CN110244791B - 一种双足机器人足部力和力矩跟随控制方法 - Google Patents

一种双足机器人足部力和力矩跟随控制方法 Download PDF

Info

Publication number
CN110244791B
CN110244791B CN201910622271.3A CN201910622271A CN110244791B CN 110244791 B CN110244791 B CN 110244791B CN 201910622271 A CN201910622271 A CN 201910622271A CN 110244791 B CN110244791 B CN 110244791B
Authority
CN
China
Prior art keywords
foot
moment
force
expected
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910622271.3A
Other languages
English (en)
Other versions
CN110244791A (zh
Inventor
黄强
董宸呈
余张国
陈学超
李庆庆
黄则临
黄远灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910622271.3A priority Critical patent/CN110244791B/zh
Publication of CN110244791A publication Critical patent/CN110244791A/zh
Priority to PCT/CN2019/123182 priority patent/WO2021003986A1/zh
Application granted granted Critical
Publication of CN110244791B publication Critical patent/CN110244791B/zh
Priority to US16/885,527 priority patent/US11618519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D15/00Control of mechanical force or stress; Control of mechanical pressure
    • G05D15/01Control of mechanical force or stress; Control of mechanical pressure characterised by the use of electric means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种双足机器人足部力和力矩跟随控制方法,该方法设计了双弹簧阻尼模型,并用LQR优化方法设计力跟随控制器,实现了双足机器人足部受力和力矩的跟随;而足部期望受力、足部期望力矩由规划ZMP分配方法计算得到,最终使得双足机器人的ZMP跟随更好,且能够适应一定的不平整地面。本发明舍弃了传统的ZMP跟随以实现双足机器人稳定行走和不平整地面适应的控制方式,直接计算使机器人稳定行走的足部期望受力和受力矩,并直接控制实现足部受力和受力矩的跟随,从更加本质、更容易实现的方式进行稳定控制,控制响应更快,适应不平整地面的能力更强,而ZMP跟随效果很理想。

Description

一种双足机器人足部力和力矩跟随控制方法
技术领域
本发明属于机器人技术领域,具体涉及一种双足机器人足部力和力矩跟随控制方法。
背景技术
零力矩点ZMP是双足机器人研究中非常重要的概念,其对双足机器人的行走规划、稳定等有举足轻重的作用。评估双足机器人行走是否的稳定地一个重要手段是实际ZMP是否能够良好地跟随规划的ZMP。而足部受到的力和力矩可以体现机器人的ZMP情况,一般也是通过足部受到的力和力矩来计算机器人在平地上行走时实际的ZMP,故可以通过控制机器人实际的足部力和力矩,使其能够跟随规划的力和力矩,以此来实现ZMP的跟随,并使机器人行走地更加稳定。
这个方法从物理的角度来看,能够使得足部一直提供机器人稳定行走所需要的力和力矩,所以理论上还能实现让机器人在任意不平整地面上行走的效果,但由于机器人***带来的滞后以及冲击带来的各种误差,力和力矩的控制效果无法达到理论的理想状态,机器人只能适应较小的地面起伏,但对于位置控制机器人来说,这也是很难得可贵的。
现有技术公开了双足机器人不平整地面行走的稳定控制方法,该方法结合柔顺控制,能够减小机器人足部着地冲击,以保证足部落地时的ZMP在脚底板支撑域内,以满足机器人稳定行走条件,但没有考虑ZMP能够尽量跟随规划值,更没有考虑足部力和力矩的跟随情况,仅仅控制ZMP在支撑域内,是无法解决机器人在不平整地面上行走的稳定性问题的。现有技术公开了一种基于全身动量补偿的ZMP跟随方法,能够利用全身关节的转动产生的动量来补偿ZMP的差值,但未考虑机器人在不平整地面上行走的状况,也未考虑机器人足部的受力情况,也无法应对不平整地面的ZMP跟随问题。
现有技术还提出了利用规划ZMP计算机器人规划力和力矩的方法,其重心并不在于使足部力和力矩跟随该规划值已达到不平地面行走的目的,故只采用了非常简单的导纳控制器来控制以达到调整效果,但控制器可调节的范围太小,无法满足略带突起与凹陷的不平整地面的控制要求。
综上,现有的技术大多直接通过检测机器人的实际ZMP,通过控制手段让其跟随规划的ZMP,来实现机器人的稳定行走。但是使用ZMP跟随实现这一切,有两个弊端,一是计算不平整地面上的ZMP从理论上讲,既不方便,也不准确,所以无法良好地反应机器人的行走状态,也就是说在不平整的地面上单使用ZMP跟随的控制方法效果必然不会太好,不能一味地追求通过计算得到的机器人ZMP去跟随规划值。另一方面,由于力传感器的冲击和误差,从足部受力和力矩计算而来的ZMP也非常不准,加上理论上的误差,这样计算出来的机器人真实ZMP一点也不真实,这就必然对控制效果造成影响。
发明内容
为了解决现有技术中存在的问题,本发明公开了一种双足机器人足部力和力矩跟随控制方法,不仅能够使双足机器人在平地上实现实际ZMP对规划ZMP的良好跟随,还能很好地实现较小不平整地面的稳定行走,另外,力跟随控制器控制模型的设计,还能减小足部在着地时受到的冲击。
本发明是通过以下技术方案实现上述技术目的的。
一种双足机器人足部力和力矩跟随控制方法,通过规划的机器人零力矩点分配机器人足部期望受力和足部期望力矩,将足部期望受力、足部期望力矩分别与足部实际受力、足部实际力矩作差,差值作为力跟随控制器的输入量,力跟随控制器输出踝关节三个方向的位置调节量,并将位置调节量加在原有的踝关节轨迹规划,得到调节后的踝关节轨迹,通过逆运动学得到各关节角度,实现机器人足部力和力矩的跟随,继而实现ZMP跟随。
进一步,所述踝关节三个方向包括踝关节的竖直方向、俯仰方向和翻滚方向。
进一步于,所述足部实际受力、足部实际力矩是通过机器人踝部的六维力传感器来计算。
进一步,所述足部期望受力、足部期望力矩由规划ZMP分配方法计算得到。
更进一步,所述规划ZMP分配方法计算的具体过程为:
(1)计算单脚支撑期的足部期望受力和力矩
根据ZMP与两脚踝关节之间的距离之比计算并分配左脚和右脚的竖直方向足部期望受力,再将ZMP与两脚踝关节距离分别与两期望受叉乘,分别得到两脚的足部期望力矩;
(2)计算双脚支撑期的足部期望受力和力矩
足部期望受力的计算方法与单脚支撑期相同,计算足部期望力矩时,先用计算单脚支撑期足部期望力矩的方法计算两足的期望力矩之和,再根据ZMP与两脚踝关节之间的距离之比计算并分配左脚和右脚的足部期望力矩。
进一步,所述力跟随控制器的表达式为:
Figure BDA0002125886180000021
其中e为两个弹簧阻尼***的形变量之和,F为输入外力,Fold为上一个控制周期的输入力,eold为上一控制周期的输出位置调节量,
Figure BDA0002125886180000031
为上一控制周期的输出位置调节量导数,TCONTROL为控制周期。
进一步,所述两个弹簧阻尼***串联组成双弹簧阻尼模型,每个弹簧阻尼***由弹簧和阻尼并联而成。
本发明的有益效果为:
(1)本发明通过ZMP规划值计算机器人足部受力和力矩的规划值。
(2)本发明利用导纳控制来实现由力的误差输出位置调节量,需要使用其他控制手段来减弱导纳控制作用于机器人***产生的滞后带来的影响。
(3)本发明使用双弹簧阻尼模型设计导纳控制器,具有吸收冲击、柔顺的效果,并能达到良好地力和力矩跟随效果。
(4)本发明改进了由ZMP分配计算机器人足部规划力和力矩的方法,能够更加真实地反应理论上机器人足部应提供的力和力矩。
(5)本发明将ZMP的跟随反映到足部力和力矩的跟随,在考虑机器人稳定行走的问题上,尝试解决更加根本的问题,能够适应不平整度更大的地面,实际的ZMP跟随效果也比较理想。
附图说明
图1为本发明双足机器人足部力和力矩跟随控制流程图;
图2为由六维力传感器计算足部实际受力过程示意图;
图3为本发明双足机器人足部z方向受力映射示意图;
图4为世界坐标系中机器人双脚踝关节位置以及ZMP位置规划示意图;
图5为本发明双弹簧阻尼模型示意图;
图6为足部受力跟随效果实验数据曲线图,图6(a)为左脚受力跟随情况曲线图,图6(b)为右脚受力跟随情况曲线图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种双足机器人足部力和力矩跟随控制方法,通过规划的机器人零力矩点ZMP来分配机器人足部期望受力和足部期望力矩,将足部期望受力、足部期望力矩分别与足部实际受力、足部实际力矩作差,作为力跟随控制器的输入量,力跟随控制器输出踝关节三个方向(分别是踝关节的竖直方向、俯仰方向Pitch和翻滚方向Roll)的位置调节量,并将该踝关节位置调节量加在原有的踝关节轨迹规划,得到调节后的踝关节轨迹,通过逆运动学(IK)得到各关节角度,实现机器人足部力和力矩的跟随,而实现ZMP跟随。足部实际受力、足部实际力矩是通过机器人踝部的六维力传感器测量并计算,具体的计算过程为:
如图2所示,Fz.sensor为力传感器测得的足部坐标系下z方向受力,Fy.sensor为力传感器测得的足部坐标系下y方向受力,τsensor力传感器测得的足部坐标系下x方向力矩。需要根据力传感器测得的力和力矩计算得到机器人腰部坐标系下实际的力和力矩。
当机器人足部转动时,足部坐标系的姿态不再与腰部坐标系相同,导致力传感器测得的Fz.sensor与用于本发明的控制方法的Fz有出入,需要先将Fz.sensor向腰部坐标系映射,得到Fz。如图3所示,坐标系O为机器人腰部坐标系,是相对机器人自身的有效坐标系。由于机器人腿部自由度的安排顺序,先进行Pitch方向转动,再进行Roll方向转动,其转角分别为q5、q6。再将Fz.sensor投影到坐标系O的z轴上,计算实际受力Fz
Fz=Fz.sensor·cosq6·cosq5 (1)
再计算力矩,以计算x方向力矩为例,利用下式进行计算实际力矩τ:
τ=Fy.sensor·HAnklesensor (2)
其中HAnkle为传感器几何中心与踝关节轴心的高度差。
机器人足部期望受力和足部期望所受力矩的计算采用由规划ZMP分配方法实现。先计算出足部期望受力和足部期望力矩,即机器人足部给地面的期望力和力矩,而期望受力和期望受力矩为机器人足部给地面的期望力和力矩的相反数。如图4所示,单脚支撑期期望力和力矩公式为:
Figure BDA0002125886180000041
其中:
Figure BDA0002125886180000042
为左脚的期望力和力矩,
Figure BDA0002125886180000043
为右脚的期望力和力矩,Mg为机器人全身重力,pAnkle_L、pAnkle_R分别为机器人期望的左、右脚踝关节在世界坐标系中的位置,
Figure BDA0002125886180000051
为机器人期望的ZMP在世界坐标系中的位置,通常将机器人复位状态下,两踝连线的线段中点作为该坐标系的零点(图4中点O);此外,比例系数α的计算方法如下:
Figure BDA0002125886180000052
其中:pEdge_L、pEdge_R为机器人左、右脚的内侧边缘。
由式(2)可以看出,当
Figure BDA0002125886180000053
大于pAnkle_R时,α出现负值,左脚期望受力方向向上,这不合乎常理;当
Figure BDA0002125886180000054
小于pAnkle_L时,(1-α)出现负值,右脚期望受力方向向上,这同样不合乎常理,故需要对α的范围进行限制,在实际中的意义就是当机器人规划的ZMP移到任意一只脚的踝关节正下方或踝关节外侧时,就认为该脚支撑起了整个机器人的重量,判断方法如下:
Figure BDA0002125886180000055
故单脚支撑期以及ZMP在任意脚的支撑域内时,期望力和力矩就能用上述的方法计算;但双脚支撑期的其他时刻,就需要考虑双脚力矩的分配问题,由于机器人左右脚受到的力、力矩之和在ZMP点处的和力矩为零,左右脚和力矩τ的计算式如下:
Figure BDA0002125886180000056
双脚支撑期的足部力矩分配如下:
Figure BDA0002125886180000057
将计算出的期望力矩分配到x(翻滚方向)、y(俯仰方向)两个方向,即可算出左右脚各自的期望力矩。
力跟随控制器的设计方法如下:
如图5所示,构建的双弹簧阻尼模型,由两个弹簧阻尼***串联而成,每个弹簧阻尼***由弹簧和阻尼并联而成,弹簧1的形变量为e1、弹性系数为K1、阻尼系数为D1,弹簧2的形变量为e2、弹性系数为K2、阻尼系数为D2,设弹簧原长状态下的e1、e2、两个弹簧阻尼***的形变量之和e都为零,且e=e1+e2,F为输入外力,则两个弹簧分别满足下式:
Figure BDA0002125886180000061
将两式进行拉氏变换:
Figure BDA0002125886180000062
将弹簧形变量之和拉氏变换得到:
e(s)=e1(s)+e2(s) (10)
将式(9)代入式(10)得到:
Figure BDA0002125886180000063
拉氏反变换即可得到e与F的关系:
Figure BDA0002125886180000064
将上式线性离散化,得到力跟随控制器的表达式为:
Figure BDA0002125886180000065
其中,Fold为上一个控制周期的输入力,eold为上一控制周期的输出位置调节量,
Figure BDA0002125886180000066
为上一控制周期的输出位置调节量导数,TCONTROL为控制周期。
使用LQR对力跟随控制器系数进行优化,在调出较好的控制器系数后,就可以实现较理想的力和力矩跟随效果,并且由于使用了双弹簧阻尼模型,实际应用时足部带有一定的柔顺效果。在设置两个弹簧的弹性系数和阻尼系数时,配置成大刚度-中等阻尼及小刚度-大阻尼的组合形式,具体数据见表1:
表1两个弹簧的弹性系数和阻尼系数
K1 10000
D1 5700
K2 2000000
D2 2000
这样足部能够有吸收冲击的效果,并产生不错的力和力矩跟随效果,见图6,图6(a)为左脚受力跟随情况曲线图,图6(b)为右脚受力跟随情况曲线图,由图可见实际受力能够很好地跟随期望受力,虽然存在由于冲击过大导致的抖动以及由于***惯性导致的小量滞后,总体跟随效果满足控制需求。
以上,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修饰改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.一种双足机器人足部力和力矩跟随控制方法,其特征在于,通过规划的机器人零力矩点分配机器人足部期望受力和足部期望力矩,将足部期望受力、足部期望力矩分别与足部实际受力、足部实际力矩作差,差值作为力跟随控制器的输入量,力跟随控制器输出踝关节三个方向的位置调节量,并将位置调节量加在原有的踝关节轨迹规划,得到调节后的踝关节轨迹,通过逆运动学得到各关节角度,实现机器人足部力和力矩的跟随,继而实现ZMP跟随。
2.根据权利要求1所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述踝关节三个方向包括踝关节的竖直方向、俯仰方向和翻滚方向。
3.根据权利要求1所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述足部实际受力、足部实际力矩是通过机器人踝部的六维力传感器来计算。
4.根据权利要求1所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述足部期望受力、足部期望力矩由规划ZMP分配方法计算得到。
5.根据权利要求4所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述规划ZMP分配方法计算的具体过程为:
(1)计算单脚支撑期的足部期望受力和力矩
根据ZMP与两脚踝关节之间的距离之比计算并分配左脚和右脚的竖直方向足部期望受力,再将ZMP到两脚踝关节位置的向量分别与两期望受力叉乘,分别得到两脚的足部期望力矩;
(2)计算双脚支撑期的足部期望受力和力矩
足部期望受力的计算方法与单脚支撑期相同,计算足部期望力矩时,先用计算单脚支撑期足部期望力矩的方法计算两足的期望力矩之和,再根据ZMP与两脚踝关节之间的距离之比计算并分配左脚和右脚的足部期望力矩。
6.根据权利要求1所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述力跟随控制器的表达式为:
Figure FDA0002367860900000011
其中e为两个弹簧阻尼***的形变量之和,F为输入外力,Fold为上一个控制周期的输入力,eold为上一控制周期的输出位置调节量,
Figure FDA0002367860900000012
为上一控制周期的输出位置调节量导数,TCONTROL为控制周期。
7.根据权利要求6所述的双足机器人足部力和力矩跟随控制方法,其特征在于,所述两个弹簧阻尼***串联组成双弹簧阻尼模型,每个弹簧阻尼***由弹簧和阻尼并联而成。
CN201910622271.3A 2019-07-11 2019-07-11 一种双足机器人足部力和力矩跟随控制方法 Active CN110244791B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910622271.3A CN110244791B (zh) 2019-07-11 2019-07-11 一种双足机器人足部力和力矩跟随控制方法
PCT/CN2019/123182 WO2021003986A1 (zh) 2019-07-11 2019-12-05 一种双足机器人足部力和力矩跟随控制方法
US16/885,527 US11618519B2 (en) 2019-07-11 2020-05-28 Method of tracking control for foot force and moment of biped robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910622271.3A CN110244791B (zh) 2019-07-11 2019-07-11 一种双足机器人足部力和力矩跟随控制方法

Publications (2)

Publication Number Publication Date
CN110244791A CN110244791A (zh) 2019-09-17
CN110244791B true CN110244791B (zh) 2020-05-15

Family

ID=67891741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910622271.3A Active CN110244791B (zh) 2019-07-11 2019-07-11 一种双足机器人足部力和力矩跟随控制方法

Country Status (3)

Country Link
US (1) US11618519B2 (zh)
CN (1) CN110244791B (zh)
WO (1) WO2021003986A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244791B (zh) * 2019-07-11 2020-05-15 北京理工大学 一种双足机器人足部力和力矩跟随控制方法
CN111015653B (zh) * 2019-12-13 2021-06-04 深圳市优必选科技股份有限公司 机器人控制方法、装置、计算机可读存储介质及机器人
CN111252162B (zh) * 2020-02-24 2021-07-23 北京理工大学 一种双足机器人足部柔顺平衡控制***及方法
CN111345971B (zh) * 2020-03-14 2022-03-08 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法
CN112171670B (zh) * 2020-09-22 2024-01-23 北京石油化工学院 一种康复机器人等张运动控制方法及***
CN112720478B (zh) * 2020-12-22 2022-05-27 深圳市优必选科技股份有限公司 一种机器人力矩控制方法、装置、可读存储介质及机器人
CN112744313B (zh) * 2020-12-24 2022-04-15 深圳市优必选科技股份有限公司 一种机器人状态估计方法、装置、可读存储介质及机器人
CN112792807A (zh) * 2020-12-24 2021-05-14 深圳市优必选科技股份有限公司 机器人控制方法、装置、计算机可读存储介质及机器人
CN112731953B (zh) * 2020-12-24 2024-07-19 深圳市优必选科技股份有限公司 机器人控制方法、装置、计算机可读存储介质及机器人
CN112925205B (zh) * 2021-01-25 2022-03-29 河南大学 一种双足机器人步态模式生成的布网优化方法
CN113721647B (zh) * 2021-08-23 2023-08-01 浙江大学 一种双足机器人动态上台阶控制方法
CN114237212A (zh) * 2021-10-15 2022-03-25 Oppo广东移动通信有限公司 足式机器人移动方法、装置、存储介质及电子设备
CN114137998B (zh) * 2021-12-02 2022-12-06 北京理工大学 基于快速踝部调节的双足机器人平衡控制器
CN114161402B (zh) * 2021-12-17 2023-11-10 深圳市优必选科技股份有限公司 机器人稳定控制方法、模型构建方法、装置和机器人
CN116000912A (zh) * 2022-04-27 2023-04-25 北京理工大学 一种用于仿生假人踝关节精确跟踪控制方法
CN115933723B (zh) * 2023-01-04 2023-08-25 之江实验室 一种应用于双足机器人快速行走的全身柔顺控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118095A1 (ja) * 2005-04-27 2006-11-09 Tmsuk Co., Ltd. 歩行パターン作成装置、2足歩行ロボット装置、歩行パターン作成方法、2足歩行ロボット装置の制御方法、プログラムおよび記録媒体
CN101950176A (zh) * 2010-09-02 2011-01-19 北京理工大学 一种机器人自主进行zmp标定的方法
CN103279037A (zh) * 2013-05-24 2013-09-04 华南理工大学 基于六维力/力矩传感器的机器人力跟随运动控制方法
JP5440152B2 (ja) * 2009-12-22 2014-03-12 トヨタ自動車株式会社 脚式ロボットとそのための歩容データ生成方法
CN108170166A (zh) * 2017-11-20 2018-06-15 北京理工华汇智能科技有限公司 机器人的跟随控制方法及其智能装置
CN108255173A (zh) * 2017-12-20 2018-07-06 北京理工大学 机器人跟随避障方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408616B2 (ja) * 2002-10-11 2010-02-03 ソニー株式会社 脚式移動ロボットの動作制御装置及び動作制御方法
KR20110017500A (ko) * 2009-08-14 2011-02-22 삼성전자주식회사 다리식 이동 로봇의 제어장치 및 그 제어방법
JP5506618B2 (ja) * 2009-12-28 2014-05-28 本田技研工業株式会社 ロボットの制御装置
JP5979049B2 (ja) * 2013-03-22 2016-08-24 トヨタ自動車株式会社 脚式移動ロボットおよびその制御方法
JP5962679B2 (ja) * 2014-01-20 2016-08-03 トヨタ自動車株式会社 2足歩行ロボット制御方法及び2足歩行ロボット制御システム
CN104793621B (zh) * 2015-05-12 2017-11-14 北京理工大学 一种模仿肌肉粘弹特性的仿人机器人行走稳定控制方法
JP6498597B2 (ja) * 2015-12-14 2019-04-10 本田技研工業株式会社 移動ロボットの制御装置
CN109311159B (zh) * 2016-04-29 2022-03-25 软银机器人欧洲公司 一种具有增强的平衡运动和行为能力的移动机器人
CN106584460A (zh) * 2016-12-16 2017-04-26 浙江大学 一种仿人机器人行走中的振动抑制方法
JP6850638B2 (ja) * 2017-03-03 2021-03-31 本田技研工業株式会社 移動ロボットの異常接触検知方法及び接触部位特定方法
CN107891920B (zh) * 2017-11-08 2020-04-28 北京理工大学 一种用于双足机器人的腿部关节补偿角度自动获取方法
CN109703645B (zh) * 2018-12-29 2020-05-22 深圳市优必选科技有限公司 机器人质心位置调整方法、装置、机器人和数据存储介质
CN110244791B (zh) * 2019-07-11 2020-05-15 北京理工大学 一种双足机器人足部力和力矩跟随控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118095A1 (ja) * 2005-04-27 2006-11-09 Tmsuk Co., Ltd. 歩行パターン作成装置、2足歩行ロボット装置、歩行パターン作成方法、2足歩行ロボット装置の制御方法、プログラムおよび記録媒体
JP5440152B2 (ja) * 2009-12-22 2014-03-12 トヨタ自動車株式会社 脚式ロボットとそのための歩容データ生成方法
CN101950176A (zh) * 2010-09-02 2011-01-19 北京理工大学 一种机器人自主进行zmp标定的方法
CN103279037A (zh) * 2013-05-24 2013-09-04 华南理工大学 基于六维力/力矩传感器的机器人力跟随运动控制方法
CN108170166A (zh) * 2017-11-20 2018-06-15 北京理工华汇智能科技有限公司 机器人的跟随控制方法及其智能装置
CN108255173A (zh) * 2017-12-20 2018-07-06 北京理工大学 机器人跟随避障方法及装置

Also Published As

Publication number Publication date
US11618519B2 (en) 2023-04-04
CN110244791A (zh) 2019-09-17
WO2021003986A1 (zh) 2021-01-14
US20210009218A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
CN110244791B (zh) 一种双足机器人足部力和力矩跟随控制方法
CN110202580B (zh) 一种扰动恢复的仿人机器人空间柔顺控制模型构建方法
CN111252162B (zh) 一种双足机器人足部柔顺平衡控制***及方法
CN112051741B (zh) 一种双足机器人动态运动生成与控制方法
Komura et al. A feedback controller for biped humanoids that can counteract large perturbations during gait
KR20020086464A (ko) 보행식 이동 로봇 및 그 제어 방법, 보행식 이동 로봇을위한 다리부 구조, 및 보행식 이동 로봇을 위한 가동 다리유닛
CN106625610B (zh) 侧立式交叉杆型并联机构六自由度航天器运动仿真平台
CN103112517A (zh) 一种调节四足机器人身体姿态的方法和装置
Nishiwaki et al. A six-axis force sensor with parallel support mechanism to measure the ground reaction force of humanoid robot
CN114397810B (zh) 基于自适应虚拟模型控制的四足机器人运动控制方法
Dong et al. A novel hierarchical control strategy for biped robot walking on uneven terrain
CN106737669B (zh) 考虑外力冲击干扰和阻尼的多足机器人能量裕度计算方法
Grizzle et al. Proving asymptotic stability of a walking cycle for a five dof biped robot model
Yi et al. Biped locomotion by reduced ankle power
Heydari et al. Model predictive control for biped robots in climbing stairs
Chen et al. Trajectory adaptation of biomimetic equilibrium point for stable locomotion of a large-size hexapod robot
CN116859969A (zh) 一种足式机器人的扰动抑制与稳定控制方法及装置
Xu et al. Sensor-based deflection modeling and compensation control of flexible robotic manipulator
van Zutven et al. On the stability of bipedal walking
Vukobratović et al. Contribution to the integrated control of biped locomotion mechanisms
Wang et al. Standing balance control for position control-based humanoid robot
WO2024146206A1 (zh) 一种应用于双足机器人快速行走的全身柔顺控制方法
Han et al. Ankle torque control for steady walking of humanoid robot
Zheng et al. Optimization and control of cyclic biped locomotion on a rolling ball
Uchida Six-degree-of-freedom Control by Posture Control and Walking Directional Control for Six-legged Robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant