CN110354264B - 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法 - Google Patents

负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法 Download PDF

Info

Publication number
CN110354264B
CN110354264B CN201910819932.1A CN201910819932A CN110354264B CN 110354264 B CN110354264 B CN 110354264B CN 201910819932 A CN201910819932 A CN 201910819932A CN 110354264 B CN110354264 B CN 110354264B
Authority
CN
China
Prior art keywords
zirconium dioxide
oxygen
dioxide nanoparticles
deficient
deficient zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910819932.1A
Other languages
English (en)
Other versions
CN110354264A (zh
Inventor
薛鹏
孙利红
焦晓丹
康跃军
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201910819932.1A priority Critical patent/CN110354264B/zh
Publication of CN110354264A publication Critical patent/CN110354264A/zh
Application granted granted Critical
Publication of CN110354264B publication Critical patent/CN110354264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及药物化学的合成领域,提供一种负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,具体包括以下步骤:(1)氧缺陷型二氧化锆纳米颗粒的制备,(2)聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒的制备,(3)负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备。所得到的复合纳米药物递送***具有延长药物在体内的循环时间、提高药物在肿瘤区域的聚集、显著的荧光和光声成像性能、良好的生物相容性等优点。

Description

负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法
技术领域
本发明涉及化学药物领域,具体涉及负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备与用途。
背景技术
诊疗一体化纳米药物引起了癌症治疗领域的广泛兴趣,其中外源刺激-触发肿瘤消除被认为是最有前景的一个策略,因为其渗透较深,肿瘤特异性高且具有可控性,能够减轻对正常组织的不利影响。例如,近红外(NIR)介导的光热治疗(PTT)以其特异性高、侵入性小的优点越来越受到人们的关注,其基本原理是通过光激活光热制剂(PTAs),将光能转化为热能。虽然已经设计出了大量用于PTT的光热制剂,但其仍具有光热转换效率低、长期稳定性差、毒性不明显等不足之处,在临床实际应用前仍是有待解决的难题。另一方面,光动力疗法(PDT)作为另一种重要的肿瘤消融技术而被广泛运用,它是由光敏剂(PSs)介导的活性氧(ROS)诱导的自噬。由于其独特的优势,包括低的***毒性和精确的靶向性,PDT已被临床批准用于治疗非小细胞肺癌和食管癌。然而,传统的PSs肿瘤选择性较差,在体内循环中会发生快速的降解和血液清除,并且在激光照射下可导致正常组织损伤。此外,PS分子在溶液中可能会自发地聚集成更大的晶体,严重阻碍了它们通过内吞途径的细胞摄取。目前,人们普遍选择具有光热性质的纳米载体,通过增强渗透和滞留(EPR)效应将PSs稳定地递送到肿瘤区域。PS -偶联PTAs在激光照射下也能产生协同的PTT/PDT效应,治疗效果显著。
为了提高PTT效应,已经建立了多种纳米平台作为PTAs。其中,无机纳米复合材料因其合成速度快、改性简单等优点而受到越来越多的关注。氧化锆(ZrO2)是一种半导体材料,在紫外区具有很强的光吸收,广泛运用于催化、储能、光学镀膜和传感等领域。近年来,氧化锆因其耐腐蚀、良好的生物相容性和对细菌的黏附性小,在牙科领域被广泛应用于骨内种植体、种植基和细胞陶瓷冠。另一方面,氧缺陷金属化合物是通过化学还原在表面形成氧空位和缺陷而合成的。在还原反应过程中,光的吸光度从UV区域扩展到可见光(Vis)和近红外(NIR)区域,由于大量的表面缺陷使得原来的白色化合物变成了黑色。因此,合成氧缺陷二氧化锆(ZrO2-x)具有重要的研究价值,以进一步揭示其光热性能和热导率在生物医学领域的潜在应用。二氢卟吩e6 (Ce6)是一种具有近红外荧光发射和高单线态氧量子产率的光敏剂。已被广泛应用于乳腺癌、肺癌、恶性卵巢癌等多种恶性肿瘤的治疗。在肿瘤诊断方面,影像学监测对于提高肿瘤治疗的准确性,减轻肿瘤治疗过程中对健康组织的损伤是必不可少的。在多种成像方式中,荧光成像(FL)分辨率高但其组织穿透性有限。光声成像(PA)是组织或造影剂通过脉冲激光照射产生的热膨胀引起的光学信号,与传统的荧光或生物发光成像技术相比,PA成像能够显著改善体内成像深度和空间分辨率。因此,FL/PA双模态成像有望在肿瘤诊断和治疗方面取得更好的效果。
发明内容
由于目前用于肿瘤光热治疗的药物递送载体作用单一,光热转换效率较低、生物相容性差,在体内循环时间较短,本发明旨在合成一种具有较高光热转换效率、较好生物相容性,能够有效延长药物在体内的循环时间并实现光热和光动力协同治疗的新型药物递送平台。
本发明的技术方案具体如下:
负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:包含以下步骤:
(1)将一定量的氧化锆纳米颗粒和一定量镁粉置于研钵中研磨,得到分散均匀的氧化锆和镁的混合物;
(2)将步骤(1)得到的氧化锆和镁的混合物转移到瓷舟,置于管式炉中,在氩气和氢气的混合气体氛围中升温至650℃下保持4 h,冷却到室温后得到黑色的混合纳米颗粒;
(3)将步骤(2)得到的混合纳米颗粒分散在盐酸溶液中磁力搅拌24 h,离心洗涤除去残余的酸后置于真空干燥箱中50℃干燥12 h,得到氧缺陷型二氧化锆纳米颗粒ZrO2-x
(4)将步骤(3)得到的氧缺陷型二氧化锆纳米颗粒和PEG-NH2分散在去离子水中冰浴下超声60 min,离心后用去离子水洗涤3次,得到聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒ZrO2-x@PEG;
(5)将Ce6溶解在二甲亚砜中然后分别加入EDS和NHS,室温下避光搅拌1 h,得到羧基活化的Ce6;
(6)将步骤(5)得到的羧基活化的Ce6逐滴滴加到聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒分散液中,避光条件下搅拌12 h, 离心后用去离子水洗涤3次,得到负载Ce6的氧缺陷型二氧化锆纳米颗粒ZrO2-x@PEG/Ce6。
进一步的,所述步骤(1)中的二氧化锆纳米颗粒和镁粉的摩尔比为1:1。
进一步的,所述步骤(2)中氢气和氩气的混合气体中的氢气占的体积为5%;所述步骤(2)中的升温速率为2.5 °C/min。
进一步的,所述步骤(3)中盐酸溶液的浓度为2 M。
进一步的,所述步骤(4)中氧缺陷型二氧化锆纳米颗粒与PEG-NH2的质量比为1:5。
进一步的,所述步骤(5)中Ce6、EDC和NHS的摩尔比为1:4:8。
进一步的,所述步骤(6)中羧基活化的Ce6与聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒的质量比为1:2;所述步骤(6)中聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒分散液的浓度为0.5 mg/mL。
本发明主要优点有:
针对目前纳米药物载体存在的问题,本项目创造性地提出能够实现多种治疗方法协同治疗同时又具有较好生物相容性的纳米药物递送平台。本项目中, 氧缺陷型二氧化锆用于光热治疗,聚乙二醇修饰后可共价键合光敏剂Ce6,能显著提高纳米递送***的生物相容性,延长纳米颗粒在生物体内的循环时间,增加纳米药物在肿瘤区域的富集。整个纳米药物递送***能够有效提高治疗效果,减小对正常组织的毒副作用,解决纳米递送***稳定性和协同性等问题,实现肿瘤的高效治疗。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图:
图1为本发明实施例1负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)的合成及作用示意图。
图2为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)的TEM图。
图3为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)的DLS图。
图4为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)的UV-vis-NIR光谱图。
图5为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)在没有光照下对4T1癌细胞24 h的体外毒性图。
图6为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)在有光照下对4T1癌细胞24 h的体外毒性图。
图7为本发明实施例1中负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)的体内抗肿瘤效果图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1 制备负载Ce6的氧缺陷型二氧化锆纳米颗粒
负载Ce6的氧缺陷型二氧化锆纳米颗粒的合成及作用如图1所示。包含以下制备步骤:
(1)氧缺陷型二氧化锆纳米颗粒的制备:将400 mg氧化锆纳米颗粒和78 mg镁粉置于研钵中研磨,得到分散均匀的氧化锆和镁的混合物;将氧化锆和镁的混合物转移到瓷舟,置于管式炉中,以2.5 °C/min在5%氢气/氩气氛围中升温到650℃并保持4 h,冷却到室温后得到黑色的混合纳米颗粒;将混合纳米颗粒分散在40 mL 2 M盐酸溶液中磁力搅拌24 h,离心洗涤除去残余的酸后置于真空干燥箱中50℃干燥12 h,即可得到氧缺陷型二氧化锆纳米颗粒(ZrO2-x)。
(2)聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒的制备:将10 mg氧缺陷型二氧化锆纳米颗粒和50 mg PEG-NH2分散在去离子水中冰浴下超声60 min,离心后用去离子水洗涤3次即可得到聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG);
(3)负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备:将5 mg 的Ce6溶解在1 mL二甲亚砜中,然后分别加入6.4 mg EDS和7.2 mg NHS,室温下避光搅拌1 h,即可得到羧基活化的Ce6;将上述羧基活化的Ce6二甲亚砜混合液逐滴滴加到20 mL 0.5 mg/mL的聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒分散液中,避光条件下搅拌12 h, 离心后用去离子水洗涤3次即可得到最终的负载Ce6的氧缺陷型二氧化锆纳米颗粒(ZrO2-x@PEG/Ce6)。
其透射电镜(TEM)见图2, TEM结果显示纳米颗粒直径约为30 nm。其DLS图见图3,结果显示其水合粒径约为72.7 nm,大于TEM的测试结果。其UV-vis-NIR光谱图见图4,结果显示Ce6的特征峰在ZrO2-x@PEG/Ce6上存在,说明ZrO2-x@PEG/Ce6已成功的合成。图5、图6分别是在无光照和有光照条件下纳米颗粒对4T1肿瘤细胞24 h的体外毒性图,从图中可以看出通过不同的处理,对4T1肿瘤细胞的毒性表现出一个很好的协同作用。图7是不同处理下不同药物在小鼠体内的抑瘤效果图,从图中可以看出与其它组相比ZrO2-x@PEG/Ce6 NPs外加激光照射后表现出明显的抑瘤效果。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (7)

1.负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:包含以下步骤:
(1)将一定量的氧化锆纳米颗粒和一定量镁粉置于研钵中研磨,得到分散均匀的氧化锆和镁的混合物;
(2)将步骤(1)得到的氧化锆和镁的混合物转移到瓷舟,置于管式炉中,在氩气和氢气的混合气体氛围中升温至650℃下保持4 h,冷却到室温后得到黑色的混合纳米颗粒;
(3)将步骤(2)得到的混合纳米颗粒分散在盐酸溶液中磁力搅拌24 h,离心洗涤除去残余的酸后置于真空干燥箱中50℃干燥12 h,得到氧缺陷型二氧化锆纳米颗粒ZrO2-x
(4)将步骤(3)得到的氧缺陷型二氧化锆纳米颗粒和PEG-NH2分散在去离子水中冰浴下超声60 min,离心后用去离子水洗涤3次,得到聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒ZrO2-x@PEG;
(5)将Ce6溶解在二甲亚砜中然后分别加入EDC 和NHS,室温下避光搅拌1 h,得到羧基活化的Ce6;
(6)将步骤(5)得到的羧基活化的Ce6逐滴滴加到聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒分散液中,避光条件下搅拌12 h, 离心后用去离子水洗涤3次,得到负载Ce6的氧缺陷型二氧化锆纳米颗粒ZrO2-x@PEG/Ce6。
2.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(1)中的二氧化锆纳米颗粒和镁粉的摩尔比为1:1。
3.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(2)中氢气和氩气的混合气体中的氢气占的体积为5%;所述步骤(2)中的升温速率为2.5℃/min。
4.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(3)中盐酸溶液的浓度为2 M。
5.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(4)中氧缺陷型二氧化锆纳米颗粒与PEG-NH2的质量比为1:5。
6.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(5)中Ce6、EDC和NHS的摩尔比为1:4:8。
7.根据权利要求1所述的负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法,其特征在于:所述步骤(6)中羧基活化的Ce6与聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒的质量比为1:2;所述步骤(6)中聚乙二醇修饰的氧缺陷型二氧化锆纳米颗粒分散液的浓度为0.5mg/mL。
CN201910819932.1A 2019-08-31 2019-08-31 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法 Active CN110354264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910819932.1A CN110354264B (zh) 2019-08-31 2019-08-31 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910819932.1A CN110354264B (zh) 2019-08-31 2019-08-31 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN110354264A CN110354264A (zh) 2019-10-22
CN110354264B true CN110354264B (zh) 2021-07-23

Family

ID=68225629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910819932.1A Active CN110354264B (zh) 2019-08-31 2019-08-31 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN110354264B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701030B (zh) * 2020-07-22 2022-12-27 西南大学 主动靶向有声动力效果缺陷二氧化锆纳米粒子的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120795A1 (en) * 2015-01-28 2016-08-04 Universita' Ca' Foscari Totally-mesoporous zirconia nanoparticles, use and method for producing thereof
CN108602262A (zh) * 2016-04-11 2018-09-28 惠普发展公司,有限责任合伙企业 颗粒状构建材料
CN110156072A (zh) * 2019-06-29 2019-08-23 西南大学 连接Ce6缺氧型黑色二氧化钛纳米颗粒的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120795A1 (en) * 2015-01-28 2016-08-04 Universita' Ca' Foscari Totally-mesoporous zirconia nanoparticles, use and method for producing thereof
CN108602262A (zh) * 2016-04-11 2018-09-28 惠普发展公司,有限责任合伙企业 颗粒状构建材料
CN110156072A (zh) * 2019-06-29 2019-08-23 西南大学 连接Ce6缺氧型黑色二氧化钛纳米颗粒的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy;Lili Feng等;《Biomaterials》;20170913;第147卷;第39-52页 *
Oxygen-Deficient Zirconia (ZrO2−x):A New Material for Solar Light Absorption;Apurba Sinhamahapatra等;《Scientific Reports》;20160606;第6卷;第1-8页 *
氧化镁稳定氧化锆纳米粉末的制备与物相分析;单科等;《粉末冶金材料科学与工程》;20130630;第18卷(第3期);第429-433页 *

Also Published As

Publication number Publication date
CN110354264A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
Gulzar et al. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy
Gu et al. Upconversion composite nanoparticles for tumor hypoxia modulation and enhanced near-infrared-triggered photodynamic therapy
Gao et al. Ce6/Mn 2+-chelated polydopamine@ black-TiO 2 nanoprobes for enhanced synergistic phototherapy and magnetic resonance imaging in 4T1 breast cancer
Zheng et al. A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy
Cai et al. Polypyrrole-coated UCNPs@ mSiO 2@ ZnO nanocomposite for combined photodynamic and photothermal therapy
Ji et al. Activatable photodynamic therapy for prostate cancer by NIR dye/photosensitizer loaded albumin nanoparticles
Gu et al. Dual catalytic cascaded nanoplatform for photo/chemodynamic/starvation synergistic therapy
Zhao et al. Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy
Zuo et al. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma
Gu et al. A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma
Li et al. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload
Li et al. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging
Zou et al. Novel NIR-II semiconducting molecule incorporating sorafenib for imaging guided synergetic cancer phototherapy and anti-angiogenic therapy
Wang et al. Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes
Homayoni et al. Combination of photodynamic therapy and nanotechnology: non-invasive weapon against cancer
Jia et al. Boosting the tumor photothermal therapy with hollow CoSnSx-based injectable hydrogel via the sonodynamic and dual-gas therapy
Zhang et al. Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics
CN110354264B (zh) 负载Ce6的氧缺陷型二氧化锆纳米颗粒的制备方法
Liu et al. An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy
CN104784692A (zh) 一种具有近红外光远程响应的核壳结构药物载体的制备方法及其应用
WO2023070868A1 (zh) 一种自供氧光敏剂及其制备方法和应用
Kang et al. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy
CN112121164A (zh) 一种用于癌症治疗的智能光纳米药物的制备方法和应用
Yang et al. Boosting immunotherapy of triple negative breast cancer through the synergy of mild PTT and Fe-loaded organosilica nanoparticles
RU2463074C1 (ru) Композитные наночастицы для фотодинамической диагностики

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant