anionic dyes
CN113698579A (zh) 卟啉型共轭微孔聚合物及其合成方法和应用
Shee et al. Supramolecular squares of Sn (IV) porphyrins with Re (I)-corners for the fabrication of self-assembled nanostructures performing photocatalytic degradation of Eriochrome Black T dye
Dang et al. A Cerium‐Containing Metal‐Organic Framework: Synthesis and Heterogeneous Catalytic Activity toward Fenton‐Like Reactions
Lee et al. Fabrication and properties of Sn (IV) porphyrin-linked porous organic polymer for environmental applications
Lal et al. Advances in metal–organic frameworks for water remediation applications
KR101807266B1 (ko) 금속-유기 골격체 및 이의 제조방법
Ma et al. Cerium-cobalt bimetallic metal–organic frameworks with the mixed ligands for photocatalytic degradation of methylene blue
Shi et al. Concentration-and self-catalysis-dominated rapid synthesis of multifunctional UiO-66 (Ce) for dual-mode sensing of tetracycline
CN110560004A (zh) 一种Eu-MOF配合物及其合成和在吸附废水中有机染料的应用
CN110143943B (zh) 一种钡基配合物及其制备方法和在荧光识别领域的应用
CN104876976B (zh) 一种Meso-5, 10, 15, 20-四-(对羧基苯基)卟啉双金属配位聚合物及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210420

Termination date: 20210905

CF01 Termination of patent right due to non-payment of annual fee