CN110263474A - 一种数控机床的刀具寿命实时预测方法 - Google Patents

一种数控机床的刀具寿命实时预测方法 Download PDF

Info

Publication number
CN110263474A
CN110263474A CN201910568235.3A CN201910568235A CN110263474A CN 110263474 A CN110263474 A CN 110263474A CN 201910568235 A CN201910568235 A CN 201910568235A CN 110263474 A CN110263474 A CN 110263474A
Authority
CN
China
Prior art keywords
cutter
signal
real
numerically
life prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910568235.3A
Other languages
English (en)
Inventor
张明德
卢建华
鄢然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Technology
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN201910568235.3A priority Critical patent/CN110263474A/zh
Publication of CN110263474A publication Critical patent/CN110263474A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Evolutionary Computation (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Development Economics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)

Abstract

本发明属于数控机床刀具寿命预测领域,公开了一种适合大批量零件某一单一加工工序中的刀具寿命预测方法,包括以下步骤:建立数据库、信号采集与处理、在线寿命预测。本发明采用一维卷积神经网络技术进行刀具的寿命预测。加工过程中采集的加速度信号、电流信号和温度信号不需要做大量的预处理计算,就能通过智能模型,实现寿命预测。本发明的刀具寿命实时预测方法,对采集到的数据,可以在不影响正常生产的情况下实时地进行,并能取得较好的预测效果。

Description

一种数控机床的刀具寿命实时预测方法
技术领域
本发明属于数控机床刀具寿命预测领域,更具体地,涉及数控机床的刀具寿命实时预测方法。
背景技术
刀具是数控机床最重要的部件之一,在现代化生产线的生产过程中,如果刀具发生损坏,将严重影响生产效率和加工质量。因此,刀具的使用寿命是一个重要的参数,在加工的过程中,如能有效、准确地对刀具的寿命进行预测,将极大地提高企业的生产效率并降低生产成本。
传统的刀具寿命预测依靠以往的加工经验和理论公式计算刀具寿命,效率低下,又很难与实际情况符合。目前,在刀具寿命预测领域又出现了一些新方法,但也存在很多局限性。例如专利文献CN201410313591公开的方法没有考虑加工过程和生产环境,但是这些因素却影响着刀具寿命,因此,其预测精度很低。例如专利文献CN201810268305公开的方法仅通过主轴的电流信号去反应刀具的使用寿命,而没有考虑更为敏感的振动信号和温度信号,虽然省掉了外接传感器的麻烦,但是却降低了寿命预测的准确性。影响刀具使用寿命的因素很多,现有的方法都很难达到很高的预测精度,降低了其工业应用价值。
因此,针对以上问题,本领域急需一种预测精度高、操作性强且能在加工过程中实时预测的方法。
发明内容
本发明针对上述现有技术中的问题,提出一种数控机床的刀具寿命实时预测方法。该方法主要针对大批量零件加工过程中某一单一工序而言,这样就大大减少刀具寿命的影响因素,提高预测精度。同时,其本身作为一种方法而言可以同时应用在生产线上的其他工序中,并能获得很好的效果。
为实现上述目的,本发明提出一种数控机床刀具剩余寿命实时预测方法,包括如下步骤:
S1、建立数据库:把某一加工工序所用刀具信息、加工参数信息、采样参数信息输入数据库;
S2、信号采集与处理:通过传感器重复采集同类型机床中同种加工工序的信号,并将其存储到步骤S1中的数据库中,并以健康度指标(H)对所采集的信号进行标记,最后用一维卷积神经网络搭建的智能模型对信号进行训练,建立刀具寿命预测模型。
本步骤中,所述信号是指加速度传感器采集刀具的振动加速度信号、电流传感器实时采集的主轴电流信号、红外温度传感器实时采集的刀具温度信号,数据采集卡将这些信号数字化后导入数据库中。
由于刀具不同磨损状态下的信号表征是不同的,而振动、电流、温度的改变是刀寿命衰退最直接和最原始的体现。本发明中所用智能模型的输入是3个通道的一维信号,分别是原始的振动、电流和温度信号。通过多层的卷积池化运算,卷积结构从3个角度对表征刀具磨损状态的特征进行了层级式提取和浓缩。通过不同角度(振动、温度、电流的角度)对信号进行联合分析,能有效地提取到三种信号中的共性不变特征,以此提高模型的泛化能力。
S3、在线寿命预测:机床加工过程中,将实时采集的振动信号、电流信号和温度信号作为样本输入刀具寿命预测模型,得到当前刀具的寿命预测结果。
所述步骤S1中的刀具信息包括刀具材料的硬度、刀具直径、前角、主偏角。
所述步骤S1中的加工参数信息包括主轴转速、走刀速度和步进量。
所述步骤S1中的采样参数信息包括各采集参数的采样率以及采样点位置。
进一步的,所述步骤S2中的温度传感器为红外温度传感器。
所述步骤S2中的智能模型为基于一维卷积神经网络框架搭建并以所述刀具振动信号、主轴电流信号和刀具温度信号作为输入,所述刀具健康度指标作为标签建立训练样本,采用梯度下降法训练得到的。
所述的一维卷积神经网络包括输入层、卷积层、池化层、全连接层以及softmax层;
较佳的,输入层的大小为10240*1*3,输出层的大小为max(Ti),第一个隐藏层过滤器的尺寸为256*1,深度为16,第二个隐藏层过滤器的尺寸为128*1,深度为8,池化层过滤器的尺寸为2*1,步长为1;卷积过程使用ReLU激活函数去线性化。
相较于现有技术,本发明具有以下优点:
1、本发明提供的刀具寿命实时预测方法,使用传感器采集了刀具振动、温度和主轴电流信号等参数,并将这些信号进行联合分析,多角度、全方位地反映刀具在加工过程中的变化情况。较传统的单一信号分析方法相比,增加了模型输入信号的维度和信息量,最终提高了预测的精度。
2、本发明提供的刀具寿命实时预测方法,采用了一维卷积神经网络搭建的模型来进行预测,不需要对原始数据进行大量的预处理运算,减少了因预处理算法选择不当所带来的预测精度降低问题。
3、本发明提供的刀具寿命实时预测方法,仅针对大批量零件加工过程中某一单一工序而言,这样就大大减少了刀具寿命的影响因素,提高了预测精度。同时,其本身作为一种方法而言可以同时应用在生产线上的其他工序中,并能获得很好的效果。
附图说明
图1为本发明方法的流程示意图;
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明方法为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一种数控机床的刀具寿命实时预测***,包括加速度传感器、电流传感器、红外温度传感器和数据采集卡,所述的加速度传感器安装在刀柄上,所述的电流传感器安装在主轴电机的单向导线上,所述的温度传感器安装在主轴箱上,所述的数据采集卡分别与加速度传感器、电流传感器、温度传感器连接。
所述的加速度传感器采集刀具的振动加速度信号。
所述的电流传感器采集主轴电流信号。
所述的温度传感器采集刀具的温度信号。
所述的数据采集卡,用于接收从加速度传感器、电流传感器和温度传感器传送来的测量数据,并将这些数据进行相应的A/D转换,处理成需要的数字信号。
本发明前期需要采集大量同类型机床中同种加工工序的加速度信号、电流信号和温度信号,同时将这些原始一维信号作为输入,对应刀具的健康度指标作为输出,对卷积神经网络搭建的智能模型进行训练。
如图1所示,针对一道工序如数控车床上的车外圆工序对刀具进行实时寿命预测,具体包括以下步骤:
S1、建立数据库:把这道工序所用刀具信息、加工参数信息、采样参数信息输入数据库;
所述的刀具信息包括本道工序所用刀具的材料硬度、直径、前角、主偏角。所述的加工参数信息包括本道工序所采用的主轴转速、走刀速度和步进量。
所述的采样参数信息包括各采集参数的采样率以及采样点位置。由于不同加工工序所使用的刀具、加工参数和采样参数是不同的。在数据库中输入这些参数,是为了记录这种工序的特点,便于在后期维护数据库时,对振动、温度、电流信号能有一个整体认识,因为这些信号中也蕴含了刀具、加工等信息。
S2、信号采集与处理:采用加速度振动传感器采集刀具加工过程中的振动信号,采用电流互感器采集加工过程中主轴的电流信号,采用红外温度传感器采集加工过程中刀具表面的温度信号,将采集到的原始振动信号、电流信号和温度信号存储到步骤S1中的数据库中。然后以健康度指标对所采集的信号进行标记,其中Ti为当前刀具可加工的工件数量,ti为当前刀具的累计加工工件数量,针对每一组采集到的信号计算出一个H值,信号采集过程是振动、温度、电流同步采集,采集时间为1分钟,这一分钟的信号就是一组信号。最后用一维卷积神经网络搭建的智能模型对信号进行训练,建立刀具寿命预测模型。
较佳的,一维卷积神经网络的输入层的大小为10240*1*3,输出层的大小为max(Ti),第一个隐藏层过滤器的尺寸为256*1,深度为16,第二个隐藏层过滤器的尺寸为128*1,深度为8,池化层过滤器的尺寸为2*1,步长为1;卷积过程使用ReLU激活函数去线性化。
S3、在线寿命预测:机床加工过程中,将实时采集的振动信号、电流信号和温度信号作为样本输入刀具寿命预测模型,得到当前刀具的寿命预测结果。
本发明方法在预测过程中,也不断地把新的数据存到数据库中。当新存放的数据达到一定的数量时,又重新调用之前用于预测的智能模型进行训练,从而不断提高模型预测的准确度。
综上,本发明的数控机床刀具寿命实时预测方法,可以在不影响生产的情况下,取得较好的预测效果。
此处公开的仅为本发明的优选实施例,本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,并不是对本发明的限定。任何本领域技术人员在说明书范围内所做的修改和变化,均应落在本发明所保护的范围内。

Claims (6)

1.一种数控机床的刀具寿命实时预测方法,其特征在于,包括以下步骤:
S1、建立数据库:把某一加工工序所用刀具信息、加工参数信息、采样参数信息输入数据库;
S2、信号采集与处理:通过传感器重复采集某一加工工序的信号,并将其存储到步骤S1中的数据库中,并以健康度指标(H)对所采集的信号进行标记,最后用一维卷积神经网络搭建的智能模型对信号进行训练,建立刀具寿命预测模型;
所述的信号包括用加速度振动传感器采集的刀具振动信号,电流互感器采集的主轴电流信号,红外温度传感器采集的刀具温度信号;
所述的健康度指标(H)是指:
其中,Ti为刀具从开始使用到磨钝时的累计加工工件数量,ti为信号采集时刀具的累计加工工件数量;
所述智能模型的输入为10240*1*3的原始时域信号,其中的3个通道分别代表刀具振动、温度以及电流的信号;通过一维卷积神经网络在时空上的稀疏连接以及权重共享策略,实现对刀具磨损信号中平移不变特征的提取;
S3、在线寿命预测:机床加工过程中,将实时采集的振动信号、电流信号和温度信号作为样本输入刀具寿命预测模型,得到当前刀具的寿命预测结果。
2.根据权利要求1所述的数控机床的刀具寿命实时预测方法,其特征在于,所述加工工序所用刀具信息包括刀具材料的硬度、刀具直径、前角、主偏角。
3.根据权利要求1所述的数控机床的刀具寿命实时预测方法,其特征在于,所述加工参数信息包括主轴转速、走刀速度和步进量。
4.根据权利要求1所述的数控机床的刀具寿命实时预测方法,其特征在于,所述采样参数信息包括各采集参数的采样率以及采样点位置。
5.根据权利要求1-4之任一项所述的数控机床的刀具寿命实时预测方法,其特征在于,所述步骤S2中的刀具寿命预测模型是以原始一维信号即所述刀具振动信号、主轴电流信号和刀具温度信号作为输入,所述刀具健康度指标(H)作为标签建立训练样本,即以对应刀具的健康度指标(H)作为输出,对一维卷积神经网络搭建的智能模型进行训练而得到。
6.根据权利要求5所述的数控机床的刀具寿命实时预测方法,其特征在于,所述的一维卷积神经网络包括输入层、卷积层、池化层、全连接层以及softmax层;
输入层的大小为10240*1*3,输出层的大小为max(Ti),第一个隐藏层过滤器的尺寸为256*1,深度为16,第二个隐藏层过滤器的尺寸为128*1,深度为8,池化层过滤器的尺寸为2*1,步长为1;卷积过程使用ReLU激活函数去线性化。
CN201910568235.3A 2019-06-27 2019-06-27 一种数控机床的刀具寿命实时预测方法 Pending CN110263474A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910568235.3A CN110263474A (zh) 2019-06-27 2019-06-27 一种数控机床的刀具寿命实时预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910568235.3A CN110263474A (zh) 2019-06-27 2019-06-27 一种数控机床的刀具寿命实时预测方法

Publications (1)

Publication Number Publication Date
CN110263474A true CN110263474A (zh) 2019-09-20

Family

ID=67922339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910568235.3A Pending CN110263474A (zh) 2019-06-27 2019-06-27 一种数控机床的刀具寿命实时预测方法

Country Status (1)

Country Link
CN (1) CN110263474A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793789A (zh) * 2019-10-08 2020-02-14 安徽富煌钢构股份有限公司 一种列车高速运行状态下的动态检测***
CN110926993A (zh) * 2019-12-18 2020-03-27 西安交通大学 磨损图像采集***及采集方法
CN111152069A (zh) * 2020-01-21 2020-05-15 徐州工业职业技术学院 一种机床加工的刀具寿命监测***
CN111300146A (zh) * 2019-11-29 2020-06-19 上海交通大学 基于主轴电流和振动信号的数控机床刀具磨损量在线预测方法
CN111337234A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种基于实时监测的tbm刮刀寿命预测***及方法
CN112597625A (zh) * 2020-11-13 2021-04-02 武汉钢铁集团耐火材料有限责任公司 基于大数据的钢包内衬材料的预计寿命的预测方法
CN113101057A (zh) * 2020-01-10 2021-07-13 尤妮佳股份有限公司 收集装置、收集方法以及计算机可读记录介质
CN113305645A (zh) * 2021-06-22 2021-08-27 重庆邮电大学工业互联网研究院 一种基于混合神经模型的数控机床刀具剩余寿命预测方法
CN113837264A (zh) * 2021-09-18 2021-12-24 深圳市裕展精密科技有限公司 训练方法、电子设备、设备健康诊断方法及装置
CN114536104A (zh) * 2022-03-25 2022-05-27 成都飞机工业(集团)有限责任公司 一种刀具寿命动态预测方法
CN114676647A (zh) * 2022-05-30 2022-06-28 中科航迈数控软件(深圳)有限公司 一种基于深度学习方法的数控机床零部件寿命预测方法
TWI775059B (zh) * 2020-03-18 2022-08-21 百德機械股份有限公司 利用演化式模糊類神經網路之刀具磨耗預測系統及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781982B1 (en) * 2011-09-23 2014-07-15 Lockheed Martin Corporation System and method for estimating remaining useful life
CN104097115A (zh) * 2014-07-02 2014-10-15 无锡烨隆精密机械有限公司 一种数控机床刀具寿命监控方法
CN107168244A (zh) * 2017-07-10 2017-09-15 吉林工程技术师范学院 一种数控机床运行状态在线监测及报警***
CN107511718A (zh) * 2017-09-13 2017-12-26 哈尔滨工业大学深圳研究生院 单品大批量重复加工过程的智能刀具状态监测方法
CN108620949A (zh) * 2017-03-24 2018-10-09 郑芳田 刀具磨耗监测与预测方法
CN109298680A (zh) * 2018-09-13 2019-02-01 成都数之联科技有限公司 一种数控机床刀具检测的数据采集***
CN109396953A (zh) * 2018-12-05 2019-03-01 上海交通大学 基于信号融合的机床工作状态智能辨识***
CN109460618A (zh) * 2018-11-13 2019-03-12 华中科技大学 一种滚动轴承剩余寿命在线预测方法及***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781982B1 (en) * 2011-09-23 2014-07-15 Lockheed Martin Corporation System and method for estimating remaining useful life
CN104097115A (zh) * 2014-07-02 2014-10-15 无锡烨隆精密机械有限公司 一种数控机床刀具寿命监控方法
CN108620949A (zh) * 2017-03-24 2018-10-09 郑芳田 刀具磨耗监测与预测方法
CN107168244A (zh) * 2017-07-10 2017-09-15 吉林工程技术师范学院 一种数控机床运行状态在线监测及报警***
CN107511718A (zh) * 2017-09-13 2017-12-26 哈尔滨工业大学深圳研究生院 单品大批量重复加工过程的智能刀具状态监测方法
CN109298680A (zh) * 2018-09-13 2019-02-01 成都数之联科技有限公司 一种数控机床刀具检测的数据采集***
CN109460618A (zh) * 2018-11-13 2019-03-12 华中科技大学 一种滚动轴承剩余寿命在线预测方法及***
CN109396953A (zh) * 2018-12-05 2019-03-01 上海交通大学 基于信号融合的机床工作状态智能辨识***

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793789A (zh) * 2019-10-08 2020-02-14 安徽富煌钢构股份有限公司 一种列车高速运行状态下的动态检测***
CN111300146A (zh) * 2019-11-29 2020-06-19 上海交通大学 基于主轴电流和振动信号的数控机床刀具磨损量在线预测方法
CN110926993A (zh) * 2019-12-18 2020-03-27 西安交通大学 磨损图像采集***及采集方法
CN113101057A (zh) * 2020-01-10 2021-07-13 尤妮佳股份有限公司 收集装置、收集方法以及计算机可读记录介质
CN113101057B (zh) * 2020-01-10 2024-03-26 尤妮佳股份有限公司 收集装置、收集方法以及计算机可读记录介质
CN111152069A (zh) * 2020-01-21 2020-05-15 徐州工业职业技术学院 一种机床加工的刀具寿命监测***
CN111337234A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种基于实时监测的tbm刮刀寿命预测***及方法
TWI775059B (zh) * 2020-03-18 2022-08-21 百德機械股份有限公司 利用演化式模糊類神經網路之刀具磨耗預測系統及其方法
CN112597625A (zh) * 2020-11-13 2021-04-02 武汉钢铁集团耐火材料有限责任公司 基于大数据的钢包内衬材料的预计寿命的预测方法
CN112597625B (zh) * 2020-11-13 2022-08-09 武汉钢铁集团耐火材料有限责任公司 基于大数据的钢包内衬材料的预计寿命的预测方法
CN113305645A (zh) * 2021-06-22 2021-08-27 重庆邮电大学工业互联网研究院 一种基于混合神经模型的数控机床刀具剩余寿命预测方法
CN113837264A (zh) * 2021-09-18 2021-12-24 深圳市裕展精密科技有限公司 训练方法、电子设备、设备健康诊断方法及装置
CN114536104A (zh) * 2022-03-25 2022-05-27 成都飞机工业(集团)有限责任公司 一种刀具寿命动态预测方法
CN114676647A (zh) * 2022-05-30 2022-06-28 中科航迈数控软件(深圳)有限公司 一种基于深度学习方法的数控机床零部件寿命预测方法

Similar Documents

Publication Publication Date Title
CN110263474A (zh) 一种数控机床的刀具寿命实时预测方法
CN107584334B (zh) 一种基于深度学习的复杂结构件数控加工刀具状态实时监测方法
CN108907896B (zh) 一种刀具剩余寿命在线预测方法及***
CN110153801A (zh) 一种基于多特征融合的刀具磨损状态辨识方法
CN102073300B (zh) 一种数控加工状态自学习的刀具磨损监控***
CN109822399A (zh) 基于并行深度神经网络的数控机床刀具磨损状态预测方法
CN107728580B (zh) 一种面向自适应加工的几何信息-工艺信息-监测信息关联方法
CN108490880A (zh) 一种数控机床切削刀具磨损状态实时监测方法
CN106271881B (zh) 一种基于SAEs和K-means的刀具破损监测方法
CN106112697A (zh) 一种基于3σ准则的铣削颤振自动报警阈值设定方法
CN113741377A (zh) 一种基于切削特征遴选的加工过程智能监控***及方法
CN111660141B (zh) 一种工况无关的基于主轴驱动电流的铣刀磨损状态识别方法
CN110561195B (zh) 一种机械加工过程中颤振的监测方法
CN113378725A (zh) 一种基于多尺度-通道注意力网络的刀具故障诊断方法、设备及存储介质
CN109605128B (zh) 一种基于功率谱熵差的铣削颤振在线检测方法
CN111716150A (zh) 一种刀具状态智能监测的进化学习方法
CN106141815A (zh) 一种基于ar模型的高速铣削颤振在线辨识方法
CN109158953A (zh) 一种刀具磨损状态在线监测方法及***
CN110434676A (zh) 一种多传感器时频特征融合的镗削颤振监测方法
CN108873813A (zh) 基于数控机床主轴伺服电机电流信号的刀具磨损度检测方法
CN113126564B (zh) 一种数字孪生驱动的数控铣削刀具磨损在线监测方法
CN111958321B (zh) 基于深度神经网络的数控机床刀具磨损程度识别方法
Li et al. Online chatter detection in milling process based on VMD and multiscale entropy
CN108629864A (zh) 一种基于振动的电主轴径向精度表征方法及其***
CN103941645A (zh) 薄壁零件复杂工况加工状态监测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination