CN110386818A - 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法 - Google Patents

掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN110386818A
CN110386818A CN201810364842.3A CN201810364842A CN110386818A CN 110386818 A CN110386818 A CN 110386818A CN 201810364842 A CN201810364842 A CN 201810364842A CN 110386818 A CN110386818 A CN 110386818A
Authority
CN
China
Prior art keywords
terbium
crystalline ceramics
magnetic rotation
zirconium
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810364842.3A
Other languages
English (en)
Inventor
陈杰
周圣明
唐燕如
易学专
郝德明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201810364842.3A priority Critical patent/CN110386818A/zh
Publication of CN110386818A publication Critical patent/CN110386818A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种掺锆铽铝石榴石磁旋光透明陶瓷,该透明陶瓷组成为xZrO2‑Tb3Al5O12,其中ZrO2的掺杂量占Tb3Al5O12重量的百分比的变化范围为x=0.01wt%~0.5wt%。采用七氧化四铽或三氧化二铽、氧化铝、二氧化锆粉体为原料,正硅酸四乙酯或二氧化硅、氧化镁或乙醇镁为烧结助剂,经湿法球磨、烘干、过筛、压片和冷等静压后,预烧去除有机成分,真空烧结得到高光学质量的透明陶瓷。本发明制备的掺锆铽铝石榴石磁旋光透明陶瓷在可见‑红外波段具有高透过率和高磁光性能,并且具有制备工艺简单,生产周期短,无需气氛辅助和压力烧结,经济节能等优点。

Description

掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法
技术领域
本发明属于陶瓷材料领域,具体涉及一种高光学质量掺锆铽铝石榴石(Zr-TAG)磁旋光透明陶瓷及其制备方法。
背景技术
以磁旋光材料为基础的光无源器件在高功率激光***中起着光隔离,光调制等作用,是提高激光光束质量和功率的关键因素。目前商用化的铽镓石榴石(Tb3Ga5O12,简记为TGG)晶体在百瓦量级的高功率光纤激光***中,各项指标都出现了严重恶化。而铽铝石榴石(Tb3Al5O12,简记为TAG)磁光材料以其高verdet常数,较低的制备成本,以及可见及近红外波段较高的透过率等优点,有着成为下一代高功率法拉第磁旋光材料的潜在可能。
TAG晶体因其不一致熔融的特性,难以通过常规的晶体生长方法生长大尺寸单晶,严重限制了其实际应用。而通过结合先进的透明陶瓷制备技术,在熔点以下较低温度的固相反应制备的TAG磁旋光透明陶瓷,既避免了其不一致熔融的限制,同时最大程度的保持了材料的自身优良特性。
目前TAG磁光透明陶瓷实用化存在的阻碍主要是气孔及晶界引起的光学散射,造成其光学质量下降,在光学损耗方面与高质量TAG单晶相比仍存在一定的差距,难以实际应用。一般来说,在透明陶瓷的制备中,通过对微结构的调控如控制晶粒大小、致密度、气孔率等,对陶瓷光学质量的提高有着至关重要的作用。以常见的烧结助剂组合正硅酸乙酯(TEOS)和氧化镁(MgO)制备的TAG陶瓷,因MgO-SiO2-Al2O3体系可以在较低温度下形成液相,排除气孔,获得了较高的光学质量(“Vacuum sintering of Tb3Al5O12transparentceramics with combined TEOS+MgO sintering aids”,C.Chen,X.Yi,S.Zhang,Y.Feng,Y.Tang,H.Lin,and S.Zhou,Ceram.Int.41,12823-12827(2015)),但距TAG单晶(“Growthof terbium aluminum garnet(Tb3Al5O12:TAG)single crystals by the hybrid laserfloating zone machine”,M.Geho,T.Sekijima,and T.Fujii,J.Cryst.Growth 267,188-193(2004))仍有一定差距。A.Ikesue等采用二氧化硅(SiO2)单烧结助剂,经热等静压预处理得到了光学级质量的TAG陶瓷(“Development of optical grade(TbxY1-x)3Al5O12ceramics as Faraday rotator material,”Y.L.Aung,and A.Ikesue,J.Am.Ceram.Soc.100,4081-4087(2017)),有力地推动了其实用化进程。
尽管采用热等静压处理对TAG陶瓷光学质量提高有明显效果,但相对于真空烧结,其高压烧结环境对设备要求很高,不利于节约能源,且增加生产成本。而寻找更有效的掺杂剂,通过对微结构调控以直接真空烧结制备高光学质量的磁旋光透明陶瓷值得进一步探究。
发明内容
针对TAG透明陶瓷存在的气孔和晶界散射导致光学质量下降,同时TAG陶瓷制备设备要求高、制备成本高等问题,本发明要解决的技术问题是提供一种有效节约能源,满足高功率法拉第磁光器件应用需求,具有高光学质量和磁光性能的掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法。
本发明的技术解决方案如下:
本发明提供的掺锆铽铝石榴石磁旋光透明陶瓷的组成为xZrO2-Tb3Al5O12,其中ZrO2的掺杂量占Tb3Al5O12重量的百分比的变化范围为x=0.01wt%~0.5wt%。
优选地,x=0.075wt%~0.225wt%。
进一步优选地,x=0.12wt%。
上述高光学质量Zr-TAG磁旋光透明陶瓷的制备方法,包括如下步骤:
1)原料选取:Tb原料采用七氧化四铽(Tb4O7)或三氧化二铽(Tb2O3)粉体中的任一种,Al原料采用氧化铝(Al2O3)粉体,Zr原料采用二氧化锆(ZrO2)粉体,将上述原料粉体按所需金属元素的化学计量比称量后,置于球磨罐中,并加入烧结助剂、分散剂和无水乙醇配置浆料;
其中,所述的烧结助剂由硅助剂和镁助剂组成,硅助剂采用正硅酸四乙酯(TEOS)或二氧化硅(SiO2)中的任一种,镁助剂采用氧化镁(MgO)或乙醇镁(Mg(OEt)2)中的任一种;所述的分散剂为聚乙二醇(PEG-400);
2)素坯成型:将步骤1)中配置的浆料置于球磨机中行星球磨,随后经干燥、研磨、过筛、压片,采用冷等静压成型,成型后的素坯置于马弗炉中煅烧以去除有机杂质;
3)真空烧结:将步骤2)中的陶瓷素坯置于真空炉中烧结,得到掺锆铽铝石榴石磁旋光透明陶瓷。
优选地,步骤1)中所述的七氧化四铽或三氧化二铽粉体纯度不低于99.9%,所述的氧化铝粉体纯度不低于99.9%,所述的二氧化锆粉体纯度不低于99.9%。
优选地,步骤1)中所述的硅助剂和镁助剂两者的总添加量为Tb、Al、Zr原料粉体质量总和的0.14wt%~0.685wt%,Mg和Si的元素摩尔比的变化范围为1:4~5:4。
优选地,步骤2)中所述的行星球磨时间为12~24小时,所述的干燥温度为70℃,干燥时间为12~24小时,所述的冷等静压压力为150MPa以上,所述的煅烧温度为500~800℃,煅烧时间为12~24小时。
优选地,步骤3)中所述的烧结温度为1650~1750℃,烧结时间为12~48小时,真空炉真空度优于10-2Pa。
本发明的技术效果
基于以上的技术方案特点,本发明从多个方面抑制了光学散射的发生,大大提高了TAG的光学质量。具体原理如下:
(1)减小气孔散射:在Zr-TAG磁旋光透明陶瓷的真空烧结过程中,由于ZrO2是高熔点氧化物且性能稳定,在陶瓷烧结初期的低温阶段约700~1500℃范围内,可以保持稳定的物化性能,富集于晶界,起到钉扎作用,大大限制晶粒的生长,能够有效防止晶粒过快生长带来的封闭性气孔的产生。采用MgO加TEOS烧结助剂组合制备TAG透明陶瓷过程中,MgO-SiO2-Al2O3体系较低温度时能够在晶界形成液相,有助于气孔沿晶界的排出。
(2)减小晶界散射:在烧结末期(温度约1500~1700℃范围内),此时绝大部分气孔得到排出,主要散射源变为由晶界与基体的不一致性导致的散射。而由于真空弱还原性气氛和高温的影响,Zr4+将被还原到Zr3+,并且伴随着Zr离子在TAG石榴石立方晶格中的氧八面体空隙的Al位和氧十二面体空隙的Tb位的占据情况的改变,此过程产生的空位缺陷和晶格畸变将有助于陶瓷晶粒生长,导致透过光穿过的晶界数量减少,晶界散射因此降低,光学质量得到进一步提高。其中,Zr3+对400~700nm波段光有吸收作用,可以通过空气退火消除。
(3)减小杂质散射:作为有机烧结助剂,乙醇镁(Mg(OEt)2)略溶于球磨助剂乙醇,在体系中具有更好的分散性,能够更好地避免烧结助剂分布不均匀导致的杂相、杂质引入。
综合来看,锆掺杂在铽铝石榴石透明陶瓷的烧结过程中,既有烧结前期排除气孔,减小气孔散射的效果,又有烧结后期降低晶界散射的效果,并且通过改进烧结助剂减少了杂质的引入。所制备得到的Zr-TAG磁旋光透明陶瓷在1064nm波段透过率可达到82.04%,接近理论透过率,优于以往报导的TAG单晶透过率的数值。且Verdet常数不受掺杂影响,TAG陶瓷的高磁光性能完全保持。
附图说明
图1:实施例1制备的Zr-TAG透明陶瓷退火前后透过率曲线,其退火前在400~700nm处显示出Zr3+特征吸收带,退火后随Zr3+被氧化为Zr4+,吸收带消失。
图2:实施例1制备的Zr-TAG透明陶瓷退火后光学聚焦显微镜照片,陶瓷具有较大的晶粒尺寸,表明掺锆对晶粒生长有促进作用。
具体实施方式
下面结合实例和附图对本发明的技术方案作进一步说明,但不应以此限制本发明的保护范围。
实施例1
1)原料选取:初始原料采用原料纯度不低于99.9%的七氧化四铽(Tb4O7)、氧化铝(Al2O3)、二氧化锆(ZrO2),按照掺锆铽铝石榴石的分子式xZrO2-Tb3Al5O12组成,其中ZrO2添加量为x=0.12wt%,称取相应的粉体原料共30g,加入0.4wt%TEOS,0.1wt%MgO作为烧结助剂,加入1wt%聚乙二醇(PEG-400)作为分散剂,加一定量无水乙醇,置于球磨罐中;
2)素坯成型:将步骤1)中配置的浆料置于球磨机中行星球磨使粉末充分混合细化,随后经干燥、研磨、过筛、压片,对其施以
150MPa等静压制成坯体,成型后的素坯置于马弗炉中煅烧以去除有机杂质;
3)真空烧结:将步骤2)中的陶瓷素坯置于真空炉中烧结,真空烧结炉内的烧结温度为1700℃,保温时间为24小时,真空烧结炉内的真空度优于10-2Pa,得到Zr-TAG磁旋光透明陶瓷。
对本实例进行测试,图1为本发明实施例1中所制备的Zr-TAG透明陶瓷双面抛光后退火前后的透过率曲线,其中位于486nm处的吸收带对应于Tb3+离子的4f-5D的跃迁。除Tb3+特征吸收带外,退火前在400~700nm存在对应于Zr3+的宽吸收带,样品因此呈现淡红色,通过空气退火后消除。该透明陶瓷在紫外-可见-红外波段500~1600nm的透过率≥80%,位于860nm曲线的轻微波动是由光谱仪更换光源造成。
图2是本发明实施例1中所制备的TAG透明陶瓷空气退火后的光学聚焦显微镜照片,D1显示了某一随机正常晶粒大小为102.6117μm,明显大于以往的报道,平均晶粒尺寸约60μm,显示掺锆对晶粒生长有显著促进效果。
测得该陶瓷样品在632.8nm处的Verdet常数为-175.7rad·T-1·m-1,与以往报导的TAG陶瓷或单晶基本一致,并远大于TGG单晶。
实施例2
按照掺锆铽铝石榴石的分子式xZrO2-Tb3Al5O12组成,其中ZrO2添加量为x=0.5wt%,真空烧结温度为1650℃,保温时间12小时,其他条件同实施例1,可以获得Zr-TAG磁旋光透明陶瓷。
实施例3
按照掺锆铽铝石榴石的分子式xZrO2-Tb3Al5O12组成,其中ZrO2添加量为x=0.01wt%,真空烧结温度为1750℃,保温时间48小时,其它条件同实施例1,获得Zr-TAG磁旋光透明陶瓷。
实施例4
初始原料采用原料纯度不低于99.9%的三氧化二铽(Tb2O3),烧结助剂采用0.12wt%的SiO2和0.1wt%的MgO,其它条件同实施例1,获得Zr-TAG磁旋光透明陶瓷。
实施例5
初始原料采用原料纯度不低于99.9%的三氧化二铽(Tb2O3),烧结助剂采用0.12wt%的SiO2和0.06wt%的MgO,其它条件同实施例1,获得Zr-TAG磁旋光透明陶瓷。
实施例6
初始原料采用原料纯度不低于99.9%的三氧化二铽(Tb2O3),烧结助剂采用0.12wt%的SiO2和0.02wt%的MgO,其它条件同实施例1,获得Zr-TAG磁旋光透明陶瓷。
实施例7
烧结助剂采用0.4wt%的TEOS和0.285wt%的乙醇镁,真空烧结温度为1650℃,烧结时间为48小时,其它条件同实施例1,获得Zr-TAG磁旋光透明陶瓷。
实施例8
按照掺锆铽铝石榴石的分子式xZrO2-Tb3Al5O12组成,其中ZrO2添加量为x=0.075wt%,其他条件同实施例1,可以获得Zr-TAG磁旋光透明陶瓷。
实施例9
按照掺锆铽铝石榴石的分子式xZrO2-Tb3Al5O12组成,其中ZrO2添加量为x=0.225wt%,其他条件同实施例1,可以获得Zr-TAG磁旋光透明陶瓷。
按本发明权利要求书中所陈述的其他条件,同样可以获得不同光学质量的TAG基磁旋光透明陶瓷,在此不一一列举,但不影响本发明权利要求的保护范围。

Claims (5)

1.一种掺锆铽铝石榴石磁旋光透明陶瓷,其特征在于,所述的磁旋光透明陶瓷的组成为xZrO2-Tb3Al5O12,其中ZrO2的掺杂量占Tb3Al5O12重量的百分比的变化范围为:x=0.01wt%~0.5wt%。
2.根据权利要求1所述的掺锆铽铝石榴石磁旋光透明陶瓷,其特征在于,所述的x=0.075wt%~0.225wt%。
3.根据权利要求1所述的掺锆铽铝石榴石磁旋光透明陶瓷,其特征在于,所述的x=0.12wt%。
4.根据权利要求1所述的一种掺锆铽铝石榴石磁旋光透明陶瓷的制备方法,其特征在于,该方法的具体步骤如下:
1)原料选取:Tb原料采用七氧化四铽或三氧化二铽粉体,Al原料采用氧化铝粉体,Zr原料采用二氧化锆粉体,将上述原料粉体按所需的金属元素的化学计量比称量后,置于球磨罐中,并加入烧结助剂、分散剂和无水乙醇配置浆料;
所述的烧结助剂由硅助剂和镁助剂组成,硅助剂原料为正硅酸四乙酯或二氧化硅、镁助剂原料为氧化镁或乙醇镁,硅助剂和镁助剂两者的总添加量为Tb、Al、Zr原料粉体质量总和的0.14wt%~0.685wt%,其中Mg和Si的元素摩尔比的变化范围为1:4~5:4。
2)素坯成型:将所述的浆料置于行星式球磨机中球磨12~24小时,在烘箱中以70℃干燥12~24小时,经研磨、过筛、压片后,采用冷等静压成型,冷等静压压力为150MPa以上,成型后置于马弗炉中煅烧,煅烧温度为500~800℃,煅烧时间为12~24小时,得到陶瓷素坯;
3)真空烧结:将所述的陶瓷素坯置于真空炉中烧结,烧结温度为1650~1750℃,烧结时间为12~48小时,真空炉真空度优于10-2Pa,得到掺锆铽铝石榴石磁旋光透明陶瓷。
5.根据权利要求4所述的掺锆铽铝石榴石磁旋光透明陶瓷的制备方法,其特征在于,所述的七氧化四铽或三氧化二铽粉体的纯度不低于99.9%,所述的氧化铝粉体的纯度不低于99.9%,所述的二氧化锆粉体的纯度不低于99.9%。
CN201810364842.3A 2018-04-23 2018-04-23 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法 Withdrawn CN110386818A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810364842.3A CN110386818A (zh) 2018-04-23 2018-04-23 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810364842.3A CN110386818A (zh) 2018-04-23 2018-04-23 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN110386818A true CN110386818A (zh) 2019-10-29

Family

ID=68284415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810364842.3A Withdrawn CN110386818A (zh) 2018-04-23 2018-04-23 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110386818A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433006A (zh) * 2021-06-02 2022-12-06 中国科学院上海硅酸盐研究所 一种铽基磁光陶瓷及其制备方法
CN116477937A (zh) * 2022-01-13 2023-07-25 中国科学院上海硅酸盐研究所 一种制备细晶粒铽铝石榴石基磁光陶瓷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999384A (zh) * 2006-01-11 2007-07-18 中国科学院西安光学精密机械研究所 一种磁旋光玻璃及其制备工艺
US20130069007A1 (en) * 2011-08-16 2013-03-21 Nitto Denko Corporation Phosphor compositions and methods of making the same
CN104609849A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
CN105977529A (zh) * 2015-03-10 2016-09-28 Tdk株式会社 具有石榴石型或类似石榴石型的晶体结构的锂离子传导性氧化物陶瓷材料
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999384A (zh) * 2006-01-11 2007-07-18 中国科学院西安光学精密机械研究所 一种磁旋光玻璃及其制备工艺
US20130069007A1 (en) * 2011-08-16 2013-03-21 Nitto Denko Corporation Phosphor compositions and methods of making the same
CN104609849A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
CN105977529A (zh) * 2015-03-10 2016-09-28 Tdk株式会社 具有石榴石型或类似石榴石型的晶体结构的锂离子传导性氧化物陶瓷材料
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHONG CHEN ET AL.: ""Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering aids"", 《CERAMICS INTERNATIONAL》 *
XIAORUI HOU ET AL.: ""Effect of ZrO2 on the sinterability and spectral properties of (Yb0.05Y0.95)2O3 transparent ceramic"", 《OPTICAL MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433006A (zh) * 2021-06-02 2022-12-06 中国科学院上海硅酸盐研究所 一种铽基磁光陶瓷及其制备方法
CN115433006B (zh) * 2021-06-02 2023-07-11 中国科学院上海硅酸盐研究所 一种铽基磁光陶瓷及其制备方法
CN116477937A (zh) * 2022-01-13 2023-07-25 中国科学院上海硅酸盐研究所 一种制备细晶粒铽铝石榴石基磁光陶瓷的方法

Similar Documents

Publication Publication Date Title
Yang et al. The effect of MgO and SiO2 codoping on the properties of Nd: YAG transparent ceramic
Tang et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs
US11053166B2 (en) Transparent rare earth aluminum garnet ceramics
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
Yu et al. Fabrication of Nd: YAG transparent ceramics using powders synthesized by citrate sol-gel method
US20190366584A1 (en) Method for manufacturing transparent ceramic material for faraday rotator
Yavetskiy et al. Phase formation and densification peculiarities of Y3Al5O12: Nd3+ during reactive sintering
US6479420B2 (en) Ceramics and their power for scintillators, and method for producing same
WO2018193848A1 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
JP2008143726A (ja) 多結晶透明y2o3セラミックス及びその製造方法
JP5000934B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス
Hostaša et al. Fabrication and luminescence of Ce-doped GGAG transparent ceramics, effect of sintering parameters and additives
CN107200575A (zh) 一种Ca助剂体系YAG基透明陶瓷的制备方法
CN104968633A (zh) 透光性金属氧化物烧结体的制造方法及透光性金属氧化物烧结体
CN110386818A (zh) 掺锆铽铝石榴石磁旋光透明陶瓷及其制备方法
CN104609849B (zh) Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
Zhao et al. Vacuum sintering of highly transparent La1. 28Yb1. 28Zr2O7. 84 ceramic using nanosized raw powders
Wang et al. Fabrication of highly transparent Er3+, Yb3+: Y2O3 ceramics with La2O3/ZrO2 as sintering additives and the near-infrared and upconversion luminescence properties
Hao et al. Effect of Tb4O7 excess on the microstructure and magneto-optical properties of TAG transparent ceramic
Yi et al. The effect of Gd3+ ions on fabrication and luminescence properties of Nd3+-doped (Ca1-xGdx) F2+ x transparent ceramics
JPH03218963A (ja) 透明イットリウム―アルミニウム―ガーネット―セラミックスの製造方法
Xu et al. Fabrication and characterization of highly transparent ZrO2-doped Tm2O3 ceramics
Fu et al. Ce3+: Lu3Al5O12–Al2O3 optical nanoceramic scintillators elaborated via a low-temperature glass crystallization route
JP2019156657A (ja) 希土類−鉄−ガーネット系透明セラミックス及びそれを用いた光学デバイス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191029

WW01 Invention patent application withdrawn after publication