CN110105483B - 一种水滑石基双网络纳米复合水凝胶及其制备方法 - Google Patents

一种水滑石基双网络纳米复合水凝胶及其制备方法 Download PDF

Info

Publication number
CN110105483B
CN110105483B CN201910402313.2A CN201910402313A CN110105483B CN 110105483 B CN110105483 B CN 110105483B CN 201910402313 A CN201910402313 A CN 201910402313A CN 110105483 B CN110105483 B CN 110105483B
Authority
CN
China
Prior art keywords
hydrotalcite
hydrogel
network
monomer
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910402313.2A
Other languages
English (en)
Other versions
CN110105483A (zh
Inventor
宋宇飞
刁淑静
林长亘
楚进锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910402313.2A priority Critical patent/CN110105483B/zh
Publication of CN110105483A publication Critical patent/CN110105483A/zh
Application granted granted Critical
Publication of CN110105483B publication Critical patent/CN110105483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种水滑石基双网络纳米复合水凝胶及其制备方法。该方法为:1)采用水热法合成三羟甲基氨基甲烷共价修饰的水滑石,然后引入氧化多聚糖形成席夫碱动态共价键,构建水凝胶第一网络;2)加入单体,利用水滑石与单体之间的静电作用、氢键相互作用,构建水凝胶第二网络;3)加入引发剂和催化剂,引发自由基聚合,形成三维网络结构,即得到水滑石基双网络纳米复合水凝胶。相较于传统水凝胶,本发明制备的水凝胶具有非常优异的性能,能拉伸至原始长度的2939%不会断裂,压缩至原始高度的90%也不破裂,并且压缩应力能够达到11.53Mpa,溶胀率可以达到1140,并且具有很好的循环稳定性。

Description

一种水滑石基双网络纳米复合水凝胶及其制备方法
技术领域
本发明属于高分子材料制备技术领域,具体涉及到一种水滑石基双网络纳米复合水凝胶及该水凝胶的制备方法。
背景技术
水凝胶是一类由亲水性聚合物通过物理或者化学交联的方式而形成的三维网络结构。其最大特征在于表观上为固体,但其内部分子间含有大量的溶剂水。相对于其他材料而言,水凝胶具有很高的含水量,可塑性,生物相容性,结构可调性等诸多特征。目前,水凝胶在组织工程、药物靶向释放、仿生技术、3D打印等领域有着非常广泛的研究。
在传统水凝胶的制备过程中通常所用到的有机物N,N-亚甲基双丙烯酰胺(BIS)交联剂往往会造成水凝胶网络中交联区域不均匀,既存在高交联又存在低交联区域,这种不均匀的网络结构则会导致外界应力主要作用于高交联区域内的短链聚合物上而引发水凝胶断裂,因此传统的水凝胶通常面临机械性能差的问题,针对机械性能差的问题,先前的研究者们制备出了滑环水凝胶、双网络水凝胶及纳米复合水凝胶来解决这个问题。纳米复合水凝胶是一种将纳米材料如无机黏土、氧化石墨烯等,通过原位聚合等方式复合进入水凝胶三维网络的一种新型材料。纳米复合水凝胶兼有水凝胶与纳米材料的优点,并且借助两者之间的协同作用能够产生出单一材料所不具备的新性能。已有研究结果表明,纳米材料作为物理交联剂,与水凝胶聚合物网络之间存在着范德华、氢键、静电等弱相互作用;然而,这种通过弱相互作用进行交联的水凝胶,尽管能够承受大幅度的拉伸与压缩,但往往拉伸与压缩的模量低、强度弱,并且在长期使用过程中纳米粒子易于流失,循环稳定性差等问题。
发明内容
基于现有技术存在的技术问题,本发明目的在于制备一类机械性能优异并且具有良好循环稳定性的水凝胶。相较于传统水凝胶,本发明制备的水凝胶具有非常优异的性能,能拉伸至原始长度的2939%不会断裂,压缩至原始高度的90%也不破裂,并且压缩应力能够达到11.53Mpa,溶胀率可以达到1140,并且具有很好的循环稳定性。
本发明所述的水滑石基双网络纳米复合水凝胶的制备方法:1)采用水热法合成三羟甲基氨基甲烷共价修饰的水滑石,然后引入氧化多聚糖形成席夫碱动态共价键,构建水凝胶第一网络;2)加入单体,利用水滑石与单体之间的静电作用、氢键相互作用,构建水凝胶第二网络;3)加入引发剂和催化剂,引发自由基聚合,形成三维网络结构,即得到水滑石基双网络纳米复合水凝胶。
本发明所述的水滑石基双网络纳米复合水凝胶的具体制备步骤为:
1)将5-20mg三羟甲基氨基甲烷共价修饰的水滑石分散于1mL的水中,在搅拌条件下加入20-60mg氧化多聚糖,反应8-20h后得到含有席夫碱的溶液;
2)0℃下,向步骤1)得到的含有席夫碱的溶液中加入100-1000mg单体,超声3-10min;
3)氮气氛下,再加入过硫酸铵20mg,N,N,N’,N’-四甲基乙二胺5μL,超声分散后静置12-36h得到水滑石基双网络纳米复合水凝胶。
所述的氧化多聚糖为葡聚糖、海藻酸钠、壳聚糖、纤维素、透明质酸中的一种或几种氧化得到的氧化多聚糖,氧化度为0-50%。采用氧化多聚糖可避免多聚糖分子量发生改变。
所述的单体选自丙烯酰胺、N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、甲基丙烯酸、丙烯酸、甲基丙烯酰氧乙基三甲基氯化铵、N-羟甲基丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸中的一种或几种。
本发明采用的三羟甲基氨基甲烷共价修饰的水滑石尺寸大约为25nm,无需剥离可以在水中分散良好,而且可以提供更多的反应位点。并且通过控制水滑石的成核与晶化条件,可实现对水滑石尺寸的调控。
本发明制备的水凝胶较传统水凝胶展现出断裂应变2939%、压缩应力11.53Mpa和溶胀率1140倍的优异性能,并且水凝胶在拉伸的过程中存在着各向异性,水滑石纳米片沿拉伸方向有序排列。同时水凝胶具有很好的循环稳定性。
附图说明
图1是本发明制备的水滑石基双网络纳米复合水凝胶的拉伸测试图。
图2是本发明制备的水滑石基双网络纳米复合水凝胶的循环加载-卸载图。
图3是本发明制备的水滑石基双网络纳米复合水凝胶的压缩测试图。
图4是本发明制备的水滑石基双网络纳米复合水凝胶的溶胀率图。
图5是本发明制备的水滑石基双网络纳米复合水凝胶的扫面电镜图。
具体实施方式
下面通过具体的实施例来进一步解释本发明。
实施例1
(1)配制100mL的1mol/L的三羟甲基氨基甲烷溶液,搅拌均匀。再配制100mL的6.9mmol/L的MgCl2·6H2O和13.1mmol/L的AlCl3·6H2O的混合溶液,搅拌均匀。然后将上述溶液混合均匀放在聚四氟乙烯的反应釜中,100℃的条件下,在电热恒温鼓风干燥箱反应16h。将反应釜取出待其冷却,高速离心倒出上清液,剩余胶体分散在100mL的1mol/L的Na2CO3溶液中搅拌3h。水洗三次,丙酮洗三次,放在真空干燥箱中干燥。
(2)将上述得到的三羟甲基氨基甲烷共价修饰的水滑石5mg分散在1mL水中,然后加入氧化葡聚糖(氧化度39%)40mg,室温下放置12h,得到席夫碱溶液。
(3)向制备好的黄色的席夫碱溶液中加入单体丙烯酰胺300mg,超声波处理5min。得到的有机-无机水滑石杂化材料作为共价交联剂,随后加入引发剂过硫酸铵20mg,催化剂N,N,N',N'-四甲基乙二胺5μL。然后将上述溶液超声处理10s,在0℃条件下聚合24h。
实施例2
(1)配制100mL的1mol/L的三羟甲基氨基甲烷溶液,搅拌均匀。再配制100mL的6.9mmol/L的MgCl2·6H2O和13.1mmol/L的AlCl3·6H2O的混合溶液,搅拌均匀。然后将上述溶液混合均匀放在聚四氟乙烯的反应釜中,100℃的条件下,在电热恒温鼓风干燥箱反应16h。将反应釜取出待其冷却,高速离心倒出上清液,剩余胶体分散在100mL的1mol/L的Na2CO3溶液中搅拌3h。水洗三次,丙酮洗三次,放在真空干燥箱中干燥。
(2)将上述得到的Tris-LDH 5mg分散在1mL水中,得到的氧化葡聚糖40mg溶解在上述溶液中,室温下放置12h,得到席夫碱溶液。
(3)向制备好的黄色的席夫碱溶液中加入单体丙烯酰胺300mg,2-丙烯酰胺基-2-甲基丙磺酸(AMPS)10mg,超声波处理5min。随后加入引发剂过硫酸铵20mg,催化剂N,N,N',N'-四甲基乙二胺5μL。然后将上述溶液超声处理10s,在0℃条件下聚合24h。
实施例3
(1)配制100mL的1mol/L的三羟甲基氨基甲烷溶液,搅拌均匀。再配制100mL的6.9mmol/L的MgCl2·6H2O和13.1mmol/L的AlCl3·6H2O的混合溶液,搅拌均匀。然后将上述溶液混合均匀放在聚四氟乙烯的反应釜中,100℃的条件下,在电热恒温鼓风干燥箱反应16h。将反应釜取出待其冷却,高速离心倒出上清液,剩余胶体分散在100mL的1mol/L的Na2CO3溶液中搅拌3h。水洗三次,丙酮洗三次,放在真空干燥箱中干燥。
(2)将上述得到的Tris-LDH 5mg分散在1mL水中,得到的氧化葡聚糖40mg溶解在上述溶液中,室温下放置12h,得到席夫碱溶液。
(3)向制备好的黄色的席夫碱溶液中加入单体丙烯酰胺300mg,AMPS为20mg,超声波处理5min。随后加入引发剂过硫酸铵20mg,催化剂N,N,N',N'-四甲基乙二胺5μL。然后将上述溶液超声处理10s,在0℃条件下聚合24h。
实施例4
(1)配制100mL的1mol/L的三羟甲基氨基甲烷溶液,搅拌均匀。再配制100mL的6.9mmol/L的MgCl2·6H2O和13.1mmol/L的AlCl3·6H2O的混合溶液,搅拌均匀。然后将上述溶液混合均匀放在聚四氟乙烯的反应釜中,100℃的条件下,在电热恒温鼓风干燥箱反应16h。将反应釜取出待其冷却,高速离心倒出上清液,剩余胶体分散在100mL的1mol/L的Na2CO3溶液中搅拌3h。水洗三次,丙酮洗三次,放在真空干燥箱中干燥。
(2)将上述得到的Tris-LDH 5mg分散在1mL水中,得到的氧化葡聚糖40mg溶解在上述溶液中,室温下放置12h,得到席夫碱溶液。
(3)向制备好的黄色的席夫碱溶液中加入单体丙烯酰胺300mg,AMPS为30mg,超声波处理5min。随后加入引发剂过硫酸铵20mg,催化剂N,N,N',N'-四甲基乙二胺5μL。然后将上述溶液超声处理10s,在0℃条件下聚合24h。
实施例5
(1)配制100mL的1mol/L的三羟甲基氨基甲烷溶液,搅拌均匀。再配制100mL的6.9mmol/L的MgCl2·6H2O和13.1mmol/L的AlCl3·6H2O的混合溶液,搅拌均匀。然后将上述溶液混合均匀放在聚四氟乙烯的反应釜中,100℃的条件下,在电热恒温鼓风干燥箱反应16h。将反应釜取出待其冷却,高速离心倒出上清液,剩余胶体分散在100mL的1mol/L的Na2CO3溶液中搅拌3h。水洗三次,丙酮洗三次,放在真空干燥箱中干燥。
(2)将上述得到的Tris-LDH 5mg分散在1mL水中,得到的氧化葡聚糖40mg溶解在上述溶液中,室温下放置12h,得到席夫碱溶液。
(3)向制备好的黄色的席夫碱溶液中加入单体丙烯酰胺300mg,AMPS为40mg,超声波处理5min。随后加入引发剂过硫酸铵20mg,催化剂N,N,N',N'-四甲基乙二胺5μL。然后将上述溶液超声处理10s,在0℃条件下聚合24h。

Claims (3)

1.一种水滑石基双网络纳米复合水凝胶的制备方法,其特征在于,该方法为:1)采用水热法合成三羟甲基氨基甲烷共价修饰的水滑石,然后引入氧化多聚糖形成席夫碱动态共价键,构建水凝胶第一网络;2)加入单体,利用水滑石与单体之间的静电作用、氢键相互作用,构建水凝胶第二网络;3)加入引发剂和催化剂,引发自由基聚合,形成三维网络结构,即得到水滑石基双网络纳米复合水凝胶;
所述制备方法的具体制备步骤为:
1)将5-20 mg 三羟甲基氨基甲烷共价修饰的水滑石分散于1 mL的水中,在搅拌条件下加入20-60 mg氧化多聚糖,反应8-20 h后得到含有席夫碱的溶液;
2)0 ℃下,向步骤1)得到的含有席夫碱的溶液中加入100-1000 mg单体,超声3-10min;
3)氮气氛下,再加入过硫酸铵20 mg,N,N,N’,N’-四甲基乙二胺5 µL,超声分散后静置12-36 h得到水滑石基双网络纳米复合水凝胶。
2.根据权利要求1所述的方法,其特征在于,所述的氧化多聚糖为葡聚糖、海藻酸钠、壳聚糖、纤维素、透明质酸中的一种或几种氧化得到的氧化多聚糖;氧化多聚糖的氧化度为0-50 %,但不为0。
3.根据权利要求1所述的方法,其特征在于,所述的单体选自丙烯酰胺、N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、甲基丙烯酸、丙烯酸、甲基丙烯酰氧乙基三甲基氯化铵、N-羟甲基丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸中的一种或几种。
CN201910402313.2A 2019-05-14 2019-05-14 一种水滑石基双网络纳米复合水凝胶及其制备方法 Active CN110105483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910402313.2A CN110105483B (zh) 2019-05-14 2019-05-14 一种水滑石基双网络纳米复合水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910402313.2A CN110105483B (zh) 2019-05-14 2019-05-14 一种水滑石基双网络纳米复合水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN110105483A CN110105483A (zh) 2019-08-09
CN110105483B true CN110105483B (zh) 2020-11-03

Family

ID=67490181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910402313.2A Active CN110105483B (zh) 2019-05-14 2019-05-14 一种水滑石基双网络纳米复合水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN110105483B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876603A (zh) * 2021-01-15 2021-06-01 无锡东恒新能源科技有限公司 一种智能温敏水凝胶的制备方法
CN113351175B (zh) * 2021-07-05 2022-09-09 江南大学 一种锌铝类水滑石/壳聚糖基海绵的制备方法和应用
CN113527716A (zh) * 2021-07-27 2021-10-22 南昌工程学院 具有强力学性能的双网络复合水凝胶及其制备方法和应用
CN114054092B (zh) * 2021-11-29 2023-10-13 万华化学集团股份有限公司 一种用于制备β-胡萝卜素的催化剂及其制备方法和应用
CN116440313A (zh) * 2023-04-07 2023-07-18 四川大学 一种湿环境长期有效的骨粘接剂的制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107189079A (zh) * 2017-04-29 2017-09-22 成都博美实润科技有限公司 一种高强度双网络水凝胶的制备方法
CN108409925A (zh) * 2018-03-29 2018-08-17 北京化工大学 一种有机-无机共价交联水凝胶及其制备方法
CN108904875B (zh) * 2018-07-02 2023-09-22 西安交通大学 一种促进慢性创面愈合的抗菌自愈合水凝胶辅料及其制备方法和应用

Also Published As

Publication number Publication date
CN110105483A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN110105483B (zh) 一种水滑石基双网络纳米复合水凝胶及其制备方法
Yang et al. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid)
Huang et al. Nanocellulose reinforced P (AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility
Li et al. Constructing dual ionically cross-linked poly (acrylamide-co-acrylic acid)/chitosan hydrogel materials embedded with chitosan decorated halloysite nanotubes for exceptional mechanical performance
Fan et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity
Mariano et al. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites
CN108409997B (zh) 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
Ma et al. Temperature-sensitive poly (N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior
Yang et al. In situ grafting silica nanoparticles reinforced nanocomposite hydrogels
Hu et al. Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties
Liu et al. Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals
Xia et al. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core–shell inorganic–organic hybrid latex particles
Wu et al. Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties
Yang et al. Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals
CN113999476B (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
CN104262881A (zh) 一种高强度双网络纳米二氧化硅复合水凝胶的制备方法
WO2024031904A1 (zh) 一种基于纳米纤维素的多功能导电复合水凝胶及其制备方法
CN110194877B (zh) 一种纳米复合水凝胶及其制备方法和用途
Wang et al. The effect of clay modification on the mechanical properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites prepared by in situ suspension polymerization
Fan et al. Self-healing and tough GO-supported hydrogels prepared via surface-initiated ATRP and photocatalytic modification
Pourjavadi et al. Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties
Ren et al. Super-tough, ultra-stretchable and strongly compressive hydrogels with core–shell latex particles inducing efficient aggregation of hydrophobic chains
CN111363106B (zh) 一种高强高韧纳米复合水凝胶及其制备方法和应用
Du et al. Stretchable dual nanocomposite hydrogels strengthened by physical interaction between inorganic hybrid crosslinker and polymers
Yuan et al. Preparation of polyglycidyl methacrylate microspheres and nanocomposite hydrogels crosslinked by hydrogen bonds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant