CN110247565B - 级联型多电平变换器直流电容最小化方法 - Google Patents

级联型多电平变换器直流电容最小化方法 Download PDF

Info

Publication number
CN110247565B
CN110247565B CN201910547850.6A CN201910547850A CN110247565B CN 110247565 B CN110247565 B CN 110247565B CN 201910547850 A CN201910547850 A CN 201910547850A CN 110247565 B CN110247565 B CN 110247565B
Authority
CN
China
Prior art keywords
voltage
signal
grid
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910547850.6A
Other languages
English (en)
Other versions
CN110247565A (zh
Inventor
郭小强
王超哲
白宇
卢志刚
王宝诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201910547850.6A priority Critical patent/CN110247565B/zh
Publication of CN110247565A publication Critical patent/CN110247565A/zh
Application granted granted Critical
Publication of CN110247565B publication Critical patent/CN110247565B/zh
Priority to US16/901,170 priority patent/US10938320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种级联型多电平变换器直流电容最小化方法,该控制方法在电容电压均衡的基础上,通过能量守恒定律对电路中的电路直流侧电容电压瞬时值进行估计,使用比例谐振控制器对并网电流控制,可实现并网电流的无静差调节,使级联型多电平变换器可以在小电容模式运行,大大减小***体积,降低***成本,易于控制实现,且电容电压无超调、***快速性好。

Description

级联型多电平变换器直流电容最小化方法
技术领域
本发明属于电力电子技术领域,具体地涉及一种级联型多电平变换器直流电容最小化方法。
背景技术
级联型H桥多电平变换器,通常包括滤波电感L和N个H桥,每个H桥的由四个开关管Sn1-Sn4,(n=1,2,...N)和直流侧电容C组成。由于其可模块化、降低开关损耗的同时保持优异的谐波性能、中压应用领域中不需要升压变压器等优点广泛应用于工业领域。级联型H桥多电平变换器应用到级联型多电平变换器中时,直流侧需要悬浮电容为***提供能量。对于一般的级联型多电平变换器***而言,为了保证直流侧电容电压的稳定,在成本体积允许的前提下,一般会尽可能选取较大的电容容值来减小***因与电网进行无功能量交换而在直流侧形成的电压脉动,通常电解电容可满足大容值的要求,然而电解电容的寿命短、耐压相对低,因此工业界通常使用薄膜电容。但是相对于电解电容,薄膜电容的功率密度较低,成本高,所以在相同容值的情况下,使用薄膜电容会增加***成本和体积,容值越大,电容成本越高且电容体积越大。随着工业领域对***功率密度的要求越来越高,亟需一种小电容级联型多电平变换器***。
发明内容
本发明要解决的技术问题是提供一种级联型多电平变换器直流电容最小化方法,用以降低级联型H桥多电平变换器直流侧悬浮电容值,所述级联型多电平变换器,包括滤波电感L和N个H桥,每个H桥由四个开关管Sn1-Sn4,(n=1,2,...N)和直流侧电容C组成。
为解决上述技术问题,本发明公开一种级联型多电平变换器直流电容最小化方法,该方法包括以下步骤:
步骤1:测量所述级联型多电平变换器每个H桥的电容电压初始值Vn0(n=1,2,...,N)和并网电流ig,再利用无功电流检测算法,得到无功电流给定信号Iqref
步骤2:在电容电压均衡时,N个H桥的电容电压瞬时估计值相等,即Vc1=Vc2=Vc3=...=VcN,根据公式1获得每个H桥电容电压瞬时估计值Vcn(n=1,2,...,N):
Figure GDA0002151587190000021
公式(1)中:C为级联型多电平变换器***中每个H桥的电容值,Vn0(n=1,2,...,N)为级联型多电平变换器***中每个H桥的电容电压初始值,L为级联型多电平变换器***中的总的电感值,ig为级联型多电平变换器***并网电流值,vg为级联型多电平变换器***电网电压值,t0为级联型多电平变换器***初始时刻,t为级联型多电平变换器***当前时刻。
利用能量守恒定律,根据所述级联型多电平变换器***可列出方程:
Figure GDA0002151587190000022
由该方程即可得到所述公式(1)。
步骤3:每个H桥电容电压瞬时估计值Vcn(n=1,2,...,N)乘以H桥总个数N获得N*Vcn,作为电压控制环比例谐振(PR)控制器的参考信号,每个H桥电容电压瞬时值之和:∑ucn=uc1+uc2+uc3+...+ucN,作为电压控制环PR控制器的负反馈信号;参考信号N*Vcn减去负反馈信号uc1+uc2+uc3+...+ucN即为电压控制环PR控制器的输入;
将电压控制环PR控制器的输出结果乘以逻辑信号g获得电压控制环PR控制器的输出信号Idref;当电网电压和并网电流同向时,即指电网电压和并网电流同时为正值或者电网电压和并网电流同时为负值时,,所述逻辑信号g为1,当电网电压和并网电流反向时,即指电网电压为正值电网电流为负值或者电网电压为负值电网电流为正值时,所述逻辑信号g为-1。
步骤4:将无功电流给定信号Iqref减去电压控制环PR控制器的输出信号Idref,再减去并网电流ig作为电流控制环PR控制器的输入,得到电流控制环PR控制器的输出调制信号uref
步骤5:N个H桥电容电压瞬时值的总和∑ucn除以H桥总个数N获得电容电压瞬时值的均值
Figure GDA0002151587190000023
减去每个H桥电容电压瞬时值∑ucn作为电容电压均衡控制环比例积分(PI)控制器的输入信号;
并网电流ig除以并网电流峰值获得调节信号S;
电容电压均衡控制环PI控制器的输出信号乘以调节信号S获得微调信号Δuref-n
步骤6:电流控制环PR控制器输出的调制信号uref加上电容电压平衡控制环PI控制器输出的微调信号Δuref-n,得到级联型多电平变换器***的调制信号uref-n,该信号经过PWM发生器产生控制H桥开关管的驱动信号,控制开关管Sn1-Sn4的通断。
优选的,所述PR控制器的传递函数为
Figure GDA0002151587190000031
其中,kp为比例放大系数,kR为谐振系数,ω0为谐振角频率。
上述控制方法,在补偿无功电流的情况下,可以实现电容电压与电网电压同向波动,保证在直流侧电容电压始终大于电网电压的同时,提高电容电压波动范围,从而降低电容容值。
与现有技术相比,本发明的有益效果是:
(1)该控制方法电容电压暂态过程无超调,暂态过程短,***快速性好,***可以在直流侧电容值相对较小的情况下正常运行;
(2)控制方法原理简单易于实现。
附图说明
图1为本发明实施例的级联型多电平变换器原理图;
图2为图1中的控制方法原理图;
图3为H桥直流侧电容电压与电网电压绝对值波形示意图;
图4为电网电流波形图;
图5为电网电流进行FFT分析后的结果示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细具体的说明。
本实施例在MATLAB/Simulink2013a环境下,对本发明提出的级联型多电平变换器直流电容最小化方法进行了仿真,所述级联型多电平变换器原理图如图1所示,包括电感L和N个H桥,其中H桥包括直流侧电容C和开关管Sn1-Sn4,(n=1,2,...N)。在本实施例的仿真中N=3,即使用了3个H桥,仿真参数如下表1所示:
表1仿真参数
Figure GDA0002151587190000032
Figure GDA0002151587190000041
图2为本发明的控制方法原理图,包括电容电压均衡控制环PI控制器、电压PR控制器和直流PR控制器和载波相移PMW。
步骤1:H桥的电容电压初始值Vn0(n=1,2,3)设为100V,仿真中无功电流给定信号Iqref=10cos(θ)(θ=0~2π);
步骤2:在电容电压均衡的基础上,3个H桥的电容电压瞬时估计值相等,即Vc1=Vc2=Vc3,可根据公式1获得每个H桥电容电压瞬时估计值Vcn(n=1,2,3)。
步骤3:每个H桥电容电压瞬时估计值Vcn(n=1,2,3)乘以H桥总个数3获得3*Vcn,作为电压控制环PR控制器的参考信号,每个H桥电容电压瞬时值之和:∑ucn=uc1+uc2+uc3,作为电压控制环PR控制器的反馈信号;
参考信号3*Vcn(n=1,2,3)减去反馈信号uc1+uc2+uc3作为电压控制环PR控制器的输入;
将电压控制环PR控制器的输出乘以逻辑信号g获得电压控制环PR控制器输出信号Idref;当电网电压和并网电流同向时,逻辑信号g为1,当电网电压和并网电流反向时,逻辑信号g为-1。
PR控制器的传递函数为
Figure GDA0002151587190000042
其中kp比例放大系数,kR为谐振系数,ω0谐振角频率,电压控制环的PR控制器参数分别为kp=0.01,kR=0.8,电流控制环的PR控制器参数分别为kp=0.5,kR=200。
步骤4:将无功电流给定信号Iqref减去电压控制环PR控制器的输出信号Idref,再减去并网电流ig作为电流控制环PR控制器的输入,电流控制环PR控制器的输出为调制信号uref
步骤5:3个H桥电容电压瞬时值的总和∑ucn除以H桥总个数N获得电容电压瞬时值的均值
Figure GDA0002151587190000043
Figure GDA0002151587190000044
减去每个H桥电容电压瞬时值ucn作为电容电压均衡控制环PI控制器的输入信号;
并网电流ig除以并网电流峰值获得调节信号S;电容电压均衡控制环PI控制器的输出信号乘以调节信号S获得微调信号Δuref-n
步骤6:电流控制环PR控制器输出的调制信号uref加上电容电压均衡控制环输出的微调信号Δuref-n,获得级联型多电平变换器***的调制信号uref-n,然后再经过PWM发生器产生驱动信号以驱动开关管。本实施例采用载波相移调制产生驱动信号,控制简单,易于数字实现。
电容电压均衡的情况下,H桥直流侧电容电压与电网电压绝对值波形如图3所示,电网电流波形如图4所示。
对图4中的电网电流进行FFT分析,结果如图5所示,电网电流THD=2.85%,符合电能质量国家标准14549-1993。
在相同参数下,经过理论计算,采用控制电容电压的平均值的传统方案,所需电容值约为1.4mF,本发明提出的方案中电容值为60μF就可满足***需求,明显降低了电容值,且电容电压无超调、***快速性好。
综上,本发明提供了一种级联型多电平变换器直流电容最小化方法,使用比例谐振控制器对并网电流控制,可实现并网电流的无静差调节,使联型多电平变换器可以在小电容模式运行,大大减小***体积,降低***成本,易于控制实现,且电容电压无超调、***快速性好;另外,***在小电容模式运行时***可补偿电流范围能够满足***需求,输出电流质量和电容电压控制均能达到理想的控制目标。
最后应说明的是:以上所述的各实施例仅用于说明本发明技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

1.一种级联型多电平变换器直流电容最小化方法,其特征在于:该方法包括以下步骤:
步骤1:测量每个H桥的电容电压初始值Vn0(n=1,2,...,N)和并网电流ig,再利用无功电流检测算法,得到无功电流给定信号Iqref
步骤2:在电容电压均衡时,N个H桥的电容电压瞬时估计值相等,即Vc1=Vc2=Vc3=...=VcN,H桥电容电压瞬时估计值表达式为:
Figure FDA0002391673750000011
计算得到H桥电容电压瞬时估计值Vcn(n=1,2,...,N)的值;
所述H桥电容电压瞬时估计值表达式中:C为级联型多电平变换器***中每个H桥的电容值,V10,V20,…,VN0为所述步骤1中测量的每个H桥的电容电压初始值Vn0(n=1,2,...,N),L为级联型多电平变换器***中的总的电感值,ig为级联型多电平变换器***并网电流值,vg为级联型多电平变换器***电网电压值,t0为级联型多电平变换器***初始时刻,t为级联型多电平变换器***当前时刻;
步骤3:以Vcn(n=1,2,...,N)乘以H桥总个数N获得N*Vcn,∑ucn=uc1+uc2+uc3+...+ucN为H桥电容电压瞬时值之和,N*Vcn减去∑ucn作为电压控制环PR控制器的输入;
当电网电压和并网电流同向时,逻辑信号g为1,当电网电压和并网电流反向时,所述逻辑信号g为-1;
将电压控制环PR控制器的输出乘以逻辑信号g获得信号Idref
步骤4:将无功电流给定信号Iqref减去信号Idref,再减去并网电流ig作为电流控制环PR控制器的输入,输出为调制信号uref
步骤5:N个H桥电容电压瞬时值的总和∑ucn除以H桥总个数N获得电容电压瞬时值的均值
Figure FDA0002391673750000012
分别减去每个H桥电容电压瞬时值ucn分别作为每个电容电压均衡控制环PI控制器的输入信号;
并网电流ig除以并网电流峰值获得调节信号S;
电容电压均衡控制环PI控制器的输出信号乘以调节信号S获得微调信号Δuref-n;以及
步骤6:电流控制环PR控制器输出的调制信号uref加上电容电压均衡控制环PI控制器输出的微调信号Δuref-n,得到调制信号uref-n,该信号经过PWM发生器产生控制H桥开关管的驱动信号,控制开关管Sn1-Sn4的通断。
2.根据权利要求1所述的级联型多电平变换器直流电容最小化方法,其特征在于:所述PR控制器的传递函数为
Figure FDA0002391673750000021
其中,kp为比例放大系数,kR为谐振系数,ω0为谐振角频率。
CN201910547850.6A 2019-06-24 2019-06-24 级联型多电平变换器直流电容最小化方法 Active CN110247565B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910547850.6A CN110247565B (zh) 2019-06-24 2019-06-24 级联型多电平变换器直流电容最小化方法
US16/901,170 US10938320B2 (en) 2019-06-24 2020-06-15 Method for minimizing DC capacitance for cascade multilevel converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910547850.6A CN110247565B (zh) 2019-06-24 2019-06-24 级联型多电平变换器直流电容最小化方法

Publications (2)

Publication Number Publication Date
CN110247565A CN110247565A (zh) 2019-09-17
CN110247565B true CN110247565B (zh) 2020-05-08

Family

ID=67888996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910547850.6A Active CN110247565B (zh) 2019-06-24 2019-06-24 级联型多电平变换器直流电容最小化方法

Country Status (2)

Country Link
US (1) US10938320B2 (zh)
CN (1) CN110247565B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094693A (zh) * 2021-11-30 2022-02-25 浙江大学 基于级联多电平变流器的不间断供电***及其控制方法
PL440871A1 (pl) * 2022-04-06 2023-10-09 Mmb Drives Spółka Z Ograniczoną Odpowiedzialnością Wielopoziomowy przekształtnik kaskadowy o obniżonej stromości zmian napięcia wyjściowego du/dt i sposób jego sterowania
CN115328236B (zh) * 2022-08-10 2023-04-25 上海交通大学 级联型储能变流器子模块电容器热平衡控制方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158112A (zh) * 2011-03-03 2011-08-17 山东大学 一种模块化多电平变换器的综合控制***及其方法
JP2013027260A (ja) * 2011-07-26 2013-02-04 Hitachi Ltd 電力変換装置
CN103986357A (zh) * 2013-02-13 2014-08-13 韩国电气研究院 抑制高压直流传输用模块化多电平换流器中的环流的方法
CN104485830A (zh) * 2014-12-09 2015-04-01 清华大学 一种降低模块化多电平换流器电容值的方法
CN107026474A (zh) * 2017-05-12 2017-08-08 合肥工业大学 减小级联h桥逆变器直流电压波动的功率均衡控制方法
CN107609283A (zh) * 2017-09-20 2018-01-19 天津大学 基于桥臂等值电容的模块化多电平换流器高效建模方法
CN107769597A (zh) * 2017-10-17 2018-03-06 清华大学 一种减少模块化多电平换流器所用电容量的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710082B2 (en) * 2007-10-18 2010-05-04 Instituto Potosino De Investigacion Cientifica Y Technologica (Ipicyt) Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
DE102012202173B4 (de) * 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
CN103762596B (zh) * 2014-02-12 2016-03-09 陈峻岭 一种链式有源电力滤波器的差异化控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158112A (zh) * 2011-03-03 2011-08-17 山东大学 一种模块化多电平变换器的综合控制***及其方法
JP2013027260A (ja) * 2011-07-26 2013-02-04 Hitachi Ltd 電力変換装置
CN103986357A (zh) * 2013-02-13 2014-08-13 韩国电气研究院 抑制高压直流传输用模块化多电平换流器中的环流的方法
CN104485830A (zh) * 2014-12-09 2015-04-01 清华大学 一种降低模块化多电平换流器电容值的方法
CN107026474A (zh) * 2017-05-12 2017-08-08 合肥工业大学 减小级联h桥逆变器直流电压波动的功率均衡控制方法
CN107609283A (zh) * 2017-09-20 2018-01-19 天津大学 基于桥臂等值电容的模块化多电平换流器高效建模方法
CN107769597A (zh) * 2017-10-17 2018-03-06 清华大学 一种减少模块化多电平换流器所用电容量的方法

Also Published As

Publication number Publication date
US20200403528A1 (en) 2020-12-24
CN110247565A (zh) 2019-09-17
US10938320B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
CN110247565B (zh) 级联型多电平变换器直流电容最小化方法
CN102301579B (zh) 电力转换装置
US10003251B2 (en) Power converting device containing high frequency inverter and low frequency inverter connecting in parallel and the method thereof
CN110572066A (zh) 一种全桥模块化多电平变换器的优化调制方法
US20230074022A1 (en) Power converter topologies with power factor correction circuits controlled using adjustable deadtime
CN112532094A (zh) 一种t型三电平npc逆变器的复合控制方法
CN111181420B (zh) 一种单相Vienna整流器及其控制方法
CN115051565A (zh) 双向半桥直流变换器并网逆变器及纹波控制方法
CN106292283B (zh) 一种光伏并网逆变器的自适应模糊积分滑模控制方法
Zhang et al. Capacitors voltage ripple complementary control on three-level boost fed single-phase VSI with enhanced power decoupling capability
CN110994964A (zh) 一种降低模块化多电平换流器交流电压低阶谐波调制方法
CN112104248B (zh) 一种三电平npc变换器的控制方法
CN109980936A (zh) 模块化多电平结构谐振变换器的电压控制方法
CN113659860A (zh) 开关功率放大器及其控制方法、控制***
CN112994450A (zh) 一种五电平Buck/Boost变换器的电容电压平衡控制方法及***
CN108512451B (zh) 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置
CN107872072B (zh) L型并网逆变器电流控制***及其有源高频阻尼方法
US20230071003A1 (en) Power factor correction circuits controlled using adjustable deadtime
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime
CN113078837B (zh) 一种基于辅助桥臂结构的钳位型三电平变换器及控制方法
Lee et al. DC link voltage controller for three phase vienna rectifier with compensated load current and duty
CN111416537B (zh) 一种整流器及其调制方法
JP2005080414A (ja) 電力変換装置及びそれを用いたパワーコンディショナ
CN113300608A (zh) 一种直流变压器控制策略、装置、设备和存储介质
CN107612389B (zh) 一种基于平均电流前馈的高频开关电源并联均流控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant