CN110386815B - 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料 - Google Patents

一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料 Download PDF

Info

Publication number
CN110386815B
CN110386815B CN201910667997.9A CN201910667997A CN110386815B CN 110386815 B CN110386815 B CN 110386815B CN 201910667997 A CN201910667997 A CN 201910667997A CN 110386815 B CN110386815 B CN 110386815B
Authority
CN
China
Prior art keywords
powder
strontium titanate
barium strontium
ceramic
zinc aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910667997.9A
Other languages
English (en)
Other versions
CN110386815A (zh
Inventor
张明伟
王威
沈世婷
辛乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201910667997.9A priority Critical patent/CN110386815B/zh
Publication of CN110386815A publication Critical patent/CN110386815A/zh
Application granted granted Critical
Publication of CN110386815B publication Critical patent/CN110386815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料,其特征在于,高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料的组分通式为:(1‑x)Ba0.4Sr0.6TiO3‑xZnAl2O4,其中,x的取值范围为30 wt%≤x≤70 wt%,选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Al2O3粉体作为主要原料,按照(1‑x)Ba0.4Sr0.6TiO3‑xZnAl2O4配料,经过球磨、干燥、高温预烧制得混合粉料,压片后于550℃~600℃的温度下预烧再在1400℃~1450℃的温度下烧成。本发明制得的高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料在很宽范围的工作温区下性能表现稳定,且综合性能高。

Description

一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶 瓷材料
技术领域
本发明属于电子材料与器件技术领域,具体涉及一种高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料及其制备。
背景技术
铁电材料的一个重要特征就是介电非线性,即介电常数能随外加电场的变化而变化。这使得铁电材料可应用在微波器件如可调振荡器、滤波器、移相器和变容器中。铁电材料钛酸锶钡是其中的一种理想的候选材料,具有高可调率、较低的介电损耗和介电常数大等特点。另外它的居里温度可以通过调节Ba/Sr改变,使其处于顺电相,这非常有利于室温下的工作。但钛酸锶钡陶瓷存在的问题是高的介电常数难以满足其与激励源内部阻抗匹配和大功率的要求,这限制了其在微波可调器件领域的应用。可调率具有很强的电场依赖性,它可表示为Tunablity(简写为T)=[ε r(0)ε r(E) ] /ε r(0)× 100%,其中ε r(0)ε r(E) 分别为零电场和外加直流电场下的介电常数。例如在典型的应用移相器中,器件改变相位角的能力主要取决于材料的可调性大小,而介电损耗如果过大,会使器件发热严重,因此高电可调低损耗的材料是我们所需要的。在材料的性能裁制中,可调率、介电损耗和介电常数三者往往是相互制约的关系,所以现有的研究工作都是在可调性、介电损耗和介电常数三者参数中折中调控,以期获得器件的最佳性能。介电材料复合铁电材料一直都是最简单和有效的方法,研究人员发现复合低损耗的线性介电材料,会稀释铁电材料的介电常数,从而降低材料的介电损耗;而复合材料的可调率却会受到削弱,这与铁电材料铁电性的稀释和线性介电材料在电场下会引起电场的重新分配有关。目前已经报道的铁电介电体系中,像是BST-MgAl2O4、BST-Mg2TiO4,介电常数、介电损耗和介电可调性已经达到实用要求,但仍存在微波下Q值(介电损耗的倒数)过低、可调性不够高的问题,综合性能仍需要进一步提高。
发明内容
本发明的目的在于提供一种综合性能高、制备工艺简单的高电可调低损耗的钛酸锶钡基复合铝酸锌铁电介电陶瓷材料,其技术方案为:
一种高电可调低损耗钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料,其特征在于,高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷铁电介电材料的化学组成式为:(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4,其中,x的取值范围为30 wt % ≤ x ≤ 70 wt %,其制备方法包括以下步骤:
(1)选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Al2O3粉体作为主要原料,按照(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4中Ba、Sr、Ti、Zn和Al的化学计量比配料,将配好的原料置于尼龙球磨罐中,加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧结及研磨后得到混合粉料1;在所述进行预烧的温度为1100℃~1200℃,烧结时间为4~6小时。
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行24~48小时球磨,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为7%~10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa~100MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在550℃~600℃的温度下,保温时间为4~10小时排胶处理;排胶后于1400℃~1450℃下时间为4~6小时烧结成瓷,制得高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料。
本发明高电可调低损耗的钛酸锶钡基复合铝酸锌铁电介电陶瓷材料具有以下优点:
(1)通过优选的Ba/Sr,将复合陶瓷的居里温度控制在合适的区间,复合陶瓷(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4在很宽的工作温区内具有高的介电可调性,尤其适用于室温及以上工作温度;
(2)通过使用不同的x质量比,将介电常数调节在合适的不同区间内,可满足不同器件应用下的需求,拓宽了材料的应用范围;
(3)具有低的介电常数、低的介电损耗和高的电可调性(在改变x的数组调节组分质量百分比时,仍可同时满足三者的高性能),并且微波下的综合介电性能高;
(4)采用传统的电子陶瓷制备工艺,工艺简单;材料体系属于绿色环保材料,无毒无副作用。材料性能优异,适用于微波可调振荡器、滤波器、移相器和微波介质天线等元器件。
具体实施方式
实施例1
(1)按照70 wt % Ba0.4Sr0.6TiO3+30 wt % ZnAl2O4中的化学计量比分别称取BaTiO38.4g、SrTiO312.6g、ZnO4g和Al2O35g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1200℃,烧结时间为4小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨24小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在550℃的温度下,保温时间为10小时排胶处理;排胶后于1450℃下时间为4小时烧结成瓷,制得高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Al2O3纯度为99.9%,国药集团化学试剂有限公司生产。制备的高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料性能参数见表1。
实施例2
(1)按照50 wt % Ba0.4Sr0.6TiO3+50 wt % ZnAl2O4中的化学计量比分别称取BaTiO37.0g、SrTiO39.0g、ZnO6.7g和Al2O38.3g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1200℃,烧结时间为6小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨30小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为8%的聚乙烯醇水溶液混合均匀并造粒,然后在30MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在580℃的温度下,保温时间为7小时排胶处理;排胶后于1400℃下时间为6小时烧结成瓷,制得高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Al2O3纯度为99.9%,国药集团化学试剂有限公司生产。制备的高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料性能参数见表1。
实施例3
(1)按照30wt % Ba0.4Sr0.6TiO3+70 wt % ZnAl2O4中的化学计量比分别称取BaTiO33.6g、SrTiO35.4g、ZnO9.3g和Al2O311.7g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1200℃和1200℃,烧结时间为5小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨48小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为7%的聚乙烯醇水溶液混合均匀并造粒,然后在100MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在600℃的温度下,保温时间为4小时排胶处理;排胶后于1450℃下时间为5小时烧结成瓷,制得高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Al2O3纯度为99.9%,国药集团化学试剂有限公司生产。制备的高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料性能参数见表1。
表1 不同复合量及不同烧成制度下(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4复合材料的电学性能
Figure 659435DEST_PATH_IMAGE002
由上表测得复合材料的介电参数可知,本发明复合体系综合性能高:复合材料可调率高,并且稳定性好(即使介电常数大幅降低也没有削弱可调率);介电常数被调控到合适的数值,可以满足不同微波器件需求,同时微波下的Q值得到了较优程度的保持。例如在30 wt % Ba0.4Sr0.6TiO3+70 wt % ZnAl2O4的复合含量下,介电常数被调控在178、介电损耗为0.0093,而可调性高达31.5%,微波下Q值达到707。本发明制备工艺简单,重复率好且成品率高,适用于多种微波可调元器件,并且适合企业规模化生产。

Claims (1)

1.一种高电可调低损耗钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料,其特征在于,高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷铁电介电材料的化学组成式为:(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4,其中,x的取值范围为30 wt % ≤ x ≤ 70 wt %,其制备方法包括以下步骤:
( 1 ) 选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Al2O3粉体作为主要原料,按照(1-x)Ba0.4Sr0.6TiO3-xZnAl2O4中Ba、Sr、Ti、Zn和Al的化学计量比配料,将配好的原料置于尼龙球磨罐中,加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧结及研磨后得到混合粉料1;在所述进行预烧的温度为1100℃~1200℃,烧结时间为4~6小时;
( 2 ) 将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行24~48小时球磨,出料烘干后过筛得到混合粉料2;
( 3 ) 将(2)中所述的混合粉料2加入质量比为7%~10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa~100MPa压力下压制成陶瓷生坯片;
( 4 ) 将(3)中所述的陶瓷生坯片在550℃~600℃的温度下,保温时间为4~10小时排胶处理;排胶后于1400℃~1450℃下时间为4~6小时烧结成瓷,制得高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷的铁电介电材料。
CN201910667997.9A 2019-07-23 2019-07-23 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料 Active CN110386815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910667997.9A CN110386815B (zh) 2019-07-23 2019-07-23 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910667997.9A CN110386815B (zh) 2019-07-23 2019-07-23 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料

Publications (2)

Publication Number Publication Date
CN110386815A CN110386815A (zh) 2019-10-29
CN110386815B true CN110386815B (zh) 2022-04-22

Family

ID=68287056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910667997.9A Active CN110386815B (zh) 2019-07-23 2019-07-23 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料

Country Status (1)

Country Link
CN (1) CN110386815B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978080A (zh) * 2020-08-04 2020-11-24 山东理工大学 一种高可调低损耗的钛酸锶钡复合镓酸铜的低烧陶瓷材料
CN118084483A (zh) * 2024-04-29 2024-05-28 山东理工大学 一种bst基微波介电可调复合陶瓷材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371775B (en) * 2000-12-19 2002-12-31 Murata Manufacturing Co Composite multilayer ceramic electronic parts and method of manfacturing the same
CN103708825A (zh) * 2013-12-19 2014-04-09 中国科学院上海硅酸盐研究所 高调谐低损耗钛酸锶钡-铝酸锌复合材料及其制备方法
CN108046795B (zh) * 2017-12-29 2020-10-20 山东理工大学 一种高介电可调的钛酸锶钡基复合硅铝酸盐陶瓷介质材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of interface behavior on dielectric properties of ferroelectric-dielectric composite ceramics;Wang Wei 等;《ALLOYS AND COMPOUNDS》;20191115;第809卷;151712 1-6 *

Also Published As

Publication number Publication date
CN110386815A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN108046795B (zh) 一种高介电可调的钛酸锶钡基复合硅铝酸盐陶瓷介质材料
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN110386815B (zh) 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料
CN1903786A (zh) 环保低温烧结微波介质陶瓷材料及其制备方法
CN105294104A (zh) 低损耗介电可调中介微波介质陶瓷材料及其制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN110128128B (zh) 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法
CN108059454A (zh) 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN107445616A (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN103553603A (zh) 一种中介电常数的两相复合微波介质陶瓷及其制备方法
CN110386816B (zh) 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料
CN101486571B (zh) 一种高Q电可调Ba1-xSrxTi1-yMnyO3陶瓷介质材料及其制备
CN109437901B (zh) 一种钙钛矿结构的微波介质陶瓷及其制备方法
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法
CN102515746A (zh) 一种钛酸锶钡复合钼酸盐的微波介电可调材料及其制备方法
CN101665353A (zh) 介电可调的钛酸锶钡基复合钨酸盐微波介质材料及其制备
CN101747037A (zh) 一种高q值复相微波介质陶瓷及其制备方法
CN101575208A (zh) 一种低温烧结、低损耗的BaO-CeO2-TiO2系微波介质陶瓷
CN101891463B (zh) 介电可调的过渡金属元素化合物掺杂钛酸锶钡复合钨酸钡陶瓷介质材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN102358930B (zh) 一种低损耗、高介电可调钛酸锶钡基陶瓷材料及其制备方法
CN101723653A (zh) 一种微波调谐复合陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant