CN110146257A - 一种快速测量空间激光载荷光轴变化的装置及方法 - Google Patents

一种快速测量空间激光载荷光轴变化的装置及方法 Download PDF

Info

Publication number
CN110146257A
CN110146257A CN201910411854.1A CN201910411854A CN110146257A CN 110146257 A CN110146257 A CN 110146257A CN 201910411854 A CN201910411854 A CN 201910411854A CN 110146257 A CN110146257 A CN 110146257A
Authority
CN
China
Prior art keywords
prism
light
amici
ccd camera
corner cube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910411854.1A
Other languages
English (en)
Other versions
CN110146257B (zh
Inventor
何志平
王天洪
吴金才
张亮
郭胤初
舒嵘
王建宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910411854.1A priority Critical patent/CN110146257B/zh
Publication of CN110146257A publication Critical patent/CN110146257A/zh
Application granted granted Critical
Publication of CN110146257B publication Critical patent/CN110146257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开一种快速测量空间激光载荷光轴变化的装置及方法,该发明基于角锥棱镜的自准直功能,将入射的准直光分成两束准直光,其中透射路准直光经过透射后到达角锥棱镜回转180度再次经过分光棱镜反射出射,透射路在经过分光棱镜透射到离轴平行光管后会聚CCD相机上,为初始原点;反射路准直光经过分光棱镜反射进入到第二个分光棱镜内,然后经过第二个分光棱镜反射路进入到测试***内,经过第二个分光棱镜透射路后再经过角锥棱镜返回后再次经过第二分光棱镜反射进入另外一个***(两个光束成180度分别照向两侧)。该***可以快速测量卫星仓板变形情况。本发明装置结构简单、操作方法简单。

Description

一种快速测量空间激光载荷光轴变化的装置及方法
技术领域
本发明涉及一种快速测量空间激光载荷光轴变化的装置及方法,适用于测试卫星仓板变形,高精度光轴监测,也适用于对准要求高的平面基准关系***等领域。
背景技术
在航天事业快速发展的新时代,卫星成了不可或缺的承载工具,2018年中国发射了200多颗卫星,随着发射卫星的数量不断的增多。在国家不断提出新的航天思路,民用航天也成了新的主力军为航天事业不断添砖加瓦。伴随着航天事业的腾飞,对卫星的要求也越来越高,则在测量方法的精度及速度将有了更高的要求。对卫星来说,仓板的变形是非常重要的指标,传统方法测试卫星的仓板的变形采用的是徕卡经纬仪对准方法,然后进行测量立方棱镜方位测试。此专利提供一种快速测量卫星仓板变形的高精度方法,提供绝对平行的且成180度的两束光斑进行两个立方棱镜标定。此装置采用可见光光源,可以快速进行粗读准,然后采用高精度CCD相机探测器进行测试。
在航天过程中要求随着对分辨率的要求的提高,采用大口径已经成为了公认的趋势,在大口径的***的装校的过程中光轴配准度是***的关键技术指标之一,光轴的变化将直接影响到***的探测水平,随着口径的增加***的体积大、重量沉,此时测试时可能带来光轴配准的变化,尤其在带有偏振信息载荷、成像载荷及测距载荷都对高的同轴精度问题尤为突出,此专利可以能提供一个可见准直光来进行光轴配准,并可以实时监测光轴情况,为光轴配准上提供切实可行性方案。
发明内容
本发明的目的是提供一种快速测量空间激光载荷光轴变化的装置及方法,该发明装置的使用,可以满足高精度同轴性的辅助装校和实时监测,同时也可以进行卫星平面基准镜的装校和测量等。该发明的特点主要体现在:1)结构简单,成本低廉;2)本发明调节方法简单,利用分光棱镜与角锥棱镜的相互作用建立一个互成180度的两束光;3)本发明可辅助对可见光***的光轴建立与调整提供快速测量切实时测量的功能。
本发明装置如附图1所示,该装置的工作过程如下:
单模光纤激光器1发射自由激光在准直镜2的焦点处发射,经过准直镜2准直后进入一号分光棱镜(3)分成50:50的两束,其中一束激光透过一号分光棱镜(3)被光吸收体4吸收。另外一束光经一号分光棱镜3反射进入二号分光棱镜5分成50:50的两束光,反射光经过衰减片7后进入***中。透射光进入到角锥棱镜6回转180度出射,再经过二号分光棱镜5反射进入到另一***中。经角锥棱镜6回转180度后透过二号分光棱镜5及一号分光棱镜3进入离轴平行光管8会聚CCD相机9中,形成自检测光斑。为初始定标光斑。把调整好的***放到被测***10中,被测***10由安装板10-1、基准镜10-2、基准镜10-3组成。测量时,首先将基准镜10-3反射光调制到自检光斑位置,然后读取基准镜10-2返回来的光斑质心,通过读取两个光斑的质心坐标差值Δ的一半,与所选的离轴平行光管8的焦距f的比值即为光轴的同轴精度δ。公式表示为:
δ=Δ/2f
单位为urad
本发明一种快速测量卫星仓板变形的高精度的装置示意图如图1所示,其特征在于方法步骤如下:
1)单模光纤激光器1与准直镜2关系调节:利用单模光纤激光器1的一端引入激光经过准直镜2准直,准直光经过一号分光棱镜3反射后进入平行光管并在焦面光束分析仪上成像,通过调节单模光纤激光器1的光线出射端面与准直镜2的相对位置,使得准直光在光束分析仪上成像点最小,将单模光纤激光器1与准直镜2固定为一个整体为准直光组,完成准直镜2与单模光纤激光器1的调节。
2)离轴平行光管8与CCD相机9调节:首先将所需波长固定到平行光管焦点处,在平行光管前发出平行光束,将离轴平行光管8与CCD相机9初步固定在基准工装内,调节CCD相机9到离轴平行光管8相对位置,使得光斑成像点最小位置,然后将离轴平行光管8和CCD相机9固定为一个整体,完成离轴平行光管8和CCD相机9的调节。
3)准直光组与CCD相机组调节:首先,将两个准直光组相互准直之后固定好,然后将一号分光棱镜3放置在两准直光组中间,然后一起放置于平行光管前,第一准直光组经过一号分光棱镜3反射进入平行光管,对面的第二准直光组的反射后的出射方向放置角锥棱镜6,使进入的光经过角锥棱镜6后进入平行光管内,然后调节一号分光棱镜3的旋转方向,使两束准直光打入到平行光管的点在焦点重合,并固定一号分光棱镜3,然后将角锥棱镜6用CCD相机组代替,调节CCD相机组,使光斑在CCD相机组的探测器中心位置并固定,然后取下反射进入CCD相机组的准直光组改换成光吸收体4。完成准直光组与CCD相机组的调节。
4)在固定好的准直光组和CCD相机组的一号分光棱镜3前增加二号分光棱镜5,并在透射路和反射路对面分别置一个角锥棱镜6,并将透射路的角锥棱镜6固定,调节二号分光棱镜5使经过透射进入角锥棱镜6然后在经过二号分光棱镜5反射再次经过另外一个角锥棱镜6原路返回到CCD相机组光斑在CCD相机组探测器中心后,固定二号分光棱镜5。此时***设备调制完毕。
5)衰减倍率确认:首先第一路激光经过一号分光棱镜3反射,能量为基础能量的0.5倍,然后进入二号分光棱镜5反射,反射后进入***能量为基础能量的0.25倍出射出射;另一路激光经过一号分光棱镜3反射,能量为基础能量的0.5倍,然后经过二号分光棱镜5透射,透射后能量为基础能量的0.25倍出射到角锥棱镜6,经角锥棱镜6再次反射到二号分光棱镜5,在经二号分光棱镜5反射进入***能量为基础能量的0.125倍出射。为平衡能量,在第一路的加入0.5倍衰减片7,即能量也为基础能量的0.125倍出射。
本发明装置的发明特点主要体现在:
1)结构简单,成本低廉;
2)本发明利用分光棱镜与角锥棱镜的相互作用建立一个互成绝对180度的两束光,来完成双向发射作用。
3)本发明可辅助对卫星平台的仓板变形测试,也可以对可见光***的光轴建立与调整提供快速测量且实时监测的功能等。
附图说明
图1为一种快速测量卫星仓板变形的高精度的装置光路示意图。
图2为准直光组与光轴调节示意图
图3为准直光组与CCD相机组调节示意图
具体实施方式
以下结合附图对本发明方法的实施实例进行详细的描述。
本发明中所采用的主要器件描述如下:
1)单模光纤激光器1:采用长春新产业光电技术有限公司671nm单模光纤激光器,其主要性能参数:工作波段为671±10nm;连续光输出,出光能量50mw,能量稳定性<5%。
2)准直镜2:采用Thorlabs公司型号为AL2520-B的准直镜,其主要性能参数:工作波段为650-1050nm;焦距为20mm,通光口径25mm;透射材料为ECO550;
3)一号分光棱镜3和二号分光棱镜5:采用Thorlabs公司型号为BS007的非偏振分光棱镜,其主要性能参数:工作波段为700-1100nm;分光比为1:1,通光口径为25mm;
4)光吸收体4:定制,采用钙钛矿材料,深度为20mm,口径25.4mm
5)角锥棱镜6:采用Thorlabs公司型号为PS971的角锥棱镜,其主要性能参数:透光面表面面型优于λ/[email protected];回转精度小于3″,通光口径为25.4mm;
6)衰减片7:采用卓立汉光的固定密度滤光片,型号为NDF12505-A。其主要性能参数:通过口径为Φ25.4mm,衰减倍率为0.5倍,面型优于λ/[email protected]
7)离轴平行光管8:定制,其主要性能参数:口径为100mm,透射材料为K9。
7)CCD相机:9:采用美国Spiricon公司型号为SP620的光束分析仪,其主要性能参数:工作波段190nm-1100nm,像素大小4.4um*4.4um,像素个数1600*1200;
本发明一种快速测量卫星仓板变形的高精度的装置示意图如图1所示,本发明装置可以适用于测试卫星仓板变形(平面立方棱镜基准关系测试),辅助高精度光轴建立测试及光轴监测,也适用于对准要求高的平面基准关系***等领域。该发明方法得具体实施步骤如下:
1.单模光纤激光器1与准直镜2关系调节:利用单模光纤激光器1的一端引入激光经过准直镜2准直,准直光经过一号分光棱镜3反射后进入平行光管并在焦面光束分析仪上成像,通过调节单模光纤激光器1的光纤出射端面与准直镜2的相对位置,使得准直光在光束分析仪上成像点最小,将单模光纤激光器1与准直镜2固定为一个整体为准直光组,完成准直镜2与单模光纤激光器1的调节。
2.离轴平行光管8与CCD相机9调节:首先将所需波长固定到平行光管焦点处,在平行光管前发出平行光束,将离轴平行光管8与CCD相机9初步固定在基准工装内,调节CCD相机9到离轴平行光管8相对位置,使得光斑成像点最小位置,然后将离轴平行光管8和CCD相机9固定为一个整体,完成离轴平行光管8和CCD相机9的调节。
3.准直光组与CCD相机组调节:首先,将两个准直光组相互准直之后固定完成,然后将一号分光棱镜3放置在两准直光组中间,然后一起放置于平行光管前,第一准直光组经过一号分光棱镜(3)反射进入平行光管,对面的第二准直光组的反射后的出射方向放置角锥棱镜6,使进入的光经过角锥棱镜6后进入平行光管内,然后调节一号分光棱镜3的旋转方向,使两束准直光打入到平行光管的点在焦点重合,并固定一号分光棱镜3,此时在将角锥棱镜6用CCD相机组代替,调节CCD相机组,使光斑在CCD相机组的探测器中心位置并固定,然后取下反射进入CCD相机组的准直光组改换成光吸收体4。完成准直光组与CCD相机组的调节。
4.在固定好的准直光组和CCD相机组的一号分光棱镜3前增加二号分光棱镜5,并在透射路和反射路对面分别置一个角锥棱镜6,并将透射路的角锥棱镜6固定,调节二号分光棱镜5使经过透射进入角锥棱镜6然后在经过二号分光棱镜5反射再次经过另外一个角锥棱镜6原路返回到CCD相机组光斑在CCD相机组探测器中心后,固定二号分光棱镜5。此时***设备调制完毕。
5.衰减倍率确认:首先第一路激光经过一号分光棱镜3反射,能量为基础能量的0.5倍,然后进入二号分光棱镜5反射,反射后进入***能量为基础能量的0.25倍出射出射;另一路激光经过一号分光棱镜3反射,能量为基础能量的0.5倍,然后经过二号分光棱镜5透射,透射后能量为基础能量的0.25倍出射到角锥棱镜6,经角锥棱镜6再次反射到二号分光棱镜5,在经二号分光棱镜5反射进入***能量为基础能量的0.125倍出射出射。为平衡能量,在第一路的加入0.5倍衰减片7,即能量也为基础能量的0.125倍出射。

Claims (9)

1.一种快速测量空间激光载荷光轴变化的装置,包括单模光纤激光器(1)、准直镜(2)、一号分光棱镜(3)、光吸收体(4)、二号分光棱镜(5)、角锥棱镜(6),衰减片(7)、离轴平行光管(8)、CCD相机(9)和被测***(10),其特征在于:
所述的单模光纤激光器(1)发射自由激光在准直镜(2)的焦点处发射,经过准直镜(2)准直后进入一号分光棱镜(3)分成两束50:50的均匀光,其中一束激光透过一号分光棱镜(3)被光吸收体(4)吸收;另外一束光经一号分光棱镜(3)反射进入二号分光棱镜(5)在此分为50:50的均匀光,二号分光棱镜(5)经过反射经过衰减片(7)后进入***中;二号分光棱镜(5)经过透射进入到角锥棱镜(6)回转180度出射,再经过二号分光棱镜(5)反射进入到另一***中;经角锥棱镜(6)回转180度后透过二号分光棱镜(5)及一号分光棱镜(3)进入离轴平行光管(8)汇聚到CCD相机(9)中,形成自检测光斑,为初始定标光斑;把调整好的***放到被测***(10)中,被测***(10)由安装板(10-1)、基准镜(10-2)、基准镜(10-3)组成;测量时,首先将基准镜(10-3)反射光调制到自检光斑位置,然后读取基准镜(10-2)返回来的光斑质心,通过读取两个光斑的质心坐标差值Δ的一半,并除以所选的离轴平行光管(8)的焦距f的比值,光轴的同轴精度δ为:
δ=Δ/2f
单位为urad。
2.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的准直镜(2)面形偏差RMS值小于λ/[email protected],其折射率误差小于2%。
3.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的一号分光棱镜(3)和二号分光棱镜(5)为分光比50:50,分光角度为45°±5″,两组水平通光面的平行度精度小于5″,各通光面面形偏差RMS值小于λ/[email protected]
4.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的光吸收体(4)采用钙钛矿。
5.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的角锥棱镜(6)的回转精度小于3″。
6.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的衰减片(7)的面形偏差RMS值小于λ/10,衰减倍率为0.5倍。
7.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置,其特征在于:所述的离轴平行光管(8)的***波差优于λ/[email protected]
8.根据权利要求1所述的一种快速测量空间激光载荷光轴变化的装置及方法,其特征在于:所述的CCD相机(9)像素大小采用4.4umX4.4um。
9.一种基于权利要求1所述的一种快速测量空间激光载荷光轴变化的装置的检测方法,其特征在于方法步骤如下:
1)单模光纤激光器(1)与准直镜(2)关系调节:利用单模光纤激光器(1)的一端引入激光经过准直镜(2)准直,准直光经过一号分光棱镜(3)反射后进入平行光管并在焦面光束分析仪上成像,通过调节单模光纤激光器(1)的光线出射端面与准直镜(2)的相对位置,使得准直光在光束分析仪上成像点最小,将单模光纤激光器(1)与准直镜(2)固定为一个整体为准直光组,完成准直镜(2)与单模光纤激光器(1)的调节;
2)离轴平行光管(8)与CCD相机(9)调节:首先将所需波长固定到4m平行光管焦点处,在平行光管前发出平行光束,将离轴平行光管(8)与CCD相机(9)初步固定在基准工装内,调节CCD相机(9)到离轴平行光管(8)相对位置,使得光斑成像点最小位置,然后将离轴平行光管(8)和CCD相机(9)固定为一个整体,完成离轴平行光管(8)和CCD相机(9)的调节;
3)准直光组与CCD相机组调节:首先,将两个准直光组相互准直之后固定好,然后将一号分光棱镜(3)放置在两准直光组中间,然后一起放置于平行光管前,第一准直光组经过一号分光棱镜(3)反射进入平行光管,对面的第二准直光组反射后的出射方向加入角锥棱镜(6),使进入的光经过角锥棱镜(6)后进入平行光管内,然后调节一号分光棱镜(3)的旋转方向,使两束准直光打入到平行光管的点在焦点重合,并固定一号分光棱镜(3),此时在将角锥棱镜(6)用CCD相机组代替,调节CCD相机组,使光斑在CCD相机组的探测器中心位置并固定,然后取下反射进入CCD相机组的准直光组改换成光吸收体(4)。完成准直光组与CCD相机组的调节;
4)在固定好的准直光组和CCD相机组的一号分光棱镜(3)前增加二号分光棱镜(5),并在透射路和反射路对面分别置一个角锥棱镜(6),并将透射路的角锥棱镜(6)固定,调节二号分光棱镜(5)使经过透射进入角锥棱镜(6)然后在经过二号分光棱镜(5)反射再次经过另外一个角锥棱镜(6)原路返回到CCD相机组光斑在CCD相机组探测器中心后,固定二号分光棱镜(5)。此时***设备调制完毕;
5)衰减倍率确认:首先第一路激光经过一号分光棱镜(3)反射,能量为基础能量的0.5倍,然后进入二号分光棱镜(5)反射,反射后进入***能量为基础能量的0.25倍出射出射;另一路激光经过一号分光棱镜(3)反射,能量为基础能量的0.5倍,然后经过二号分光棱镜(5)透射,透射后能量为基础能量的0.25倍出射到角锥棱镜(6),经角锥棱镜(6)再次反射到二号分光棱镜(5),在经二号分光棱镜(5)反射进入***能量为基础能量的0.125倍出射出射;为平衡能量,在第一路的加入0.5倍衰减片(7),即能量也为基础能量的0.125倍出射。
CN201910411854.1A 2019-05-17 2019-05-17 一种快速测量空间激光载荷光轴变化的装置及方法 Active CN110146257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910411854.1A CN110146257B (zh) 2019-05-17 2019-05-17 一种快速测量空间激光载荷光轴变化的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910411854.1A CN110146257B (zh) 2019-05-17 2019-05-17 一种快速测量空间激光载荷光轴变化的装置及方法

Publications (2)

Publication Number Publication Date
CN110146257A true CN110146257A (zh) 2019-08-20
CN110146257B CN110146257B (zh) 2024-02-20

Family

ID=67595460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910411854.1A Active CN110146257B (zh) 2019-05-17 2019-05-17 一种快速测量空间激光载荷光轴变化的装置及方法

Country Status (1)

Country Link
CN (1) CN110146257B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264451A (zh) * 2021-11-25 2022-04-01 中国空间技术研究院 一种基于共基准光轴夹角实时监测***及方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1905605A1 (de) * 1968-02-16 1969-09-18 Int Standard Electric Corp Geraet zum Ausrichten von zwei oder mehreren optischen Achsen
IT8067634A0 (it) * 1980-04-23 1980-04-23 Cselt Centro Studi Lab Telecom Sistema ottico ad alta efficienza di accoppiamento in particolare per dispositivi di misura della attenuazione di fibre ottiche mediante re trodiffusione
JPH05107025A (ja) * 1991-10-15 1993-04-27 Nec Corp 同軸度測定装置
JPH0927128A (ja) * 1995-07-10 1997-01-28 Asahi Optical Co Ltd 光学ピックアップの光軸調整方法
JP2001091406A (ja) * 1999-09-27 2001-04-06 Topcon Corp 干渉測定用装置及び干渉測定用方法
JP2006267078A (ja) * 2005-03-19 2006-10-05 Photonic Lattice Inc 光学測定器
DE102007053632A1 (de) * 2007-11-08 2009-05-20 Primes Gmbh Verfahren zur koaxialen Strahlanalyse an optischen Systemen
WO2009081928A1 (ja) * 2007-12-26 2009-07-02 Hoya Corporation レンズ用画像撮像装置
CN102195717A (zh) * 2011-05-24 2011-09-21 中国科学院上海技术物理研究所 一种兼容激光通信的量子通信***
CN102255655A (zh) * 2011-06-15 2011-11-23 中国科学院上海技术物理研究所 激光通信中跟踪相机兼容实现链路效率的检测方法
JP2011242544A (ja) * 2010-05-17 2011-12-01 Fujifilm Corp 反射偏向素子、相対傾斜測定装置および非球面レンズ測定装置
CN102279052A (zh) * 2011-06-21 2011-12-14 中国科学院上海技术物理研究所 一种实时测量偏振光特性的方法
CN103091681A (zh) * 2013-02-16 2013-05-08 哈尔滨工业大学 基于重反射技术的调频连续波干涉仪
CN105784335A (zh) * 2016-04-15 2016-07-20 中国科学院上海技术物理研究所 一种标定基准镜法线方向的辅助光校装置及方法
WO2016116036A1 (zh) * 2015-01-19 2016-07-28 复旦大学 消杂光双光路光学定中仪
CN105929382A (zh) * 2016-04-15 2016-09-07 中国科学院上海技术物理研究所 一种主动光电***的收发同轴辅助光校装置及方法
CN107727008A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种测量主动光电***收发同轴的装置及方法
CN107727368A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种标定平行光管焦面位置的装置及方法
CN108152013A (zh) * 2017-12-28 2018-06-12 西安应用光学研究所 光电***跟瞄精度测量装置光路调校方法
CN108663758A (zh) * 2018-04-10 2018-10-16 中国科学院上海技术物理研究所 一种自由空间激光耦合至单模光纤的装置及方法
CN108731650A (zh) * 2018-04-10 2018-11-02 中国科学院上海技术物理研究所 一种标定具备自检功能的激光发射***光轴的装置及方法
CN109029925A (zh) * 2018-06-12 2018-12-18 中国科学院上海技术物理研究所 一种用于瞄准监测望远镜光轴的立方棱镜光校装置
CN109150302A (zh) * 2018-08-20 2019-01-04 中国科学院上海技术物理研究所 一种光通信***的光轴自校准装置及方法
CN109186958A (zh) * 2018-09-19 2019-01-11 西安工业大学 一种多光共轴激光损伤阈值测试装置及实现方法
CN209927417U (zh) * 2019-05-17 2020-01-10 中国科学院上海技术物理研究所 一种快速测量空间激光载荷光轴变化的装置

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1905605A1 (de) * 1968-02-16 1969-09-18 Int Standard Electric Corp Geraet zum Ausrichten von zwei oder mehreren optischen Achsen
IT8067634A0 (it) * 1980-04-23 1980-04-23 Cselt Centro Studi Lab Telecom Sistema ottico ad alta efficienza di accoppiamento in particolare per dispositivi di misura della attenuazione di fibre ottiche mediante re trodiffusione
JPH05107025A (ja) * 1991-10-15 1993-04-27 Nec Corp 同軸度測定装置
JPH0927128A (ja) * 1995-07-10 1997-01-28 Asahi Optical Co Ltd 光学ピックアップの光軸調整方法
JP2001091406A (ja) * 1999-09-27 2001-04-06 Topcon Corp 干渉測定用装置及び干渉測定用方法
JP2006267078A (ja) * 2005-03-19 2006-10-05 Photonic Lattice Inc 光学測定器
DE102007053632A1 (de) * 2007-11-08 2009-05-20 Primes Gmbh Verfahren zur koaxialen Strahlanalyse an optischen Systemen
WO2009081928A1 (ja) * 2007-12-26 2009-07-02 Hoya Corporation レンズ用画像撮像装置
JP2011242544A (ja) * 2010-05-17 2011-12-01 Fujifilm Corp 反射偏向素子、相対傾斜測定装置および非球面レンズ測定装置
CN102195717A (zh) * 2011-05-24 2011-09-21 中国科学院上海技术物理研究所 一种兼容激光通信的量子通信***
CN102255655A (zh) * 2011-06-15 2011-11-23 中国科学院上海技术物理研究所 激光通信中跟踪相机兼容实现链路效率的检测方法
CN102279052A (zh) * 2011-06-21 2011-12-14 中国科学院上海技术物理研究所 一种实时测量偏振光特性的方法
CN103091681A (zh) * 2013-02-16 2013-05-08 哈尔滨工业大学 基于重反射技术的调频连续波干涉仪
WO2016116036A1 (zh) * 2015-01-19 2016-07-28 复旦大学 消杂光双光路光学定中仪
CN105784335A (zh) * 2016-04-15 2016-07-20 中国科学院上海技术物理研究所 一种标定基准镜法线方向的辅助光校装置及方法
CN105929382A (zh) * 2016-04-15 2016-09-07 中国科学院上海技术物理研究所 一种主动光电***的收发同轴辅助光校装置及方法
CN107727008A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种测量主动光电***收发同轴的装置及方法
CN107727368A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种标定平行光管焦面位置的装置及方法
CN108152013A (zh) * 2017-12-28 2018-06-12 西安应用光学研究所 光电***跟瞄精度测量装置光路调校方法
CN108663758A (zh) * 2018-04-10 2018-10-16 中国科学院上海技术物理研究所 一种自由空间激光耦合至单模光纤的装置及方法
CN108731650A (zh) * 2018-04-10 2018-11-02 中国科学院上海技术物理研究所 一种标定具备自检功能的激光发射***光轴的装置及方法
CN109029925A (zh) * 2018-06-12 2018-12-18 中国科学院上海技术物理研究所 一种用于瞄准监测望远镜光轴的立方棱镜光校装置
CN109150302A (zh) * 2018-08-20 2019-01-04 中国科学院上海技术物理研究所 一种光通信***的光轴自校准装置及方法
CN109186958A (zh) * 2018-09-19 2019-01-11 西安工业大学 一种多光共轴激光损伤阈值测试装置及实现方法
CN209927417U (zh) * 2019-05-17 2020-01-10 中国科学院上海技术物理研究所 一种快速测量空间激光载荷光轴变化的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶海水;秦震宇;高志山;王帅;叶井飞;杜洋;: "多棱镜分光***的多光束光轴平行度校准", 应用光学, no. 06 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264451A (zh) * 2021-11-25 2022-04-01 中国空间技术研究院 一种基于共基准光轴夹角实时监测***及方法
CN114264451B (zh) * 2021-11-25 2024-05-07 中国空间技术研究院 一种基于共基准光轴夹角实时监测***及方法

Also Published As

Publication number Publication date
CN110146257B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN108152013B (zh) 光电***跟瞄精度测量装置光路调校方法
CN105929382B (zh) 一种主动光电***的收发同轴辅助光校装置及方法
CN107255451A (zh) 角度补偿式激光外差干涉位移测量装置及方法
CN105444700B (zh) 一种多波长多光轴平行度检测装置及检测方法
CN103105284B (zh) 一种光刻机中照明***各光学组件透过率的测量装置及测量方法
CN101408413B (zh) 宽距离光束平行性检测装置
CN110231610B (zh) 星载激光测高仪有源光斑能量探测器检测标定平台及方法
CN101825710A (zh) 一种2μm全光纤相干激光多普勒测风雷达***
CN105044704B (zh) 高精度星载激光发射机性能综合测试***
CN1804658B (zh) 便携式测风激光雷达多普勒校准方法
CN106969714B (zh) 一种精确测量光纤长度的方法
CN104567738A (zh) 光轴平行度精确测量***及方法
CN105424322A (zh) 自校准光轴平行性检测仪及检测方法
CN109579780A (zh) 一种基于偏振分光自准直三维角度测量装置与方法
CN103018011A (zh) 一种光学可变衰减器透过率测量***及测量方法
CN101021447A (zh) 测量1/4波片的相位延迟和快轴方向的方法和装置
CN106949842B (zh) 二维位移测量装置及测量方法
CN102679912A (zh) 基于差动比较原理的自准直仪
CN107727368B (zh) 一种标定平行光管焦面位置的装置及方法
CN107941477A (zh) 一种能精确控制入射角的分光镜测量方法及装置
CN109990736A (zh) 一种基于斯托克斯矢量的滚转角测量方法及装置
CN104539349A (zh) 多功能空间激光通信地面测试***及静态参数测试方法
CN205899009U (zh) 一种主动光电***的收发同轴辅助光校装置
CN112284302A (zh) 扫描法测量主动光电***激光收发同轴度的装置及方法
CN108731650A (zh) 一种标定具备自检功能的激光发射***光轴的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant