CN110323442B - 一种碳包覆Fe3O4复合材料及其制备方法和应用 - Google Patents

一种碳包覆Fe3O4复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110323442B
CN110323442B CN201910645228.9A CN201910645228A CN110323442B CN 110323442 B CN110323442 B CN 110323442B CN 201910645228 A CN201910645228 A CN 201910645228A CN 110323442 B CN110323442 B CN 110323442B
Authority
CN
China
Prior art keywords
carbon
cnt
hollow
composite material
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910645228.9A
Other languages
English (en)
Other versions
CN110323442A (zh
Inventor
赵毅
吴初新
官轮辉
石秀玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201910645228.9A priority Critical patent/CN110323442B/zh
Publication of CN110323442A publication Critical patent/CN110323442A/zh
Application granted granted Critical
Publication of CN110323442B publication Critical patent/CN110323442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于新能源领域,特别涉及一种碳包覆Fe3O4复合材料及其制备方法和应用。一种碳包覆Fe3O4复合材料,所述的复合材料,具有如下结构通式:CNT@hollow Fe3O4@C,其中,CNT为碳纳米管,hollow Fe3O4是Fe3O4的空心管,呈中空管状结构,C是包覆于hollow Fe3O4的最外层碳壳层,该材料具有分层管状结构,最外层包覆层为碳壳层,碳壳层内壁为Fe3O4组成的中空管,在最内层为碳纳米管,其中碳纳米管与Fe3O4管之间预留有一定的间隙空间,形成管中管结构,该材料作为负极材料可以应用于锂离子电池、钠离子电池或钾离子电池。

Description

一种碳包覆Fe3O4复合材料及其制备方法和应用
技术领域
本发明属于新能源领域,特别涉及一种碳包覆Fe3O4复合材料及其制备方法和应用。
背景技术
锂离子电池(LIB)由于其高能量密度,长循环寿命和良好的安全性而成为便携式电子设备的主要电源。为此,更需要具有更高能量/功率密度和更好循环性的新电极材料。其中,Fe3O4由于其低成本,环境友好性以及高理论容量(924 mA h g-1)而被认为是一种很有前景的阳极材料。然而,如在基于转化的金属氧化物阳极的情况下,锂***/提取Fe3O4过程中的体积变化大(74%)引起Fe3O4阳极的聚集和粉碎,通常导致快速的容量衰退和差的循环稳定性。
为了提高Fe3O4阳极的锂储存性能,过去几年已经开发出两种主要策略。一种策略是制造具有中孔或中空结构的纳米Fe3O4材料。这种纳米结构阳极可以提供丰富的活性位点,短的电子/离子扩散路径和用于容积调节的孔隙空间,从而提高比容量和循环稳定性。另一种策略是将Fe3O4与各种碳纳米材料(例如碳纳米管,石墨烯,中孔碳和碳涂层)结合,旨在同时解决Fe3O4的导电性缺陷和体积变化。例如,Jiaping Wang等人发现涂有Fe3O4的碳纳米管(CNT)显示出良好的循环性,并且在0.1A g-1下100次循环后保持800mAh g-1的容量[Nano Lett., 13(2013)818]。有先前的报道分别证明了利用石墨烯/CNT@Fe3O4复合材料上添加碳涂层可以减轻Fe3O4的聚集,从而延长电池循环寿命[a.Chem.Eng.J.,326 (2017)507;b.Chem.Eur.J.,19(2013)9866;c.J.Mater.Chem.A,3(2015)18289]。然而,由于其体积变化大,Fe3O4基阳极在充放电循环过程中仍然会发生聚集和粉碎的问题,以致严重限制了其充放电循环稳定性。
发明内容
本发明的目的针对现有技术存在的问题,提供一种碳包覆Fe3O4复合材料及其制备方法和应用。
本发明的技术方案是:
一种碳包覆Fe3O4复合材料,所述的复合材料,具有如下结构通式:CNT@ hollowFe3O4@C,其中,CNT为碳纳米管,hollow Fe3O4是Fe3O4的中空管,呈中空管状结构,C是包覆于hollow Fe3O4的最外层碳壳层,该材料具有分层管状结构,最外层包覆层为碳壳层,碳壳层内壁为Fe3O4组成的中空管,在最内层为碳纳米管,其中碳纳米管与Fe3O4管之间预留有一定的间隙空间,形成管中管结构。
进一步,所述的碳纳米管选自多壁碳纳米管、单壁碳纳米管、单壁碳纳米管管束其中之一;
进一步,所述的单壁碳纳米管管束、多壁碳纳米管的管径均选自5-50nm;
进一步,所述的单壁碳纳米管管束、多壁碳纳米管的管径均选自20-50nm;
进一步,所述的碳纳米管与Fe3O4管之间预留有一定的间隙空间体积大于或等于Fe3O4空心管中Fe3O4物质体积的74%;
进一步,所述的包覆于hollow Fe3O4表面碳壳层的厚度选自1-15nm,优选 3-6nm;
进一步,所述的碳纳米管,Fe3O4和C的含量分别优选自15.6wt%,68.6wt%和15.8wt%;
所述的复合材料的管径为60nm-450nm,长度50nm-10um;
所述的复合材料的管径为100-200nm,长度500nm-3um;
所述的复合材料的孔体积为0.27cm3/g;
所述的Fe3O4物相与JCPDS No.19-0629标准卡上物相一致;
所述的Fe3O4呈纳米条状,各条状Fe3O4交联在一起,形成多孔的Fe3O4中空管。
一种碳包覆Fe3O4复合材料的应用,作为负极材料应用于锂离子电池、钠离子电池或钾离子电池。
一种包含有所述碳包覆Fe3O4复合材料的二次电池,所述的二次电池包括锂离子电池、钠离子电池或钾离子电池,所述的锂离子电池、钠离子电池或钾离子电池包括正极、负极和电解液;所述负极包括:集流体和负载在该集流体上的负极材料;其中,所述负极材料含有所述的复合材料。
一种碳包覆Fe3O4复合材料的制备方法,包括以下步骤:
1)羧基化碳纳米管的制备:将碳纳米管放在浓硝酸中回流1-6h后,冷却过滤并用去离子水洗涤至中性,干燥备用;所述的碳纳米管选自多壁碳纳米管或单壁碳纳米管其中之一;所述的多壁碳纳米管的管径选自5-50nm。
2)CNT@C复合纳米材料的制备:将羧基化碳纳米管、十二烷基硫酸钠和葡萄糖分散在去离子水中,超声分散均匀后得到混合物溶液A;所述的羧基化碳纳米管、十二烷基硫酸钠和葡萄糖的质量比为20:2:(400~800)。将混合物溶液A转移至不锈钢反应釜内衬中进行水热反应,在160~200℃下保持3h~48h以上。反应釜自然冷却至室温之后,收集棕色产物,用去离子水和乙醇反复洗涤几次,干燥后得到CNT@C复合纳米材料。
所述的CNT@C的结构为碳纳米管外包覆一层碳层。
所述的水热的反应的温度和时间,进一步优选温度180-190℃,时间12~15h;
3)CNT@C@FeOOH复合材料的制备:CNT@C溶于乙醇与去离子水的混合溶液中,超声分散均匀后,加入高铁盐与尿素,继续超声分散,得到混合溶液B。将混合溶液B在60-80℃下加热搅拌24h以上。经过滤、洗涤、干燥后得到 CNT@C@FeOOH复合材料。所述的CNT@C@FeOOH复合材料的结构为 CNT@C外层包覆FeOOH;所述的乙醇和水的体积比为32:5.3;所述的FeOOH 为纳米粒子,粒子尺寸为3-10nm。所述的CNT@C@FeOOH材料具有多层包覆结构,最内核轴心为碳纳米管,碳纳米管表面包覆一层碳层,碳层外再包覆一层FeOOH。
4)CNT@hollow Fe2O3的制备:将CNT@C@FeOOH置于空气中灼烧,灼烧至选择性去除掉全部CNT@C@FeOOH中的中间碳层,最后得到CNT@hollow Fe2O3复合材料;空气中灼烧温度选自230-550℃,时间选自0.5-12h;优选,于空气中以1-20℃/min的速率升温至400℃,并保持2h。
5)CNT@hollow Fe3O4@C的制备:将CNT@hollow Fe2O3分散去离子水中超声形成均匀溶液,加入十六烷基三甲基溴化铵(CTAB)和氨水,继续超声分散均匀,加入间苯二酚与甲醛溶液,得到混合溶液C,并继续搅拌16h以上。过滤,用水和乙醇洗涤几次,干燥得到CNT@hollow Fe2O3@RF复合材料。将 CNT@hollow Fe2O3@RF置于管式炉中,在惰性气氛下高温碳化,自然冷却至室温,即得到CNT@hollow Fe3O4@C复合材料。
所述的RF为酚醛树脂,所述的CNT@hollow Fe2O3@RF复合材料为CNT@ hollowFe2O3外层包覆一层酚醛树脂层,所述的CNT@hollow Fe3O4@C的结构为呈中空管状结构的Fe3O4,套在CNT外层,Fe3O4空心管管壁与CNT外层之间保留有间隙空间,且在Fe3O4外包覆于一层碳层。所述的高温碳化的温度选自 450-600℃,保持时间1-5h。所述的Fe3O4呈纳米条状,各条状Fe3O4交联在一起,形成多孔的中空管。
与现有技术相比,本发明提供的碳包覆Fe3O4复合材料具有分层管状结构,最外层包覆层为碳壳,碳壳层内壁为Fe3O4纳米粒子组成的中空纳米管,在最内层为碳纳米管,其中碳纳米管与Fe3O4纳米管之间预留有一定的间隙空间,形成管中管结构。这种结构的材料作为锂离子电池、钠离子电池或钾离子电池负极材料,最内层的碳纳米管存在能够大大改善材料的导电性,碳纳米管与Fe3O4纳米管之间预留的空间有利于缓冲电池中离子脱嵌引起的体积的变化,同时外部的碳层能够缓冲活性材料体积变化对材料整体结构的破环以及团聚、粉碎现象,从而提高电极材料的结构稳定性进而提升电池充放电循环稳定性。此外,这个结构更为创新之处是活性成分Fe3O4是空心管结构,不但保证了预留活性材料体积变化的空间,而且活性成分Fe3O4还能直接和最外层碳层接触,这样更有利于缩短离子迁移路径,从而提高电池的倍率性能。
本发明提供的碳包覆Fe3O4复合材料的制备方法的技术要点:
步骤2)CNT@C复合纳米材料的制备中,通过调节葡萄糖的用量比例以及调节水热反应温度和时间,可以有效控制C层的厚度,从而有效调控碳纳米管与Fe3O4纳米管之间预留的空间体积,可以实现最佳的预留空间体积。水热的温度和时间直接影响包覆在碳纳米管外层碳层的厚度,温度太高或时间太长会造成碳层厚度过厚,造成后续步骤中形成Fe3O4空心管管壁与CNT外层之间的间隙空间太大,从而影响最终产物的电池性能。
步骤4)的创新之处在于准确控制空气灼烧的温度和灼烧进程保证CNT@C 材料中的C层去除掉,而CNT被保留。优选,在空气中以1-20℃/min的速率升温至400℃,并保持2h。
步骤5)的创新之处在于准确控制RF的量以及炭化温度,可实现最外包覆碳层的厚度,碳层的厚度会直接影响电极材料的电池性能,碳层太厚减缓离子传输速率,碳层太薄容易造成碳层在活性材料体积变化过程中被破坏。所以碳层的厚度选自1-15nm,优选3-6nm。
本发明提供的碳包覆Fe3O4复合材料作为锂离子负极材料,表现出高比容量,优异的倍率性能和出色的循环稳定性。在0.2和4A g-1的电流密度下分别表现出859和428mA hg-1的高比容量,在0.2A g-1下500次循环后仍保持758mA h g-1的比容量此外,在1.5Ag-1的高速率下1000次循环后,具有409mA h g-1的比容量,具有长寿命的循环性能。
附图说明
图1为制备碳包覆Fe3O4复合材料的流程示意图,流程1表示在碳纳米管外表面包覆一层碳层,流程2表示在包覆的碳层上再包覆一层FeOOH,流程3表示完全去除中间碳层,同时FeOOH转化成Fe2O3,流程4表示在最外层包覆一层碳层,同时Fe2O3转化成容量密度更高的Fe3O4
图2为实施例1制备的MWNT@C(a,b,c),MWNT@C@FeOOH(d,e,f), MWNT@hollow Fe2O3(g,h,i)复合材料的代表性扫描电镜照片和透射电镜照片。
图3为本实施例制备的碳包覆Fe3O4复合材料的扫描电镜照片(a,b)和透射电镜照片(c,d)。
图4为本实施例制备的碳包覆Fe3O4复合材料的粉末X射线衍射图(XRD)。
图5为本实施例制备的MWNT@hollow Fe2O3复合材料与MWNT@hollow Fe3O4@C的热重图。
图6为本实施例制备的MWNT@C复合材料的热重图。
图7为本实施例制备的MWNT@C@FeOOH复合材料的XRD图谱。
图8为本实施例制备的MWNT@hollow Fe2O3复合材料的XRD图谱。
图9为本实施例制备的MWNT@hollow Fe3O4@C复合材料的氮气等温吸脱附曲线。
图10、11为本实施例制备的MWNT@hollow Fe3O4@C复合材料的作为离子电池负极时充放电循环性能图。
图12为对比例用和实施例1同样方法组装的锂离子电池及相同的测试方法测试的商业制备Fe3O4和Fe2O3的充放电循环性能图。
具体实施方式
实施例1:
1)首先选择尺寸为5-50nm的多壁碳纳米管(MWNTs)在使用之前要用浓硝酸(65wt%)在140℃下的油浴下回流6h进行羧基化。冷却至室温后,过滤洗涤直至中性,干燥备用。
2)将羧基化MWNTs,十二烷基硫酸钠和葡萄糖分散在去离子水中,超声分散均匀后得到混合物溶液A。羧基化MWNTs,十二烷基硫酸钠和葡萄糖的具体质量比例为20mg:2mg:400~800mg。
3)将混合物溶液A转移至25ml不锈钢反应釜内衬中,密封,在190℃下保持15h进行水热反应。反应釜自然冷却至室温之后,收集棕色产物,用去离子水和乙醇反复洗涤几次,最后在80℃下干燥12h得到MWNT@C复合纳米材料。
4)160mg MWNT@C溶于乙醇与去离子水的混合溶液中(乙醇和水的体积比为32ml:5.3ml),超声分散均匀后,加入540mg FeCl3·6H2O与1.2g尿素,继续超声分散,得到混合溶液B。
5)将混合溶液B转移至50ml烧瓶中。该混合物溶液置于60℃油浴下加热搅拌60h。经过滤、洗涤、干燥后得到MWNT@C@FeOOH。
6)将得到MWNT@C@FeOOH置于马弗炉中在空气中以1℃/min的速率升温至400℃,保持2h。冷却时室温后得到MWNT@hollow Fe2O3复合材料。
7)将MWNT@hollow Fe2O3分散去离子水中超声形成均匀溶液,加入 0.6ml0.01MCTAB和48μl氨水,继续超声0.5h,加入24mg间苯二酚与33.6μl甲醛溶液,得到混合溶液C,并继续搅拌16h。过滤,用水和乙醇洗涤几次,干燥得到MWNT@hollow Fe2O3@RF复合材料。
8)将MWNT@hollow Fe2O3@RF置于管式炉中,在氩气的气氛下,550℃煅烧2h进行碳化。自然冷却至室温,即得到MWNT@hollow Fe3O4@C复合材料。
9)将步骤8)的产物(80wt%)、导电炭黑(10wt%)和羧甲基纤维素(CMC 10wt%)同时放入玛瑙研钵中进行研磨,其中去离子水作为分散剂,泡沫镍作为集流体。将研磨好的浆料均均匀涂覆在称量好的干燥的泡沫镍上,80℃真空下干燥12h后对电极片进行压平称量,根据集流体涂覆前后的质量差从而得到每个电极片上的浆料质量。继续将该电极片80℃真空干燥2h后放入手套箱中,以待装配扣式电池。
10)在充满氩气的手套箱中进行扣式电池的组装,对电极为金属锂片,隔膜为Celgard 2300膜,所制作的电极片为工作电极。电解质为1M LiPF6在碳酸亚乙酯(EC):碳酸甲乙酯(EMC):碳酸二甲酯(DMC)(体积比1:1:1)
11)恒流充放电测试主要考查锂离子半电池在不同电流密度下的充放电比容量、循环性能和倍率性能。锂离子半电池先进行恒流放电至0.05V,使金属锂片中的锂离子嵌入工作电极材料;再恒流充电至3V,以此循环测试。
图2为本实施例制备的MWNT@C(a,b,c),MWNT@C@FeOOH(d,e,f), MWNT@hollowFe2O3(g,h,i)复合材料的代表性扫描电镜照片和透射电镜照片,从观测的结果看,MWNT的管径5-50nm,主要分布在20-50nm,MWNT@C 碳层包覆于在碳纳米管外部,外包覆碳层的厚度在20nm-200nm均有,主要集中在40-80nm,MWNT@C中的碳层厚度可以通过控制葡萄糖的量及水热反应的条件进行调控,理论上增加葡萄糖的用量及反应时间可以将碳层厚度做到1 微米以上,MWNT@C长度在50nm-10um之间均有,主要集中在500nm-3um, MWNT@C长度受使用的碳纳米管的长度控制,因此投入的碳纳米管的长度可以任意选择,因此MWNT@C的长度也可以任意控制。MWNT@C@FeOOH是在MWNT@C结构基础上包覆一层FeOOH纳米颗粒;MWNT@C@FeOOH管径在60nm-450nm均有,主要集中在100-200nm;MWNT@C@FeOOH长度50 nm-10um之间均有,主要集中在500nm-3um。MWNT@hollow Fe2O3是 MWNT@C@FeOOH经过高温灼烧去除C层后转化而来的,Fe2O3形成中空管,所述的CNT@hollow Fe2O3材料具有管中管结构,内管为碳纳米管,外管为Fe2O3中空管,CNT@hollow Fe2O3材料管径在60nm-450nm均有,主要集中在 100-200nm,长度50nm-10um之间均有,主要集中在500nm-3um。
图3为本实施例制备的碳包覆Fe3O4复合材料的扫描电镜照片(a,b)和透射电镜照片(c,d),图中可以观察到具有分层管状结构,最外层包覆层为碳壳,碳壳层内壁为Fe3O4形成的中空纳米管,在最内层为碳纳米管,其中碳纳米管与 Fe3O4纳米管之间预留有一定的间隙空间,形成管中管结构;管径在60nm-450 nm均有,主要集中在100-200nm,长度50nm-10um之间均有,主要集中在500 nm-3um,最外层碳层厚度在1-15nm之间,主要集中在3-6nm之间。e,f分别为碳包覆Fe3O4复合材料高分辨透射电镜照片和晶体衍射图谱,说明该复合材料的活性物质为Fe3O4,Fe3O4呈纳米条状,各条状Fe3O4交联在一起,形成多孔的中空管。
图4为本实施例制备的碳包覆Fe3O4复合材料的粉末X射线衍射图(XRD),该复合材料中的活性成分为Fe3O4,其物相与JCPDS No.19-0629标准卡上物相一致。
图5为本实施例制备的MWNT@hollow Fe2O3复合材料与MWNT@hollow Fe3O4@C的热重图,图中计算可知,Fe2O3的含量82wt%,MWNT@hollow Fe3O4@C中,Fe3O4的含量68.6wt%,多壁碳纳米管含量15.6wt%,碳层含量 15.8wt%。
图6为本实施例制备的MWNT@C复合材料的热重图,图中可以确定去除碳层的温度在230-550nm℃之间,最优选择400℃。
图7为本实施例制备的MWNT@C@FeOOH复合材料的XRD图谱,图中可以确定FeOOH的物相和JCPDS No.34-1266标准卡上物相一致。
图8为本实施例制备的MWNT@hollow Fe2O3复合材料的XRD图谱,图中可以确定Fe2O3的物相和JCPDS No.33-0664标准卡上物相一致。
图9为本实施例制备的MWNT@hollow Fe3O4@C复合材料的氮气等温吸脱附曲线,经分析计算MWNT@hollow Fe3O4@C复合材料的孔体积为0.27cm3/g。
图10、11为本实施例制备的MWNT@hollow Fe3O4@C复合材料的作为离子电池负极时充放电循环性能图,在0.2和4A g-1的电流密度下分别表现出859 和428mA h g-1的高比容量。在0.2A g-1下500次循环后仍保持758mA h g-1的比容量。此外,在1.5Ag-1的高速率下1000次循环后,具有409mA h g-1的比容量,具有长寿命的循环性能;作为对比例,最外层没有包覆C层的MWNT@ hollow Fe2O3作为离子电池负极时充放电循环性能明显差于MWNT@hollow Fe3O4@C,MWNT@hollow Fe2O3在0.2A g-1下循环130次后仅剩余450mA h g-1的比容量。
图12为对比例用和实施例1同样方法组装的锂离子电池及相同的测试方法测试的商业制备Fe3O4和Fe2O3的充放电循环性能图,它们分别在0.15A g-1的电流密度下循环150次后比容量明显低于MWNT@hollow Fe2O3和MWNT@ hollow Fe3O4@C。
实施例2
本实施例与实施例1的不同之处在于:步骤3)中水热反应条件分别为200℃保持3h,160℃保持48h,180℃保持12h;步骤8)高温碳化温度选自450-600℃,时间选自1-5h,气氛选自氮气。
实施例3
本实施例与实施例1的不同之处在于:步骤6)在空气中灼烧的温度为 230-550℃,在该温度下保持时间为0.5-12h。

Claims (23)

1.一种碳包覆Fe3O4复合材料,其特征在于,所述的复合材料,具有如下结构通式:CNT@hollow Fe3O4@C,其中,CNT为碳纳米管,hollow Fe3O4是Fe3O4的中空管,呈中空管状结构,C是包覆于hollow Fe3O4的最外层碳壳层,该材料具有分层管状结构,最外层包覆层为碳壳层,碳壳层内壁为Fe3O4组成的中空管,在最内层为碳纳米管,其中碳纳米管与Fe3O4管之间预留有一定的间隙空间,形成管中管结构;
所述的Fe3O4呈纳米条状,各条状Fe3O4交联在一起,形成多孔的Fe3O4中空管。
2.根据权利要求1所述的复合材料,其特征在于,所述的碳纳米管为多壁碳纳米管、单壁碳纳米管或单壁碳纳米管管束其中之一。
3.根据权利要求2所述的复合材料,其特征在于,所述的单壁碳纳米管管束和多壁碳纳米管的管径均为5-50nm。
4.根据权利要求3所述的复合材料,其特征在于,所述的单壁碳纳米管管束和多壁碳纳米管的管径均为20-50nm。
5.根据权利要求1所述的复合材料,其特征在于,所述的碳纳米管与Fe3O4管之间预留有一定的间隙空间的体积大于或等于Fe3O4空心管中Fe3O4物质体积的74%。
6.根据权利要求1所述的复合材料,其特征在于,所述的包覆于hollow Fe3O4的最外层碳壳层的厚度为1-15nm。
7.根据权利要求1所述的复合材料,其特征在于,所述的包覆于hollow Fe3O4的最外层碳壳层的厚度为3-6nm。
8.根据权利要求1所述的复合材料,其特征在于,所述的复合材料的管径为60nm-450nm,长度50nm-10um。
9.根据权利要求1所述的复合材料,其特征在于,所述的复合材料的管径为100-200nm,长度500nm-3um。
10.一种如权利要求1-9任一项所述的碳包覆Fe3O4复合材料的制备方法,包括以下步骤:
将CNT@hollow Fe2O3材料分散到去离子水中成均匀溶液,加入十六烷基三甲基溴化铵(CTAB)和氨水再分散均匀,再加入间苯二酚与甲醛溶液,得到混合溶液继续搅拌16h以上,过滤,洗涤后,干燥得到CNT@hollow Fe2O3@RF复合材料;将CNT@hollow Fe2O3@RF惰性气氛下450-600℃碳化1-5h,最后得到CNT@hollow Fe3O4@C复合材料即为所述的碳包覆Fe3O4复合材料;
所述的CNT@hollow Fe2O3材料具有管中管结构,内管为碳纳米管,外管为Fe2O3中空管;所述的碳纳米管为多壁碳纳米管或单壁碳纳米管其中之一;
所述的RF为酚醛树脂,所述的CNT@hollow Fe2O3@RF复合材料为CNT@hollow Fe2O3外层包覆一层酚醛树脂层;
所述的惰性气氛指高纯氮气、高纯氩气、高纯氦气、高纯氖气、高纯氪气中的一种或几种。
11.根据权利要求10所述的方法,其特征在于,所述的CNT@hollow Fe2O3材料的制备方法,包括以下步骤:
将CNT@C@FeOOH置于空气中灼烧,灼烧至选择性去除掉全部CNT@C@FeOOH中的中间碳层,最后得到CNT@hollow Fe2O3复合材料;
所述的CNT@C@FeOOH具有多层包覆结构,最内核轴心为碳纳米管,碳纳米管表面包覆一层碳层,碳层外再包覆一层FeOOH。
12.根据权利要求11所述的方法,其特征在于,所述的FeOOH为纳米粒子,纳米粒子尺寸为3-10nm。
13.根据权利要求11所述的方法,其特征在于,所述的空气中灼烧,选自灼烧温度为230-550℃,时间保持0.5-12h。
14.根据权利要求11所述的方法,其特征在于,所述的空气中灼烧,选自以1-20℃/min的速率升温至400℃,时间保持2h。
15.根据权利要求11-14任一项所述的方法,其特征在于,所述的CNT@C@FeOOH的制备方法,包括以下步骤:
1)制备羧基化碳纳米管;
2)制备CNT@C复合纳米材料;
3)制备CNT@C@FeOOH复合材料:将CNT@C复合纳米材料溶于乙醇与去离子水的混合溶液中,超声分散均匀后,加入高铁盐与尿素,继续超声分散,得到混合溶液B;将混合溶液B在60-80℃下加热搅拌24h以上;经过滤、洗涤、干燥后得到CNT@C@FeOOH复合材料;
所述的CNT@C复合纳米材料的结构为碳纳米管外包覆一层碳层;
所述的羧基化碳纳米管是表面含有羧基基团的碳纳米管。
16.根据权利要求15所述的方法,其特征在于,所述的乙醇与去离子水的体积比选自32:5.3。
17.根据权利要求15所述的方法,其特征在于,所述的羧基化碳纳米管的制备方法,包括如下步骤:将碳纳米管放在浓硝酸中回流1-6h后,冷却过滤并用去离子水洗涤至中性,干燥备用。
18.根据权利要求15所述的方法,其特征在于,所述的CNT@C复合纳米材料的制备方法,包括如下步骤:将干燥备用将羧基化碳纳米管、十二烷基硫酸钠和葡萄糖分散在去离子水中,分散均匀后得到混合物溶液A;将混合物溶液A转移至反应器中进行水热反应,在160~200℃下保持3h~48h,反应完毕后,过滤,洗涤,干燥后得到CNT@C复合纳米材料;
所述的羧基化碳纳米管、十二烷基硫酸钠和葡萄糖的质量比为20:2:(400~800)。
19.根据权利要求18所述的方法,其特征在于,所述的水热反应的温度选自180-190℃,保持时间选自12~15h。
20.根据权利要求15所述的方法,其特征在于,所述的CNT@C复合纳米材料中碳层的厚度大于1nm。
21.根据权利要求15所述的方法,其特征在于,所述的CNT@C复合纳米材料中碳层的厚度大于20-40nm。
22.一种权利要求1~9中任一项所述的碳包覆Fe3O4复合材料在初级或次级电化学发电器、高能发电器和在电化学发光调制***中的应用,其特征在于,作为负极材料应用于锂离子电池、钠离子电池或钾离子电池。
23.一种包含有权利要求1-9中任一项所述的碳包覆Fe3O4复合材料的二次电池,所述的二次电池包括锂离子电池、钠离子电池或钾离子电池,所述的锂离子电池、钠离子电池或钾离子电池包括正极、负极和电解液;所述负极包括:集流体和负载在该集流体上的负极材料;其中,所述负极材料含有所述的复合材料。
CN201910645228.9A 2019-07-17 2019-07-17 一种碳包覆Fe3O4复合材料及其制备方法和应用 Active CN110323442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910645228.9A CN110323442B (zh) 2019-07-17 2019-07-17 一种碳包覆Fe3O4复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910645228.9A CN110323442B (zh) 2019-07-17 2019-07-17 一种碳包覆Fe3O4复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110323442A CN110323442A (zh) 2019-10-11
CN110323442B true CN110323442B (zh) 2022-10-14

Family

ID=68123745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910645228.9A Active CN110323442B (zh) 2019-07-17 2019-07-17 一种碳包覆Fe3O4复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110323442B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092208B (zh) * 2019-12-21 2021-06-25 桂林理工大学 一种RGO改性Fe3O4-SnO2复合材料的制备方法及其应用
CN114129724B (zh) * 2020-09-03 2023-07-28 天津大学 一种微波激发的靶向杀菌纳米粒子、制备方法及其应用
CN112736235B (zh) * 2021-01-15 2024-02-20 辽宁大学 生物质/碳纳米管诱导Fe3O4纳米复合材料及其作为锂离子电池负极材料的应用
CN113659121A (zh) * 2021-08-10 2021-11-16 杭州职业技术学院 碳纳米管中管@硫化锑/锑复合材料及其制备方法和应用
CN114639815A (zh) * 2022-04-08 2022-06-17 东莞市沃泰通新能源有限公司 钠离子电池负极材料的制备方法、负极片及钠离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613374A (zh) * 2013-11-26 2014-03-05 彭晓领 一种钴铁氧体@碳纳米管复合材料及其制备方法
CN105565265A (zh) * 2016-03-17 2016-05-11 齐鲁工业大学 一种具有卵黄结构的复合微球锂离子电池负极材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936874B2 (en) * 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
CN102623692B (zh) * 2012-03-21 2017-04-05 新疆大学 一种四氧化三铁‑碳复合锂电池负极材料的制备方法
CN103219511A (zh) * 2013-03-28 2013-07-24 浙江大学 管状核壳结构的四氧化三铁/碳复合材料及其制备方法和应用
CN106784900B (zh) * 2016-12-12 2020-05-05 中国科学院福建物质结构研究所 铂基纳米颗粒包覆二氧化锡覆盖的碳纳米管及其制备方法
US10439229B2 (en) * 2017-03-15 2019-10-08 City University Of Hong Kong Method of making carbon nanotubes doped with iron, nitrogen and sulphur
CN106935855B (zh) * 2017-03-24 2019-08-23 中南大学 一种多孔碳纳米管状材料及其制备方法和应用
CN108654676B (zh) * 2017-04-01 2020-09-15 中国科学院大连化学物理研究所 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613374A (zh) * 2013-11-26 2014-03-05 彭晓领 一种钴铁氧体@碳纳米管复合材料及其制备方法
CN105565265A (zh) * 2016-03-17 2016-05-11 齐鲁工业大学 一种具有卵黄结构的复合微球锂离子电池负极材料的制备方法

Also Published As

Publication number Publication date
CN110323442A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN110323442B (zh) 一种碳包覆Fe3O4复合材料及其制备方法和应用
Wang et al. Polar and conductive iron carbide@ N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries
Yan et al. Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries
Qiao et al. Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries
Hao et al. Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries
Sun et al. Catalytic Co 9 S 8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries
You et al. Multifunctional MoSe2@ rGO coating on the cathode versus the separator as an efficient polysulfide barrier for high-performance lithium-sulfur battery
Dong et al. Large-scale synthesis of NiS@ N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery
CN108155353B (zh) 一种石墨化碳包覆电极材料及其制备方法和作为储能器件电极材料的应用
Teng et al. Pitaya-like carbon-coated ZnS/carbon nanospheres with inner three-dimensional nanostructure as high-performance anode for lithium-ion battery
Zuo et al. A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries
Zhang et al. Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: An air oxidation strategy
Qin et al. High performance of yolk-shell structured MnO@ nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study
Song et al. A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery
Wang et al. Uniform ultrasmall manganese monoxide nanoparticle/carbon nanocomposite as a high-performance anode for lithium storage
Zhen et al. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries
Kang et al. Phenolic resin derived porous carbon/α-Fe2O3 composites with improved lithium storage performance
Lin et al. Solvothermal alcoholysis synthesis of hierarchically porous TiO2-carbon tubular composites as high-performance anodes for lithium-ion batteries
Yuan et al. Construction of Co3O4@ TiO2 heterogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties
CN114388814B (zh) 一种Co0.85Se纳米颗粒@3D碳网络复合材料的制备方法及其在锂硫电池中的应用
Zhao et al. Polar Co3Se4 nitrogen-doped porous carbon derived from ZIF-67 for use as a sulfur substrates in high-performance lithium-sulfur batteries
Liu et al. Fe1-xS/reduced graphene oxide composite as anode material for aqueous rechargeable Ni/Fe batteries
CN110350179B (zh) 一种Fe2O3纳米碳复合材料及其制备方法和应用
CN113871574B (zh) 锂离子电池负极片及其制备方法与应用
CN113517427B (zh) 一种碳包覆锑/三硫化二锑复合材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant