CN110311007B - 一种量子点近红外光电探测器及其制备方法 - Google Patents

一种量子点近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN110311007B
CN110311007B CN201910613735.4A CN201910613735A CN110311007B CN 110311007 B CN110311007 B CN 110311007B CN 201910613735 A CN201910613735 A CN 201910613735A CN 110311007 B CN110311007 B CN 110311007B
Authority
CN
China
Prior art keywords
quantum dot
layer
infrared
photoelectric detector
infrared photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910613735.4A
Other languages
English (en)
Other versions
CN110311007A (zh
Inventor
宁志军
周文佳
尚跃群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN201910613735.4A priority Critical patent/CN110311007B/zh
Publication of CN110311007A publication Critical patent/CN110311007A/zh
Application granted granted Critical
Publication of CN110311007B publication Critical patent/CN110311007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种量子点近红外光电探测器件,包括导电基底层(1),其特征在于,导电基底层(1)的上方由下至上依次设置有第一电子传输层(2),金属纳米颗粒层(3),第二电子传输层(4),红外量子点层(5),金属电极(6)。所述的量子点近红外光电探测器的制备方法,包括对导电基底层进行氧等离子体处理,制备复合电子传输层,制备量子点红外吸收层,蒸镀金属电极。所述的量子点红外光电探测器同时具有量子效率高(8000%)、暗电流低,响应速度快的优点,在近红外光点探测领域有良好的应用前景。

Description

一种量子点近红外光电探测器及其制备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种量子点近红外光电探测器及其制备方法。
背景技术
红外线可以分为近红外光波段(760nm-3000nm)、中红外波段(3μm-50μm)和远红外波段(50-1000μm)。其中,近红外光电探测器在国民和军事中应用广泛,包括航海、夜视、武器探查以及民用的生物医学成像、光通信、大气监测等领域。
量子点材料可以溶液法处理,吸收波段可以调控并覆盖近红外波段、制备简单,因此被应用于近红外光光电探测领域。常用的红外光电探测器可以分为光电导、光电二极管、光电晶体管等几种。光电导探测器和光电晶体管可以有光电导增益、因此可以具有很高的量子效率,但是暗电流较大,响应速度慢;光电二极管暗电流小、响应速度快,但量子效率较低。如果能同时获得量子效率高、暗电流低、响应速度快的光电探测器,将极大推动量子点红外光电探测器的应用。
发明内容
本发明的目的是提供一种具有高的量子效率、低的噪声和暗电流以及较快的响应速度的量子点近红外光电探测器及其制备方法,解决量子点红外光电二极管量子效率不高的问题。
为了达到上述目的,本发明提供了一种量子点近红外光电探测器,包括导电基底层,其特征在于,所述导电基底层的上方由下至上依次设置有第一电子传输层,金属纳米颗粒层,第二电子传输层,红外量子点层,金属电极。
优选地,所述导电基底层为ITO导电玻璃。
优选地,所述第一电子传输层和第二电子传输层的材料为氧化锌纳米颗粒、氧化锡纳米颗粒或[6,6]-苯基-C61-丁酸异甲酯(PCBM)中的一种或几种。
优选地,所述金属纳米颗粒层的材料为银纳米颗粒、金纳米颗粒、铝纳米颗粒或铜纳米颗粒中的一种或几种。
优选地,所述红外量子点层为多层量子点膜,量子点膜经过固态配体交换或液态配体交换处理,表面配体为SH-,I-等短链配体;红外量子点层厚度为50~500nm。
更优选地,所述量子点膜为PbS量子点(PbS CQD)膜或PbSe量子点(PbSe CQD)膜。
优选地,所述金属电极为Ag电极。
本发明还提供了上述量子点近红外光电探测器件的制备方法,其特征在于,包括以下步骤:
步骤a:对导电基底层进行氧等离子体处理;
步骤b:配制电子传输层材料前驱液与金属纳米颗粒层前驱液,先在导电基底层旋涂第一电子传输层,退火成型;然后在第一电子传输层上旋涂金属纳米颗粒层,退火成型;最后在金属纳米颗粒层上旋涂第二电子传输层,退火成型;
步骤c:配制红外量子点层前驱液,在第二电子传输层上旋涂红外量子点层;
步骤d:将上述样品送入镀膜机内蒸镀金属电极,得到量子点近红外光电探测器件。
优选地,所述步骤a中,氧等离子体预处理时间为10min。
优选地,所述步骤b中旋涂参数均为4000rpm,30s;退火参数均为100℃退火10min。
优选地,所述步骤b中电子传输层材料前驱液的配制方法包括将氧化锌纳米颗粒溶于甲醇和氯仿混合溶剂中得到,其中,氧化锌纳米颗粒的浓度为50mg/mL,甲醇和氯仿的体积比为1:1。
更优选地,所述氧化锌纳米颗粒的制备方法参考参考文献Wang,R.et al.HighlyEfficient Inverted Structural Quantum Dot Solar Cells.Adv.Mater.30,1704882(2018)中方法合成。
优选地,所述步骤b中金属纳米颗粒层前驱液配制方法包括:将银纳米颗粒溶于甲苯溶剂中得到,其中,银纳米颗粒的浓度为3.75mg/mL。
优选地,所述步骤c具体包括:将PbS量子点溶于正辛烷溶液中得到红外量子点层前驱液,PbS量子点的浓度为50mg/mL;在第二电子传输层上旋涂一层PbS量子点膜,然后进行配体交换,清洗,重复此步骤9次,得到含有10层PbS量子点膜的红外量子点层。
优选地,所述步骤c中旋涂参数均为2500r/min,时间10s。
优选地,所述步骤d具体包括:将步骤c得到的样品放入镀膜机中蒸镀银电极,蒸镀速率为1埃/秒,厚度为100nm。
与现有技术相比,本发明的有益效果是:
(1)本发明通过在电子传输层中引入金属纳米颗粒层,可以俘获光生电子并聚集在电子传输层中,使电子传输层的能带发生变化,使得空穴可以隧穿通过,从而可以引起极大的光电流增益,提高器件的量子效率。
(2)本发明采用红外量子点层,可以用溶液法制备红外吸收层,降低成本,并且红外吸收的波长可以容易的调节。
(3)本发明在提高高量子效率的同时,还保证了低的暗电流和噪声和较快的响应速度,在近红外光电探测领域有良好的应用前景。
附图说明
图1为本发明的量子点红外光电探测器件结构图;1为导电基底层,2为第一电子传输层,3为金属纳米颗粒层,4为第二电子传输层,5为红外量子点层,6为电极;
图2为本发明实施例的量子点红外光电探测器件的结构图;
图3为本发明实施例的量子点红外光电探测器件的量子效率-波长响应;
图4为本发明实施例的量子点红外光电探测器件的暗电流与光电流;
图5为本发明实施例的量子点红外光电探测器件的时间响应。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下实施例中的氧化锌纳米颗粒和PbS量子点制备方法参考文献Wang,R.etal.Highly Efficient Inverted Structural Quantum Dot Solar Cells.Adv.Mater.30,1704882(2018)中方法合成;
Ag纳米颗粒的制备方法参考文献He,J.et al.Synergetic Effect of Silver。
甲醇购自国药(沪试),货号80080418;氯仿购自泰坦,货号01104470(G75915B);氯苯购买自阿拉丁,货号C105081-500g;正辛烷购买自阿拉丁,货号O100578-500ml;乙腈购买自阿拉丁,货号A104443-12×500ml;四丁基碘化铵购买自阿拉丁,货号T103714-100g;乙二硫醇购买自TCI,货号E0032-25G。
如图1~2所示,本发明提供了一种量子点近红外光电探测器,包括:导电基底层1,导电基底层1的上方由下至上依次设置有第一电子传输层2,金属纳米颗粒层3,第二电子传输层4,红外量子点层5,金属电极6;
所述导电基底层1为ITO导电玻璃,第一电子传输层2与第二电子传输层4均为氧化锌纳米颗粒膜,金属纳米颗粒层3为银纳米颗粒层,红外量子点层5为10层PbS量子点膜,6为银电极,厚度为100nm。
上述量子点近红外光电探测器件的制备方法具体包括以下步骤:
步骤a:将洁净的ITO透明导电玻璃放入等离子清洗机中处理10min,备用;
步骤b:在ITO透明导电玻璃上制备电子传输层:
将氧化锌纳米颗粒溶于甲醇和氯仿的混合溶剂中(体积比1:1),配成溶液A,浓度为50mg/mL;将银纳米颗粒溶于甲苯溶液中,浓度为3.75mg/mL,配成溶液B;
将步骤a得到的ITO透明导电玻璃上面旋涂溶液A,制备氧化锌纳米颗粒膜,旋涂参数为4000r/min,时间30s,在100℃热板上退火10min,得到第一电子传输层2;将溶液B旋涂在氧化锌纳米颗粒膜上,旋涂参数为4000r/min,时间30s,在100℃热板上退火10min,得到银纳米颗粒层3;接着旋涂溶液A,旋涂参数为4000r/min,时间30s,在100℃热板上退火10min,得到第二电子传输层4;
步骤c:制备红外量子点层:
将PbS量子点溶于正辛烷溶液中,浓度50mg/mL,制成溶液C;将四丁基碘化铵溶于甲醇溶液中,制成溶液D,浓度10mg/mL;将乙二硫醇溶于乙腈溶液中,制成溶液E,其中乙二硫醇体积分数为0.02%;
将步骤b所制备的第二电子传输层4上旋涂溶液C,旋涂参数为2500r/min,时间10s,得到一层PbS量子点膜;将溶液D滴在PbS量子点膜上进行配体交换,反应30s,然后旋涂,旋涂参数为2500r/min,时间10s,接着将甲醇滴在PbS量子点膜上旋涂清洗,旋涂参数为2500r/min,时间10s,得到一层表面含有I-短链配体的PbS量子点膜;重复此步骤,制备得到8层表面含有I-短链配体的PbS量子点膜;按照前述步骤再制备2层PbS量子点膜,将配体交换用的溶液D换成溶液E,制得2层表面含有SH-短链配体的PbS量子点膜,最后得到含有10层PbS量子点膜的红外量子点层5;
步骤d:制备电极:
将步骤c得到的样品放入镀膜机中蒸镀银电极6,蒸镀速率为1埃每秒,厚度100nm。
按照上述步骤制备成的量子点红外上转换器件的性能如图3、图4和图5所示。
如图3所示,量子点近红外光电探测器在400-1600纳米范围内都有很强的光响应,在400纳米处外量子效率超过了8000%,在1500纳米处超过2000%。
如图4所示,在没有红外光照射的情况下,量子点红外光电探测器有很小的暗电流,不超过1微安,但受到红外光照射时,光电流可以超过1mA。说明了量子点红外光电探测器有低的暗电流和强的红外响应。
如图5所示,量子点红外光电探测器还有快的响应速度,上升沿1.04毫秒。
以上结果表明,本发明的量子点近红外光电探测器获得了高的量子效率、低的噪声和暗电流以及较快的响应速度。

Claims (10)

1.一种量子点近红外光电探测器件,包括导电基底层(1),其特征在于,导电基底层(1)的上方由下至上依次设置有第一电子传输层(2),金属纳米颗粒层(3),第二电子传输层(4),红外量子点层(5),金属电极(6)。
2.如权利要求1所述的量子点近红外光电探测器件,其特征在于,所述导电基底层(1)为ITO导电玻璃;第一电子传输层(2)和第二电子传输层(4)的材料为氧化锌纳米颗粒、氧化锡纳米颗粒或PCBM中的一种或几种;金属纳米颗粒层(3)的材料为银纳米颗粒、金纳米颗粒、铝纳米颗粒或铜纳米颗粒中的一种或几种。
3.如权利要求1所述的量子点近红外光电探测器件,其特征在于,所述红外量子点层(5)为多层量子点膜,量子点膜经过固态配体交换或液态配体交换处理,表面配体为SH-或I-短链配体,量子点膜为PbS量子点膜或PbSe量子点膜;红外量子点层厚度为50~500nm。
4.如权利要求1所述的量子点近红外光电探测器件,其特征在于,所述金属电极(6)为Ag电极。
5.权利要求1~4任一项所述的量子点近红外光电探测器件的制备方法,其特征在于,包括以下步骤:
步骤a:对导电基底层(1)进行氧等离子体处理;
步骤b:配制电子传输层材料前驱液与金属纳米颗粒层前驱液,先在导电基底层旋涂第一电子传输层(2),退火成型;然后在第一电子传输层(2)上旋涂金属纳米颗粒层(3),退火成型;最后在金属纳米颗粒层上旋涂第二电子传输层(4),退火成型;
步骤c:配制红外量子点层前驱液,在第二电子传输层(4)上旋涂红外量子点层(5);
步骤d:将步骤c得到的样品送入镀膜机内蒸镀金属电极(6),得到量子点近红外光电探测器件。
6.如权利要求5所述的量子点近红外光电探测器件的制备方法,其特征在于,所述步骤a中,氧等离子体预处理时间为10min;所述步骤b中旋涂参数均为转速4000rpm,时间30s;退火参数均为100℃退火10min。
7.如权利要求5所述的量子点近红外光电探测器件的制备方法,其特征在于,所述步骤b中电子传输层材料前驱液的配制方法包括将氧化锌纳米颗粒溶于甲醇和氯仿混合溶剂中得到,其中,氧化锌纳米颗粒的浓度为50mg/mL,甲醇和氯仿的体积比为1:1。
8.如权利要求5所述的量子点近红外光电探测器件的制备方法,其特征在于,所述步骤b中金属纳米颗粒层前驱液配制方法包括:将银纳米颗粒溶于甲苯溶剂中得到,其中,银纳米颗粒的浓度为3.75mg/mL。
9.如权利要求5所述的量子点近红外光电探测器件的制备方法,其特征在于,所述步骤c具体包括:将PbS量子点溶于正辛烷溶液中得到红外量子点层前驱液,PbS量子点的浓度为50mg/mL;在第二电子传输层上旋涂一层PbS量子点膜,然后进行配体交换,清洗,重复此步骤9次,得到含有10层PbS量子点膜的红外量子点层。
10.如权利要求5所述的量子点近红外光电探测器件的制备方法,其特征在于,所述步骤d具体包括:将步骤c得到的样品放入镀膜机中蒸镀银电极,蒸镀速率为1埃/秒,厚度为100nm。
CN201910613735.4A 2019-07-09 2019-07-09 一种量子点近红外光电探测器及其制备方法 Active CN110311007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910613735.4A CN110311007B (zh) 2019-07-09 2019-07-09 一种量子点近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910613735.4A CN110311007B (zh) 2019-07-09 2019-07-09 一种量子点近红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110311007A CN110311007A (zh) 2019-10-08
CN110311007B true CN110311007B (zh) 2020-12-25

Family

ID=68079448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910613735.4A Active CN110311007B (zh) 2019-07-09 2019-07-09 一种量子点近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110311007B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531049B (zh) * 2020-09-22 2022-09-16 华中科技大学 量子点吸光层及其制备方法、应用
CN113328006A (zh) * 2021-04-02 2021-08-31 华中科技大学 一种量子点光电探测器以及制备方法
CN113571600B (zh) * 2021-07-01 2023-08-18 深圳先进技术研究院 一种红外探测器及其制备方法
CN114256377A (zh) * 2021-11-22 2022-03-29 上海科技大学 基于晶体管结构的量子点近红外光电探测器及其制备方法
CN115588702B (zh) * 2022-09-30 2023-06-02 中芯热成科技(北京)有限责任公司 红外量子点层、器件及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486558A (zh) * 2015-08-31 2017-03-08 阿克伦大学 利用量子点和钙钛矿混合物作为集光体的光电探测器
CN107275421A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种量子点光电探测器及其制备方法
CN107359221A (zh) * 2017-07-21 2017-11-17 中国科学院上海微***与信息技术研究所 一种基于soi‑量子点异质结的红外探测器制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835851B2 (en) * 2009-10-21 2014-09-16 Stc.Unm Plasmonic detectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486558A (zh) * 2015-08-31 2017-03-08 阿克伦大学 利用量子点和钙钛矿混合物作为集光体的光电探测器
CN107275421A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种量子点光电探测器及其制备方法
CN107359221A (zh) * 2017-07-21 2017-11-17 中国科学院上海微***与信息技术研究所 一种基于soi‑量子点异质结的红外探测器制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Colloidal quantum-dots surface and device structure》;Zhijun Ning,et al;《National Science Review》;20170107(第4期);全文 *

Also Published As

Publication number Publication date
CN110311007A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110311007B (zh) 一种量子点近红外光电探测器及其制备方法
Moon et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor
CN103545397B (zh) 薄膜紫外光探测器及其制备方法与应用
Ranjith et al. Facile construction of vertically aligned ZnO nanorod/PEDOT: PSS hybrid heterojunction-based ultraviolet light sensors: Efficient performance and mechanism
JP5836866B2 (ja) 炭素電極とその製造方法およびそれを用いた光電変換素子
Thakur et al. Microplasma-enabled graphene quantum dot-wrapped gold nanoparticles with synergistic enhancement for broad band photodetection
CN110444620B (zh) 一种量子点红外上转换器件及其制备方法
CN110492000B (zh) 一种基于海藻酸钠交联光活性层的钙钛矿光电探测器及其制备方法
CN102306707A (zh) 一种基于胶体量子点及石墨烯为光电极的光电探测器及其制备方法
JP2008103670A (ja) 有機薄膜受光素子、有機薄膜受光素子の製造方法、有機薄膜受発光素子、有機薄膜受発光素子の製造方法、及び脈拍センサ
WO2014088558A1 (en) Cation-exchanged quantum dot photoanodes and solar cells
CN111834487B (zh) 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN109888109A (zh) 一种量子点修饰的双体异质结有机太阳能电池及其制备方法
Sun et al. Efficient and stable large-area perovskite solar cells with inorganic perovskite/carbon quantum dot-graded heterojunction
CN109301068B (zh) 基于光伏和水伏效应的自驱动光电探测器及制备方法
CN109360892B (zh) 一种宽光谱探测器件及其制备方法
Zhang et al. High-performance near-infrared photodetectors based on the synergy effect of short wavelength light filter and long wavelength response of a perovskite/polymer hybrid structure
Kaur et al. A review on advances in photoelectrochemical (PEC-type) photodetectors: A trending thrust research area
CN111162173B (zh) 一种掺杂型电子传输层的有机光电探测器及其制备方法
Eli et al. High efficiency dye sensitized solar cells by excitation of localized surface plasmon resonance of AgNPs
CN103904217A (zh) 一种多元有机/无机杂化太阳电池及其制备方法
CN113773695A (zh) 基于化学修饰的金属氧化物墨水及其制备方法与应用
Kim et al. Organic Light-Dependent Resistors with Near Infrared Light-Absorbing Conjugated Polymer Films
CN111009613A (zh) 一种钙钛矿量子点掺杂的有机紫外探测器及其制备方法
KR101070160B1 (ko) 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant