CN110262393B - 带滞后数据处理的灰色理论分段式加权热误差建模方法 - Google Patents

带滞后数据处理的灰色理论分段式加权热误差建模方法 Download PDF

Info

Publication number
CN110262393B
CN110262393B CN201910592635.8A CN201910592635A CN110262393B CN 110262393 B CN110262393 B CN 110262393B CN 201910592635 A CN201910592635 A CN 201910592635A CN 110262393 B CN110262393 B CN 110262393B
Authority
CN
China
Prior art keywords
model
thermal error
data
gray
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910592635.8A
Other languages
English (en)
Other versions
CN110262393A (zh
Inventor
李兵
苏文超
魏翔
兰梦辉
陈磊
蒋庄德
白金峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910592635.8A priority Critical patent/CN110262393B/zh
Publication of CN110262393A publication Critical patent/CN110262393A/zh
Application granted granted Critical
Publication of CN110262393B publication Critical patent/CN110262393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种带滞后数据处理的灰色理论分段式加权热误差建模方法,通过灰色理论模型对温度和热误差数据的处理能力建立多个不同序列长度的灰色模型组成灰色模型预处理模块,将预处理模块的输出作为分布滞后模型后处理模块的输入,确定模型滞后阶数后建立滞后模型作为后处理模块,形成灰色模型和分布滞后模型相结合的层级模型;以层级模型为基础,建立不同初始温度下的GM‑DL补偿模型,根据测试样本初始环境温度选择紧邻的两个热误差补偿模型并通过分段加权的方式计算得到最终热误差数据完成建模。本发明最大限度的提取数据中有用信息,使模型具有很强的趋势性和适应性,提高模型对各个季节和时段的适应性,最终大大提高了机床的加工精度。

Description

带滞后数据处理的灰色理论分段式加权热误差建模方法
技术领域
本发明属于机床热误差补偿技术领域,具体涉及一种带滞后数据处理的灰色理论分段式加权热误差建模方法。
背景技术
大量的试验研究表明,热误差是影响数控机床加工误差的主要因素,其在所有误差源中占比例可以达到40%~70%,对于越精密的机床热误差占比越高。并且热误差是由热源引起的,而机床运行中必然存在热源,所以机床热误差的问题不可避免,因此寻求减小热误差方法才是提高精密数控机床加工精度的关键。针对机床的热误差问题,热误差预防法和热误差补偿法是减小热误差提高机床加工精度的两种基本方法。其中热误差预防法为硬技术,主要是在设计和制造阶段提高机床的制作精度来满足工件的加工精度,与热误差补偿法相比较,提高同样的加工精度经济上的代价要非常大,并且精度提高有限,所以热误差补偿法是目前减小热误差的主要方法。热误差补偿法主要通过建立热敏感点和热变形对应关系的数学模型,实际加工中,通过热敏感点的温度值来推断热变形的大小,从而通过机床数控***的原点偏移功能实现热误差的补偿,提高机床加工精度。
热误差补偿模型有很多种,根据灰色理论建立的灰色模型(GM)和根据时间序列原理建立的分布滞后模型(DL)是常用的方法。灰色***理论将***中的随机变量当作变化的灰色量,随机过程当作在一定范围内产生变化的灰色过程。建立模型前,对无规律或者具有较弱规律的原始数据进行预处理,使其变为具有一定规律的新数据,该模型对有已知信息,同时又有未知信息的***建模效果较好,具有较强的趋势性。但由于温度传感器测量的是材料表面某处温度,该模型未考虑材料形变相对于温度的滞后性所带来的建模影响,尤其是对于工况比较复杂的情况时,数控机床热源切换比较频繁,传感器所测温度和材料内部由于温度变化导致的变形会有较大滞后性,忽略滞后性直接建模一定程度上会影响模型预测精度。对于时间序列原理建立的分布滞后模型是将因变量的值与当前自变量和多个滞后自变量联系起来,用于热误差建模中则表示机床当前的热误差值不仅与多个当前温度值有关系而且与若干个滞后温度值有关系,这样建立的模型就大大弱化滞后性带来的影响,提高预测精度。但由于测量的不精确性和机床的复杂性,用于热误差建模的温度数据和热误差数据不可避免地包含一些“灰色信息”,在对于“灰色信息”的处理上,分布滞后模型没有优势。
此外,机床一般放置在工厂中,要保持厂房恒温环境耗费巨大,所以一般机床周围环境温度随四季变化而变化,通过大量的热误差建模补偿的文献我们总结得到规律,环境温度在机床热误差建模中有着重要的影响。当建模的样本数据和测试数据初始环境温度相差不大时,样本测试的模型补偿效果较好;当建模的训练数据和与热误差的测试数据的初始环境温度相差较大时,补偿效果往往很差。例如用冬天的数据建立热误差模型来补偿夏季的热误差或者正午的数据建立的热误差模型补偿凌晨测的热误差往往出现较大的偏差。针对这一问题,往往一是通过增加样本数量的方法即用冬夏的数据同时作为样本数据建模,二是选择泛化能力强的热误差模型例如支持向量回归机模型,但通过前人补偿效果我们发现,补偿效果有所提高但效果有限。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种带滞后数据处理的灰色理论分段式加权热误差建模方法,能够提高热误差预测能力并最终提高机床加工精度。
本发明采用以下技术方案:
带滞后数据处理的灰色理论分段式加权热误差建模方法,通过灰色理论模型对温度和热误差数据的处理能力建立n个不同序列长度的灰色模型GM1(1,N),GM2(1,N),...,GMn(1,N)组成灰色模型预处理模块,将预处理模块的输出作为分布滞后模型后处理模块的输入,确定模型滞后阶数后建立滞后模型作为后处理模块,形成灰色模型和分布滞后模型相结合的层级模型;以层级模型为基础,建立不同初始温度下的GM-DL补偿模型,根据测试样本初始环境温度选择紧邻的两个热误差补偿模型并通过分段加权的方式计算得到最终热误差数据完成建模。
具体的,数据序列长度为n1,n2,...,nn,分别用数据序列对灰色模型进行训练,同时根据训练的精度与预期的精度的比对调整序列长度,将新样本经过n个灰色模型预处理后得到n*m组热误差值,m为热敏感点数,预处理值和实测值作为新样本训练分布滞后模型,建立GM-DL模型。
进一步的,设
Figure BDA0002116604180000031
为热误差的序列,
Figure BDA0002116604180000032
为关键温度敏感点的温度序列,其中,i=2,3,....N,即模型共选取了N-1个温度测点,n为选取的序列长度,对温度和热误差数据进行一次累加序列,建立GM(1,N)模型,然后计算经过一次累加处理的热误差数据及温度数据构成矩阵,最后计算通过一次累减还原得到GM(1,N)模型对热误差的预测值,重复以上方法得到n个GM(1,N)模型组成热误差的预处理模块。
更进一步的,温度和热误差数据的一次累加序列为:
Figure BDA0002116604180000041
Figure BDA0002116604180000042
经过一次累加处理的热误差数据及温度数据构成矩阵为:
Figure BDA0002116604180000043
通过一次累减还原得到GM(1,N)模型对热误差的预测值如下:
Figure BDA0002116604180000044
其中,k=2,3,...,n。
更进一步的,取
Figure BDA0002116604180000045
序列中的相邻两项生成的均值序列建立GM(1,N)模型为:
Figure BDA0002116604180000046
其中,a为模型发展系数;bi为驱动系数。
进一步的,建立滞后模型的数学表达式:
Figure BDA0002116604180000047
其中,εt~IID(0,σ2);n为最大滞后期;α0为常数项;u为热敏感点个数,yt最终热误差。
具体的,设机床环境温度为0~40℃,每隔5℃选取训练样本分别建立初始温度为0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃的GM-DL热误差模型,行成不同初始环境温度的GM-DL热误差模型库。
进一步的,假设测试数据的初始温度为t,***分别计算节点温度于t之间差值的绝对值,按绝对值递增的顺序对上述序列排序,选取绝对值最小的两组数据,两组数据分别对应着相应的温度节点,两个对应的温度节点建立的两个GM-DL模型即为选取的模型。
更进一步的,经过模型选择后位于温度节点T1℃和T2℃之间,其中,T1<t<T2,将测试样本带入初始环境温度为T1℃和T2℃的GM-DL模型中得到热误差分别为y1和y2,在前期对分段式模型库建立的基础上,通过模型选择和加权计算两步,完成针对不同初始环境温度下热误差计算。
更进一步的,实际热误差y为:
Figure BDA0002116604180000051
与现有技术相比,本发明至少具有以下有益效果:
本发明方法利用灰色模型对“灰色信息”的优秀处理能力和利用“少数据”的出色建模能力,最大限度的提取数据中有用信息,使模型具有很强的趋势性和适应性,然后利用分布滞后模型解决了机床上温度和形变的滞后性问题,使模型对于滞后性影响较严重的情况也有了很强的预测性,利用初始环境温度对热误差进行分段加权建模,提高模型对各个季节和时段的适应性,最终大大提高了机床的加工精度。
进一步的,利用灰色模型的数据处理能力和分布滞后模型解决滞后性的能力联合建模,解决了了单一模型无法解决的问题,提高了热误差的预测性。
进一步的,利用灰色模型预处理模块对“灰色信息”的进行预处理,提取模型中的有用信息,使模型具有很强的趋势性和适应性。
进一步的,数据采集中温度传感器实测温度和由温度引起的机床床形变有滞后性,使模型能解决滞后性对建模带来的影响,对于滞后性影响较严重的情况也有了很强的预测性。
进一步的,模型库提供了不同的热误差补偿的模型,我们可根据不同的初始温度择优选择合适的模型进行建模,为加权建模打下基础。
进一步的,利用初始环境温度对热误差进行分段加权建模,能够充分利用模型中的信息,提高模型对各个季节和时段的适应性。
综上所述,本发明利用灰色模型对“灰色信息”的优秀处理能力和利用“少数据”的出色建模能力,最大限度的提取数据中有用信息,使模型具有很强的趋势性和适应性,然后利用分布滞后模型解决了机床上温度和形变的滞后性问题,使模型对于滞后性影响较严重的情况也有了很强的预测性,利用初始环境温度对热误差进行分段加权建模,提高模型对各个季节和时段的适应性,最终大大提高了机床的加工精度。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为GM-DL模型结构图;
图2为分段加权热误差补偿模型。
具体实施方式
本发明提供了一种带滞后数据处理的灰色理论分段式加权热误差建模方法,利用灰色理论模型对“灰色信息”的优秀处理能力和利用“少数据”的出色建模能力,对热误差进行了预处理,然后利用分布滞后模型对机床中形变的滞后性问题进行了分析和建模,行成GM-DL层级模型。选取初始环境温度不同的样本数据,建立不同初始环境温度下的GM-DL热误差模型库,根据测试样本初始环境温度选取库中正负最相近的GM-DL热误差模型分别计算热误差,并最终根据初始温度件权重得到最终热误差。
请参阅图1和图2,本发明一种带滞后数据处理的灰色理论分段式加权热误差建模方法,包括以下步骤:
S1、建立n个不同序列长度的灰色模型GM1(1,N),GM2(1,N),...,GMn(1,N),数据序列长度分别为n1,n2,...,nn,分别用这些数据序列对模型进行训练,同时可根据训练的精度与预期的精度的比对来调整序列长度;
S2、将新样本经过n个灰色模型预处理后得到n*m组(m为热敏感点数)热误差值,该预处理值和实测值作为新样本训练分布滞后模型,最终建立GM-DL模型;
S3、机床环境温度为0~40℃,每隔5℃选取训练样本分别建立初始温度为0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃的GM-DL热误差模型,行成不同初始环境温度的GM-DL热误差模型库;
S4、根据测试样本初始环境温度选取GM-DL热误差模型库中初始温度与其最相近的两组GM-DL热误差模型并分别计算热误差;
S5、根据步骤S4中测试样本初始温度计算其与两组模型初始温度的差值绝对值大小并按反相关设置权重,得到最终热误差值。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一种带滞后数据处理的灰色理论分段式加权热误差建模方法具体为:
建立GM-DL模型
1)灰色模型预处理模块
Figure BDA0002116604180000081
为热误差的序列,
Figure BDA0002116604180000082
为关键温度敏感点的温度序列,其中,i=2,3,....N,即模型共选取了N-1个温度测点,n为选取的序列长度。
温度和热误差数据的一次累加序列为:
Figure BDA0002116604180000083
Figure BDA0002116604180000084
式中,k=1,2,...,n,n为数据序列长度。
Figure BDA0002116604180000085
序列中的相邻两项生成的均值序列为:
Figure BDA0002116604180000086
其中,k=2,3,...,n,基于以上数据序列的变化,建立GM(1,N)模型
Figure BDA0002116604180000087
其中,k=2,3,...,n,a为模型发展系数;bi为驱动系数(或称灰作用量)。
设式(1)中的系数a和bi构成系数矢量
PN=(a,b2,b3,...,bN)T
由n-1项热误差数据构成的列矢量为
Figure BDA0002116604180000088
经过一次累加处理的热误差数据及温度数据构成如下矩阵:
Figure BDA0002116604180000091
则式(1)可表达为矩阵方程组
YN=BPN
根据最小二乘法则,可求出模型的系数矢量
PN=(BTB)-1BTYN (2)
根据灰色理论可知,GM(1,N)的近似时间相应可表达为
Figure BDA0002116604180000092
通过一次累减还原就得到GM(1,N)模型对热误差的预测值:
Figure BDA0002116604180000093
设置不同的序列长度n1,n2,...,nn,重复上述方法得到n个GM(1,N)模型组成热误差的预处理模块,如图1所示。
2)分布滞后模型后处理模块
在后处理模块中,建立滞后模型的数学表达式:
Figure BDA0002116604180000094
式中,εt~IID(0,σ2);n为最大滞后期;α0为常数项;u为热敏感点个数,yt最终热误差。
将n个灰色模型预处理得到的n*m组(m为热敏感点数)热误差值作为分布滞后模型的输入,将新样本中的误差实测值作为分布滞后模型的输出,根据最小二乘法估计分布滞后模型系数,完成后处理模块的建模
4.2分段式加权建模
GM-DL层级模型是分段式建模的基础。根据机床常年的环境温度情况,此处假设为0~40℃,每隔固定的温度建立模型,此处假设间隔选择5℃,故建模数据的初始温度节点分别为0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃。通过测量的实验数据,建立不同温度节点处GM-DL模型,以此得到分段式的模型库,如图2所示。
1)GM-DL模型选取
假设测试数据的初始温度为t,***分别计算节点温度于t之间差值的绝对值,即
|-t|、|5-t|、|10-t|、|15-t|、|20-t|、|25-t|、|30-t|、|35-t|、|40-t|
按绝对值递增的顺序对上述序列排序,选取绝对值最小的两组数据,两组数据分别对应着相应的温度节点,那么两个对应的温度节点建立的两个GM-DL模型即为我们要选取的模型。
2)加权计算:
假设测试样本初始环境温度为t,经过模型选择后位于温度节点T1和T2℃之间,其中,T1<t<T2,将测试样本带入初始环境温度为T1和T2℃的GM-DL模型中得到热误差分别为y1和y2,那么按照如下权重计算法则,实际热误差y为:
Figure BDA0002116604180000101
在前期对分段式模型库建立的基础上,通过模型选择和加权计算两步,完成了针对不同初始环境温度下热误差计算。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (9)

1.带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,通过灰色理论模型对温度和热误差数据的处理能力建立n个不同序列长度的灰色模型GM1(1,N),GM2(1,N),...,GMn(1,N)组成灰色模型预处理模块,将预处理模块的输出作为分布滞后模型后处理模块的输入,确定模型滞后阶数后建立分布滞后模型作为后处理模块,形成灰色模型和分布滞后模型相结合的层级模型;以层级模型为基础,建立不同初始温度下的GM-DL热误差补偿模型,根据测试样本初始环境温度选择紧邻的两个GM-DL热误差补偿模型并通过分段加权的方式计算得到最终热误差数据完成建模。
2.根据权利要求1所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,数据序列长度为n1,n2,...,nn,分别用数据序列对灰色模型进行训练,同时根据训练的精度与预期的精度的比对调整序列长度,将新样本经过n个灰色模型预处理后得到n*m组热误差值,m为热敏感点数,预处理值和实测值作为新样本训练分布滞后模型,建立GM-DL热误差补偿模型。
3.根据权利要求1或2所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,设
Figure FDA0002496640700000011
为热误差的序列,
Figure FDA0002496640700000012
为关键温度敏感点的温度序列,其中,i=2,3,....N,即模型共选取了N-1个温度测点,对温度和热误差数据进行一次累加序列,建立GM(1,N)模型,然后计算经过一次累加处理的热误差数据及温度数据构成矩阵,最后计算通过一次累减还原得到GM(1,N)模型对热误差的预测值,重复以上方法得到n个GM(1,N)模型组成热误差的预处理模块。
4.根据权利要求3所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,温度和热误差数据的一次累加序列为:
Figure FDA0002496640700000013
Figure FDA0002496640700000014
Figure FDA0002496640700000021
为热误差或温度序列中的某一个数据点;
经过一次累加处理的热误差数据及温度数据构成矩阵为:
Figure FDA0002496640700000022
Figure FDA0002496640700000023
序列中的相邻两项生成的均值序列为:
Figure FDA0002496640700000024
其中,k=2,3,...,n,
Figure FDA0002496640700000025
Figure FDA0002496640700000026
Figure FDA0002496640700000027
的均值取反,
Figure FDA0002496640700000028
Figure FDA0002496640700000029
Figure FDA00024966407000000210
的均值取反,
Figure FDA00024966407000000211
Figure FDA00024966407000000212
Figure FDA00024966407000000213
的均值取反;
通过一次累减还原得到GM(1,N)模型对热误差的预测值如下:
Figure FDA00024966407000000214
Figure FDA00024966407000000215
其中,k=2,3,...,n,
Figure FDA00024966407000000216
根据上式依次计算出热误差的累加预测值,即
Figure FDA00024966407000000217
Figure FDA00024966407000000218
Figure FDA00024966407000000219
的上一次累加预测值。
5.根据权利要求3所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,取
Figure FDA00024966407000000220
序列中的相邻两项生成的均值序列建立GM(1,N)模型为:
Figure FDA00024966407000000221
其中,a为模型发展系数;bi为驱动系数。
6.根据权利要求1所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,设机床环境温度为0~40℃,每隔5℃选取训练样本分别建立初始温度为0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃的GM-DL热误差补偿模型,形成不同初始环境温度的GM-DL热误差补偿模型库。
7.根据权利要求6所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,假设测试数据的初始温度为t,***分别计算节点温度与 t之间差值的绝对值,按绝对值递增的顺序对序列排序,选取绝对值最小的两组数据,两组数据分别对应着相应的温度节点,两个对应的温度节点建立的两个GM-DL热误差补偿模型即为选取的模型。
8.根据权利要求7所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,经过模型选择后位于温度节点T1℃和T2℃之间,其中,T1<t<T2,将测试样本代入初始环境温度为T1℃和T2℃的GM-DL热误差补偿模型中得到热误差分别为y1和y2,在前期对分段式模型库建立的基础上,通过模型选择和加权计算两步,完成针对不同初始环境温度下热误差计算。
9.根据权利要求8所述的带滞后数据处理的灰色理论分段式加权热误差建模方法,其特征在于,实际热误差y为:
Figure FDA0002496640700000031
CN201910592635.8A 2019-07-03 2019-07-03 带滞后数据处理的灰色理论分段式加权热误差建模方法 Expired - Fee Related CN110262393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910592635.8A CN110262393B (zh) 2019-07-03 2019-07-03 带滞后数据处理的灰色理论分段式加权热误差建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910592635.8A CN110262393B (zh) 2019-07-03 2019-07-03 带滞后数据处理的灰色理论分段式加权热误差建模方法

Publications (2)

Publication Number Publication Date
CN110262393A CN110262393A (zh) 2019-09-20
CN110262393B true CN110262393B (zh) 2020-08-18

Family

ID=67923993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910592635.8A Expired - Fee Related CN110262393B (zh) 2019-07-03 2019-07-03 带滞后数据处理的灰色理论分段式加权热误差建模方法

Country Status (1)

Country Link
CN (1) CN110262393B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295095B (zh) * 2021-11-26 2023-07-14 广西科技大学 一种自由曲面检测最佳测点数确定方法
CN115328025B (zh) * 2022-09-21 2024-07-09 重庆大学 一种基于模型适用度评价指标的机床热误差双闭环建模与补偿方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167634B1 (en) * 1998-03-28 2001-01-02 Snu Precision Co., Ltd. Measurement and compensation system for thermal errors in machine tools
CN103823991A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种考虑环境温度的重型机床热误差预测方法
CN103984287A (zh) * 2014-03-12 2014-08-13 江苏齐航数控机床有限责任公司 一种数控机床热误差补偿灰色神经网络建模方法
CN105404237A (zh) * 2015-11-10 2016-03-16 湖北文理学院 一种基于空间网格补偿方式的数控机床空间误差建模方法
CN105700473A (zh) * 2016-04-13 2016-06-22 合肥工业大学 一种精密数控机床全工作台曲面热误差补偿方法
CN106372337A (zh) * 2016-09-05 2017-02-01 华中科技大学 一种数控机床热机阶段的热变形预测方法
CN106736848A (zh) * 2016-12-13 2017-05-31 西安交通大学 数控车床热误差测量补偿***及补偿方法
CN108594761A (zh) * 2018-04-25 2018-09-28 河北工业大学 一种基于初始温度保持策略的电主轴热误差主动控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167634B1 (en) * 1998-03-28 2001-01-02 Snu Precision Co., Ltd. Measurement and compensation system for thermal errors in machine tools
CN103823991A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种考虑环境温度的重型机床热误差预测方法
CN103984287A (zh) * 2014-03-12 2014-08-13 江苏齐航数控机床有限责任公司 一种数控机床热误差补偿灰色神经网络建模方法
CN105404237A (zh) * 2015-11-10 2016-03-16 湖北文理学院 一种基于空间网格补偿方式的数控机床空间误差建模方法
CN105700473A (zh) * 2016-04-13 2016-06-22 合肥工业大学 一种精密数控机床全工作台曲面热误差补偿方法
CN106372337A (zh) * 2016-09-05 2017-02-01 华中科技大学 一种数控机床热机阶段的热变形预测方法
CN106736848A (zh) * 2016-12-13 2017-05-31 西安交通大学 数控车床热误差测量补偿***及补偿方法
CN108594761A (zh) * 2018-04-25 2018-09-28 河北工业大学 一种基于初始温度保持策略的电主轴热误差主动控制方法

Also Published As

Publication number Publication date
CN110262393A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN109214948A (zh) 一种电力***热负荷预测的方法和装置
CN112149879B (zh) 一种计及宏观波动性分类的新能源中长期电量预测方法
CN109240204B (zh) 一种基于两步法的数控机床热误差建模方法
CN111478314B (zh) 一种电力***暂态稳定评估方法
CN110262393B (zh) 带滞后数据处理的灰色理论分段式加权热误差建模方法
CN114548368B (zh) 一种基于多层核超限学习机的锂电池温度场预测模型的建模方法以及预测方法
CN101446994A (zh) 数控机床的热误差最小二乘支持向量机建模方法
CN112308159B (zh) 基于预测增量宽度学习的图像识别分类方法
CN105209984A (zh) 用于确定技术***输出值的模型的方法
CN110083125A (zh) 一种基于深度学习的机床热误差建模方法
CN113988373B (zh) 基于多通道卷积神经网络的多任务海量用户负荷预测方法
CN111639111A (zh) 面向调水工程的多源监测数据深度挖掘和智能分析方法
CN112170501A (zh) 一种轧辊磨损凸度和热凸度的预测方法
CN117289652A (zh) 一种基于多元宇宙优化的数控机床主轴热误差建模方法
CN112801388A (zh) 一种基于非线性时间序列算法的电力负荷预测方法及***
CN116703644A (zh) 一种基于Attention-RNN的短期电力负荷预测方法
CN114117852B (zh) 一种基于有限差分工作域划分的区域热负荷滚动预测方法
CN111652422A (zh) 基于建筑物分类的供热***负荷预测方法、装置及***
CN115511002A (zh) 一种电力缺失数据补全方法
CN114971090A (zh) 一种电供暖负荷预测方法、***、设备和介质
CN112580844A (zh) 气象数据处理方法、装置、设备及计算机可读存储介质
CN102479261A (zh) 一种新型数控机床的热误差最小二乘支持向量机建模方法
CN116894180B (zh) 一种基于异构图注意力网络的产品制造质量预测方法
CN110909492B (zh) 一种基于极端梯度提升算法的污水处理过程软测量方法
CN116774086B (zh) 一种基于多传感器数据融合的锂电池健康状态估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200818