CN110389529B - 基于平行估计的mems陀螺仪参数辨识驱动控制方法 - Google Patents

基于平行估计的mems陀螺仪参数辨识驱动控制方法 Download PDF

Info

Publication number
CN110389529B
CN110389529B CN201910648374.7A CN201910648374A CN110389529B CN 110389529 B CN110389529 B CN 110389529B CN 201910648374 A CN201910648374 A CN 201910648374A CN 110389529 B CN110389529 B CN 110389529B
Authority
CN
China
Prior art keywords
dimensionless
substances
mems
content
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910648374.7A
Other languages
English (en)
Other versions
CN110389529A (zh
Inventor
许斌
张睿
魏琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910648374.7A priority Critical patent/CN110389529B/zh
Publication of CN110389529A publication Critical patent/CN110389529A/zh
Application granted granted Critical
Publication of CN110389529B publication Critical patent/CN110389529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,属于智能化仪器仪表领域。该方法将陀螺仪动力学模型转化为无量纲的动力学线性参数化模型;设计动力学平行估计模型,构建***预测误差,并结合跟踪误差设计参数更新律,提高参数辨识精度;结合参数更新律设计控制器,同时实现陀螺驱动控制和动力学参数辨识。本发明设计的基于平行估计的MEMS陀螺仪参数辨识驱动控制方法可解决难以在线辨识参数的问题,同时实现陀螺仪驱动控制和高精度参数辨识,进一步改善MEMS陀螺仪性能。

Description

基于平行估计的MEMS陀螺仪参数辨识驱动控制方法
技术领域
本发明涉及一种MEMS陀螺仪的驱动控制方法,特别是涉及一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,属于智能化仪器仪表领域。
背景技术
精确的动力学模型是进行MEMS陀螺仪硬件设计、控制***设计和***仿真的重要条件,而动力学模型参数辨识是其中的关键技术。《Nonlinear Estimator Design forMEMS Gyroscope with Time-varying Angular Rate》(Kral Ladislav and StrakaOndrej,《International Federation of Automatic Control》,2017)一文中将动力学模型中的参数和状态都纳入Kalman滤波器的状态向量,以MEMS陀螺检测质量块的位移作为量测量,采用无迹Kalman滤波器进行参数估计。然而这种方法需要大量先验信息,并不能实现参数在线辨识。
发明内容
要解决的技术问题
为克服现有技术难以实现参数在线辨识的问题,本发明提出一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法。该方法一方面设计动力学平行估计模型,构建***预测误差,并结合跟踪误差设计参数更新律,提高参数辨识精度;另一方面将动力学转换为线性参数化模型,结合参数更新律设计控制器,同时实现陀螺驱动控制和动力学参数辨识。
技术方案
一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,其特征在于步骤如下:
步骤1:考虑存在正交误差的MEMS陀螺动力学模型为:
Figure BDA0002134333400000021
其中,m为检测质量块的质量;Ωz为陀螺输入角速度,
Figure BDA0002134333400000022
和x*分别为MEMS陀螺仪检测质量块沿驱动轴的加速度、速度和位移,
Figure BDA0002134333400000023
和y*分别为沿检测轴的加速度、速度和位移,
Figure BDA0002134333400000024
Figure BDA0002134333400000025
为静电驱动力,cxx和cyy为阻尼系数,kxx和kyy为刚度系数,
Figure BDA00021343334000000214
Figure BDA00021343334000000215
为非线性系数,cxy和cyx为阻尼耦合系数,kxy和kyx为刚度耦合系数;上述参数根据振动式硅微机械陀螺参数选取;
取无量纲化时间t=ωot*,无量纲化位移x=x*/q0,y=y*/q0,其中ω0为参考频率,q0为参考长度,对MEMS陀螺动力学模型进行无量纲化处理,并在等式两边同时除以
Figure BDA0002134333400000026
得到
Figure BDA0002134333400000027
其中,
Figure BDA0002134333400000028
和x分别为MEMS陀螺仪检测质量块沿驱动轴的无量纲加速度、无量纲速度和无量纲位移,
Figure BDA0002134333400000029
和y分别为沿检测轴的无量纲加速度、无量纲速度和无量纲位移;
重新定义
Figure BDA00021343334000000210
Figure BDA00021343334000000211
Figure BDA00021343334000000212
Figure BDA00021343334000000213
则式(2)可以改写为
Figure BDA0002134333400000031
定义θ1=[x,y]T
Figure BDA0002134333400000032
则式(3)可写为
Figure BDA0002134333400000033
其中,U=[u1,u2]T,F(Φ)=[f1,f2]T
Figure BDA0002134333400000034
定义
Figure BDA0002134333400000035
对F(Φ)进行线性参数化,得到
F(Φ)=WΦ (5)
步骤2:给出MEMS陀螺动力学式(1)的参考轨迹为
Figure BDA0002134333400000036
其中,
Figure BDA0002134333400000037
Figure BDA0002134333400000038
分别为检测质量块沿驱动轴和检测轴的参考振动位移信号,
Figure BDA0002134333400000039
Figure BDA00021343334000000310
分别为驱动轴和检测轴振动的参考振幅,ω1和ω2分别为驱动轴和检测轴振动的参考角频率,
Figure BDA00021343334000000311
Figure BDA00021343334000000312
分别为驱动轴和检测轴振动的相位;
则无量纲动力学式(4)的参考轨迹为
Figure BDA00021343334000000313
其中,
Figure BDA00021343334000000314
Figure BDA00021343334000000315
且待设计参数
Figure BDA00021343334000000316
定义跟踪误差为
Figure BDA00021343334000000317
则控制器设计为
U=Un+Upd-Uad (9)
Figure BDA0002134333400000041
Upd=K1e1+K2e2 (11)
Figure BDA0002134333400000042
其中,
Figure BDA0002134333400000043
是W的估计值,待设计参数
Figure BDA0002134333400000044
Figure BDA0002134333400000045
满足Hurwitz条件;
步骤3:定义模型预测误差为
Figure BDA0002134333400000046
其中,
Figure BDA0002134333400000047
为θ2的估计值,由以下平行估计模型得到
Figure BDA0002134333400000048
其中,
Figure BDA0002134333400000049
Figure BDA00021343334000000410
的导数,待设计参数
Figure BDA00021343334000000411
满足Hurwitz条件;
给出动力学参数更新律为
Figure BDA00021343334000000412
其中,
Figure BDA00021343334000000413
Figure BDA00021343334000000414
为待设计矩阵;
步骤4:基于参数自适应律式(15)设计控制器式(9)驱动无量纲动力学(4),并通过量纲转换返回MEMS陀螺动力学模型(1),实现陀螺驱动控制及动力学参数辨识。
有益效果
本发明提出的一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,与现有技术相比的有益效果为:
(1)针对动力学参数辨识精度低的问题,设计动力学平行估计模型,构建***预测误差,并结合跟踪误差设计动力学参数更新律,提高参数辨识精度。
(2)针对动力学参数难以在线辨识的问题,将动力学改写为线性参数化形式,结合参数更新律设计控制器,同时实现陀螺驱动控制和动力学精确辨识。
附图说明
图1本发明具体实施流程图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明公开了一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,结合图1,具体步骤如下:
(a)考虑存在正交误差的MEMS陀螺动力学模型为:
Figure BDA0002134333400000051
其中,m为检测质量块的质量,Ωz为陀螺输入角速度,
Figure BDA0002134333400000052
和x*分别为MEMS陀螺仪检测质量块沿驱动轴的加速度、速度和位移,
Figure BDA0002134333400000053
和y*分别为沿检测轴的加速度、速度和位移,
Figure BDA0002134333400000054
Figure BDA0002134333400000055
为静电驱动力,cxx和cyy为阻尼系数,kxx和kyy为刚度系数,
Figure BDA0002134333400000056
Figure BDA0002134333400000057
为非线性系数,cxy和cyx为阻尼耦合系数,kxy和kyx为刚度耦合系数。根据某型号的振动式硅微机械陀螺,选取陀螺各参数为m=5.7×10-9kg,q0=10-5m,ω0=1kHz,Ωz=5.0rad/s,kxx=80.98N/m,kyy=71.62N/m,kxy=0.05N/m,kyx=0.05N/m,
Figure BDA00021343334000000511
cxx=4.29×10-7Ns/m,cyy=4.29×10-8Ns/m,cxy=4.29×10-8Ns/m,cyx=4.29×10-8Ns/m。
取无量纲化时间t=ωot*,无量纲化位移x=x*/q0,y=y*/q0,其中ω0为参考频率,q0为参考长度,对MEMS陀螺动力学模型进行无量纲化处理,得到
Figure BDA0002134333400000058
其中,
Figure BDA0002134333400000059
和x分别为MEMS陀螺仪检测质量块沿驱动轴的无量纲加速度、无量纲速度和无量纲位移,
Figure BDA00021343334000000510
和y分别为沿检测轴的无量纲加速度、无量纲速度和无量纲位移。
在式(2)两边同时除以
Figure BDA0002134333400000061
将之简化为
Figure BDA0002134333400000062
重新定义动力学参数为
Figure BDA0002134333400000063
Figure BDA0002134333400000064
式(3)可以表示为
Figure BDA0002134333400000065
定义
Figure BDA0002134333400000066
Figure BDA0002134333400000067
则式(4)可以改写为
Figure BDA0002134333400000068
定义θ1=[x,y]T
Figure BDA0002134333400000069
则式(5)可写为
Figure BDA00021343334000000610
其中,U=[u1,u2]T,F(Φ)=[f1,f2]T
Figure BDA00021343334000000611
定义
Figure BDA00021343334000000612
对F(Φ)进行线性参数化,得到
F(Φ)=WΦ (7)
(b)给出MEMS陀螺动力学式(1)的参考轨迹为
Figure BDA0002134333400000071
其中,
Figure BDA0002134333400000072
Figure BDA0002134333400000073
分别为检测质量块沿驱动轴和检测轴的参考振动位移信号。
则无量纲动力学式(6)的参考轨迹为
Figure BDA0002134333400000074
其中,xd=6.2sin(4.71t+π/3),yd=5sin(5.11t-π/6),
Figure BDA0002134333400000075
Figure BDA0002134333400000076
定义跟踪误差为
Figure BDA0002134333400000077
则控制器设计为
U=Un+Upd-Uad (11)
Figure BDA0002134333400000078
Upd=K1e1+K2e2 (13)
Figure BDA0002134333400000079
其中,
Figure BDA00021343334000000710
是W的估计值,
Figure BDA00021343334000000711
(c)定义模型预测误差为
Figure BDA00021343334000000712
其中,
Figure BDA00021343334000000713
为θ2的估计值,由以下平行估计模型得到
Figure BDA00021343334000000714
其中,
Figure BDA00021343334000000715
Figure BDA00021343334000000716
的导数,
Figure BDA00021343334000000717
给出动力学参数更新律为
Figure BDA0002134333400000081
其中,
Figure BDA0002134333400000082
(d)基于参数自适应律式(17)设计控制器式(11)驱动无量纲动力学(6),并通过量纲转换返回MEMS陀螺动力学模型(1),实现陀螺驱动控制及动力学参数辨识。

Claims (1)

1.一种基于平行估计的MEMS陀螺仪参数辨识驱动控制方法,其特征在于步骤如下:
步骤1:考虑存在正交误差的MEMS陀螺动力学模型为:
Figure FDA0002134333390000011
其中,m为检测质量块的质量;Ωz为陀螺输入角速度,
Figure FDA0002134333390000012
和x*分别为MEMS陀螺仪检测质量块沿驱动轴的加速度、速度和位移,
Figure FDA0002134333390000013
和y*分别为沿检测轴的加速度、速度和位移,
Figure FDA0002134333390000014
Figure FDA0002134333390000015
为静电驱动力,cxx和cyy为阻尼系数,kxx和kyy为刚度系数,
Figure FDA0002134333390000016
Figure FDA0002134333390000017
为非线性系数,cxy和cyx为阻尼耦合系数,kxy和kyx为刚度耦合系数;上述参数根据振动式硅微机械陀螺参数选取;
取无量纲化时间t=ωot*,无量纲化位移x=x*/q0,y=y*/q0,其中ω0为参考频率,q0为参考长度,对MEMS陀螺动力学模型进行无量纲化处理,并在等式两边同时除以
Figure FDA0002134333390000018
得到
Figure FDA0002134333390000019
其中,
Figure FDA00021343333900000110
和x分别为MEMS陀螺仪检测质量块沿驱动轴的无量纲加速度、无量纲速度和无量纲位移,
Figure FDA00021343333900000111
和y分别为沿检测轴的无量纲加速度、无量纲速度和无量纲位移;
重新定义
Figure FDA00021343333900000112
Figure FDA00021343333900000113
Figure FDA00021343333900000114
Figure FDA0002134333390000021
则式(2)可以改写为
Figure FDA0002134333390000022
定义θ1=[x,y]T
Figure FDA0002134333390000023
则式(3)可写为
Figure FDA0002134333390000024
其中,U=[u1,u2]T,F(Φ)=[f1,f2]T
Figure FDA0002134333390000025
定义
Figure FDA0002134333390000026
对F(Φ)进行线性参数化,得到
F(Φ)=WΦ (5)
步骤2:给出MEMS陀螺动力学式(1)的参考轨迹为
Figure FDA0002134333390000027
其中,
Figure FDA0002134333390000028
Figure FDA0002134333390000029
分别为检测质量块沿驱动轴和检测轴的参考振动位移信号,
Figure FDA00021343333900000210
Figure FDA00021343333900000211
分别为驱动轴和检测轴振动的参考振幅,ω1和ω2分别为驱动轴和检测轴振动的参考角频率,
Figure FDA00021343333900000212
Figure FDA00021343333900000213
分别为驱动轴和检测轴振动的相位;
则无量纲动力学式(4)的参考轨迹为
θ1d=[xd,yd]T
Figure FDA00021343333900000214
其中,
Figure FDA00021343333900000215
Figure FDA00021343333900000216
且待设计参数
Figure FDA00021343333900000217
定义跟踪误差为
e1=θ1d1,e2=θ2d2
Figure FDA00021343333900000218
则控制器设计为
U=Un+Upd-Uad (9)
Figure FDA0002134333390000031
Upd=K1e1+K2e2 (11)
Figure FDA0002134333390000032
其中,
Figure FDA0002134333390000033
是W的估计值,待设计参数
Figure FDA0002134333390000034
Figure FDA0002134333390000035
满足Hurwitz条件;
步骤3:定义模型预测误差为
Figure FDA0002134333390000036
其中,
Figure FDA0002134333390000037
为θ2的估计值,由以下平行估计模型得到
Figure FDA0002134333390000038
其中,
Figure FDA0002134333390000039
Figure FDA00021343333900000310
的导数,待设计参数
Figure FDA00021343333900000311
满足Hurwitz条件;
给出动力学参数更新律为
Figure FDA00021343333900000312
其中,
Figure FDA00021343333900000313
Figure FDA00021343333900000314
为待设计矩阵;
步骤4:基于参数自适应律式(15)设计控制器式(9)驱动无量纲动力学(4),并通过量纲转换返回MEMS陀螺动力学模型(1),实现陀螺驱动控制及动力学参数辨识。
CN201910648374.7A 2019-07-18 2019-07-18 基于平行估计的mems陀螺仪参数辨识驱动控制方法 Active CN110389529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910648374.7A CN110389529B (zh) 2019-07-18 2019-07-18 基于平行估计的mems陀螺仪参数辨识驱动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910648374.7A CN110389529B (zh) 2019-07-18 2019-07-18 基于平行估计的mems陀螺仪参数辨识驱动控制方法

Publications (2)

Publication Number Publication Date
CN110389529A CN110389529A (zh) 2019-10-29
CN110389529B true CN110389529B (zh) 2022-04-01

Family

ID=68285165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910648374.7A Active CN110389529B (zh) 2019-07-18 2019-07-18 基于平行估计的mems陀螺仪参数辨识驱动控制方法

Country Status (1)

Country Link
CN (1) CN110389529B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614993A (zh) * 2015-01-15 2015-05-13 河海大学常州校区 微陀螺仪自适应滑模预设性能控制方法
CN107608216A (zh) * 2017-11-05 2018-01-19 西北工业大学 基于平行估计模型的mems陀螺仪复合学习控制方法
CN107831655A (zh) * 2017-10-23 2018-03-23 河海大学常州校区 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN107870566A (zh) * 2017-11-05 2018-04-03 西北工业大学 基于平行估计复合学习的mems陀螺仪快速启动方法
CN108241299A (zh) * 2018-01-19 2018-07-03 南通大学 带误差限定的微陀螺自适应滑模控制方法
CN109062048A (zh) * 2018-08-20 2018-12-21 西北工业大学 基于复合学习的mems陀螺仪预设性能非奇异滑模控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614993A (zh) * 2015-01-15 2015-05-13 河海大学常州校区 微陀螺仪自适应滑模预设性能控制方法
CN107831655A (zh) * 2017-10-23 2018-03-23 河海大学常州校区 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN107608216A (zh) * 2017-11-05 2018-01-19 西北工业大学 基于平行估计模型的mems陀螺仪复合学习控制方法
CN107870566A (zh) * 2017-11-05 2018-04-03 西北工业大学 基于平行估计复合学习的mems陀螺仪快速启动方法
CN108241299A (zh) * 2018-01-19 2018-07-03 南通大学 带误差限定的微陀螺自适应滑模控制方法
CN109062048A (zh) * 2018-08-20 2018-12-21 西北工业大学 基于复合学习的mems陀螺仪预设性能非奇异滑模控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sliding mode control of MEMS gyroscopes using composite learning;RUI ZHANG etc.;《Neurocomputing》;20180131;第275卷;第2555-2564页 *
基于智能控制技术的微惯性器件误差抑制方法研究;张睿;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20180915(第9期);第I140-78页 *

Also Published As

Publication number Publication date
CN110389529A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN110389528B (zh) 基于扰动观测的数据驱动mems陀螺仪驱动控制方法
CN108897226B (zh) 基于干扰观测器的mems陀螺仪预设性能非奇异滑模控制方法
Esmaeili et al. Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion
Fei Robust adaptive vibration tracking control for a micro-electro-mechanical systems vibratory gyroscope with bound estimation
CN104049534B (zh) 微陀螺仪的自适应迭代学习控制方法
CN110703610B (zh) 微陀螺仪的递归模糊神经网络非奇异终端滑模控制方法
CN108710296B (zh) 微陀螺仪的分数阶自适应快速终端滑模控制方法
CN109240083B (zh) 微陀螺仪***的自适应模糊超扭曲滑模控制方法
Gill et al. MEMS multi-vibrating ring gyroscope for space applications
Shaw et al. A review of nonlinear dynamics of mechanical systems in year 2008
CN110389527B (zh) 基于异类估计的mems陀螺仪滑模控制方法
CN110389530B (zh) 基于数据筛选的mems陀螺仪参数辨识驱动控制方法
CN103345154A (zh) 微陀螺仪***的间接自适应模糊滑模控制方法
CN110389529B (zh) 基于平行估计的mems陀螺仪参数辨识驱动控制方法
CN110426952B (zh) 考虑外界干扰的区间数据学习mems陀螺仪高精度驱动控制方法
CN110456639B (zh) 基于历史数据参数辨识的mems陀螺仪自适应驱动控制方法
CN109062048A (zh) 基于复合学习的mems陀螺仪预设性能非奇异滑模控制方法
CN110471293B (zh) 一种估计时变角速度的z轴陀螺仪滑模控制方法
CN110456638B (zh) 基于区间数据激励的mems陀螺仪参数辨识自适应驱动控制方法
CN110456640B (zh) 基于非奇异终端滑模设计的mems陀螺仪参数辨识神经网络控制方法
Lee et al. Real-time rls-based joint model identification and state observer design for robot manipulators: Experimental studies
CN111930154B (zh) 一种mems陀螺仪的非奇异终端滑模控制方法和装置
Yin et al. Structure-decoupled dual-mass MEMS gyroscope with self-adaptive closed-loop detection
CN110579966B (zh) 一种基于神经网络辨识参数的z轴陀螺仪控制方法
CN110389526B (zh) 基于Super-Twisting算法的MEMS陀螺自适应滑模控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant