CN110098410A - 一种纳米结构含钴复合阴极材料的合成方法 - Google Patents

一种纳米结构含钴复合阴极材料的合成方法 Download PDF

Info

Publication number
CN110098410A
CN110098410A CN201910412563.4A CN201910412563A CN110098410A CN 110098410 A CN110098410 A CN 110098410A CN 201910412563 A CN201910412563 A CN 201910412563A CN 110098410 A CN110098410 A CN 110098410A
Authority
CN
China
Prior art keywords
preparation
cathode material
composite cathode
added
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910412563.4A
Other languages
English (en)
Other versions
CN110098410B (zh
Inventor
陈孔发
江丽贞
蒋文俊
邹远锋
陈志逸
邵艳群
王欣
唐电
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hydrogen Technology Co.,Ltd.
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910412563.4A priority Critical patent/CN110098410B/zh
Publication of CN110098410A publication Critical patent/CN110098410A/zh
Application granted granted Critical
Publication of CN110098410B publication Critical patent/CN110098410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种高性能的固体氧化物燃料电池纳米结构含钴复合阴极材料的合成方法,制备过程为:将Ce(NO3)3·6H2O、Gd(NO3) 3·6H2O、络合剂与去离子水混合,其中络合剂为柠檬酸与乙二胺四乙酸的混合物,加入氨水并不断搅拌使其充分溶解,随后升温搅拌至黏稠时加入PrBa1‑xCaxCo2O5+δ阴极粉体(其中,x为0~1),继续加热搅拌得到凝胶,将凝胶经干燥、煅烧得到纳米结构的复合阴极材料。本发明原料易得,工艺简单、稳定,可以以低制备成本获得纳米尺寸的复合阴极颗粒,所得复合阴极材料不仅兼具电子导电性与离子导电性,且其纳米结构显著提高了阴极的表面反应区,表现出突出的电化学催化活性。

Description

一种纳米结构含钴复合阴极材料的合成方法
技术领域
本发明属于燃料电池催化材料制备技术领域,具体涉及一种高性能的固体氧化物燃料电池纳米结构含钴复合阴极材料的合成方法。
背景技术
固体氧化物燃料电池(SOFC)以其能够直接将化学能高效、无污染地转化成电能为优势,是21世纪能源结构转变的一个重要角色。它通过电化学反应将将氢气、合成气、甲烷等燃料的化学能直接转化为电能(热电联供效率高达~80%),避免了直接燃烧带来的NOx、SO2等污染物的排放。而作为SOFC的关键部件之一,阴极材料的研究将对SOFC的发展起到重大的推进作用。含钴钙钛矿材料具有突出的电子/离子混合导电性,在中低温区表现出优异的电化学催化活性。但其存在一些应用型问题,例如晶格元素的表面析出、在含CO2、SO2等气氛中化学稳定性差,在空气气氛中缺乏长期稳定性和热循环稳定性等。最近,学界报道了一种双层钙钛矿阴极材料PrBa1-xCaxCo2O5+δ(PBCC),在典型的SOFC运行条件下,在含CO2的空气中表现出高ORR催化活性和优异的耐久性(Chen Y, Yoo S, Choi Y, et al. A highlyactive, CO2-tolerant electrode for the oxygen reduction reaction[J]. Energy &Environmental Science, 2018, 11(9): 2458-2466)。然而,PBCC的成相温度较高,导致其颗粒尺寸较大,降低了电催化活性。氧化钆稳定的氧化铈(GdxCe1-xO2,GDC)是一种广泛应用的中低温SOFC电解质材料,具有优异的离子导电性和表面交换系数。本发明将GDC加入PBCC中,旨在增加阴极的有效反应区域,优化阴极的离子/电子混合导电性能与ORR电化学催化活性。
发明内容
本发明提供了一种高性能的固体氧化物燃料电池纳米结构含钴复合阴极材料的合成方法。通过纳米修饰得到的复合阴极可在低温形成纳米结构的精细固溶体;同时,修饰体将增加阴极表面活性位点,优化ORR催化活性,得到一种高性能、高稳定性的纳米结构复合阴极。
本发明通过如下技术方案进行实施:
一种高性能的固体氧化物燃料电池纳米结构含钴复合阴极材料的合成方法,具体包括以下步骤:
(1)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、络合剂与去离子水混合,加入氨水并不断搅拌使各成分充分溶解得到澄清溶液;
(2)将溶液在一定温度下加热,待溶液蒸发至底部冒泡时加入阴极粉体,继续加热搅拌,直至水分蒸发得到凝胶;
(3)将所得凝胶在一定温度下干燥,得到复合阴极前驱体,将其磨碎后在一定温度下煅烧,即得到纳米结构的复合阴极材料;
所述阴极粉体为PrBa1-xCaxCo2O5+δ,其中,x为0~1。
步骤(1)中所加入Ce(NO3)3·6H2O与Gd(NO3)3·6H2O的摩尔比为(0.4~0.99):(0.01~0.6)。
步骤(1)中所述络合剂的制备方法为:将柠檬酸和EDTA按摩尔比(0.1~2.5):(0.1~2)形成的混合物。
步骤(1)中所述络合剂的加入量为EDTA与溶液中金属阳离子的摩尔比为(1~10):1。
步骤(1)中加入氨水后,澄清溶液的pH值为4~10。
步骤(2)中的加热温度为50~500℃。
步骤(2)中阴极粉体的加入量为最终所得复合阴极材料重量的10%~99%。
步骤(3)中凝胶干燥的温度为50~500℃,干燥时间为0.1~50小时。
步骤(3)中的煅烧温度为400~1200℃,煅烧时间为0.1~20小时。
利用上述方法制备得到固体氧化物燃料电池阴极材料。
本发明的显著优点在于
1.本发明通过溶胶凝胶法将GDC硝酸盐前驱体与PBCC双钙钛矿粉体在原子尺度均匀混合,在低温下形成固溶体,得到一种具有精细纳米结构的复合阴极粉体。
2. GDC纳米修饰体大幅增加了阴极的反应区域,提高了ORR催化活性,极大提升了阴极的电性能与稳定性。
3.本发明提供的复合阴极材料制备方法原料易得,对设备要求低,制备工艺简单、稳定。
附图说明
图1是实施例1得到的20wt%GDC修饰的PBCC阴极材料的STEM-EDS元素面扫描图。
图2是实施例1得到的20wt%GDC修饰的PBCC阴极材料的SEM表面形貌图。
图3是以实施例1得到的20wt%GDC修饰的PBCC阴极材料组装的全电池在不同温度下的放电曲线。
图4是以实施例1得到的20wt%GDC修饰的PBCC阴极材料组装的全电池在700℃、500mA·cm-2放电条件下测试100h的稳定性曲线。
图5是未经修饰的纯PrBa0.8Ca0.2Co2O5+δ阴极的SEM表面形貌图。
图6是未经修饰的纯PrBa0.8Ca0.2Co2O5+δ阴极组装的全电池在750℃、500mA·cm-2下测试20小时前后的放电曲线。
图7是本发明制备的不同比例GDC修饰的PBCC阴极材料组装的全电池在750℃下的放电曲线。
具体实施方式
本发明用下列具体实施例做进一步的说明,但其保护范围并不限于下列实施案例。
实施例1
(1)先将Pr(NO3)3·6H2O、Ba(NO3)2、Ca(NO3)2·4H2O、Co(NO3)2·6H2O、CA、EDTA按摩尔比1:0.8:0.2:2:6:4与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入体积与EDTA的摩尔数之比为10ml:0.01mol;
(2)将步骤(1)所得澄清溶液在375℃下不断搅拌,待溶液形成凝胶放入烘箱干燥全部水分,然后在1050℃煅烧5小时,制得PBCC阴极粉体;
(3)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、CA、EDTA按摩尔比0.8:0.2:9:6与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入是为了将溶液pH值调节至6;
(4)将步骤(3)中澄清溶液在250℃下不断搅拌,待溶液蒸发至底部冒泡时加入步骤(2)制备好的PBCC阴极粉体,继续加热搅拌至水分蒸干,得到混合物凝胶;
(5)将步骤(4)所得凝胶放入180℃烘箱干燥10小时,然后在650℃下煅烧3小时,即得到纳米结构的复合阴极材料。其中,PBCC阴极粉体的质量为纳米复合阴极材料总质量的80%。
图1是本实施例得到的20wt%GDC修饰的PBCC阴极材料的STEM-EDS元素面扫描图。如图所示,GDC与PBCC中所含元素均匀分布,且颗粒尺寸细小。
图2是本实施例得到的20wt%GDC修饰的PBCC阴极材料的SEM表面形貌图。如图所示,复合阴极颗粒已达到纳米尺寸。
图3是以本实施例得到的20wt%GDC修饰的PBCC阴极材料组装的全电池在不同温度下的放电曲线。如图所示,该电池在750、700、650、600℃的最大功率密度分别达到1.427、1.019、1.565、0.283W·cm-2
图4是以本实施例得到的20wt%GDC修饰的PBCC阴极材料组装的全电池在750℃、500mA·cm-2放电条件下测试100h的稳定性曲线。如图所示,测试期间电池性能几乎无衰减,且输出电压达到0.945V。
实施例2
(1)先将Pr(NO3)3·6H2O、Ba(NO3)2、Ca(NO3)2·4H2O、Co(NO3)2·6H2O、CA、EDTA按摩尔比1:0.8:0.2:2:6:4与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入体积与EDTA的摩尔数之比为10ml:0.01mol;
(2)将步骤(1)所得澄清溶液在375℃下不断搅拌,待溶液形成凝胶放入烘箱干燥全部水分,然后在1050℃煅烧5小时,制得PBCC阴极粉体;
(3)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、CA、EDTA按摩尔比0.8:0.2:9:6与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入是为了将溶液pH值调节至6;
(4)将步骤(3)中澄清溶液在250℃下不断搅拌,待溶液蒸发至底部冒泡时加入步骤(2)制备好的PBCC阴极粉体,继续加热搅拌至水分蒸干,得到混合物凝胶;
(5)将步骤(4)所得凝胶放入180℃烘箱干燥10小时,然后在650℃下煅烧3小时,即得到纳米结构的复合阴极材料。其中,PBCC阴极粉体的质量为纳米复合阴极材料总质量的90%。
实施例3
(1)先将Pr(NO3)3·6H2O、Ba(NO3)2、Ca(NO3)2·4H2O、Co(NO3)2·6H2O、CA、EDTA按摩尔比1:0.8:0.2:2:6:4与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入体积与EDTA的摩尔数之比为10ml:0.01mol;
(2)将步骤(1)所得澄清溶液在375℃下不断搅拌,待溶液形成凝胶放入烘箱干燥全部水分,然后在1050℃煅烧5小时,制得PBCC阴极粉体;
(3)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、CA、EDTA按摩尔比0.8:0.2:9:6与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入是为了将溶液pH值调节至6;
(4)将步骤(3)中澄清溶液在250℃下不断搅拌,待溶液蒸发至底部冒泡时加入步骤(2)制备好的PBCC阴极粉体,继续加热搅拌至水分蒸干,得到混合物凝胶;
(5)将步骤(4)所得凝胶放入180℃烘箱干燥10小时,然后在650℃下煅烧3小时,即得到纳米结构的复合阴极材料。其中,PBCC阴极粉体的质量为纳米复合阴极材料总质量的70%。
实施例4
(1)先将Pr(NO3)3·6H2O、Ba(NO3)2、Ca(NO3)2·4H2O、Co(NO3)2·6H2O、CA、EDTA按摩尔比1:0.8:0.2:2:6:4与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入体积与EDTA的摩尔数之比为10ml:0.01mol;
(2)将步骤(1)所得澄清溶液在375℃下不断搅拌,待溶液形成凝胶放入烘箱干燥全部水分,然后在1050℃煅烧5小时,制得PBCC阴极粉体;
(3)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、CA、EDTA按摩尔比0.8:0.2:9:6与去离子水混合,加入28wt%氨水不断搅拌使其充分溶解,其中28wt%氨水的加入是为了将溶液pH值调节至6;
(4)将步骤(3)中澄清溶液在250℃下不断搅拌,待溶液蒸发至底部冒泡时加入步骤(2)制备好的PBCC阴极粉体,继续加热搅拌至水分蒸干,得到混合物凝胶;
(5)将步骤(4)所得凝胶放入180℃烘箱干燥10小时,然后在650℃下煅烧3小时,即得到纳米结构的复合阴极材料。其中,PBCC阴极粉体的质量为纳米复合阴极材料总质量的60%。
图5是未经修饰的纯PrBa0.8Ca0.2Co2O5+δ阴极的SEM表面形貌图。与图2相比,其整体颗粒度要大许多,说明本发明方法能够改善阴极粉体结构。
图6是未经修饰的纯PrBa0.8Ca0.2Co2O5+δ阴极组装的全电池在750℃、500mA·cm-2下测试20小时前后的放电曲线。如图所示,该电池在0小时与20小时的最大功率密度分别为0.770、0.611W·cm-2
图7是实施例1~4制备的不同比例GDC修饰的PBCC阴极粉体组装的全电池在750℃下的放电曲线。如图所示,10 wt%、20wt%、30wt%、40wt%的最大功率密度分别达到1.065、1.503、1.579、1.771W·cm-2,与图6所示最大功率密度相比要高许多。说明本发明的方法能够大幅度增加阴极性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种高性能的固体氧化物燃料电池纳米结构含钴复合阴极材料的合成方法,其特征在于:具体包括以下步骤:
(1)将Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、络合剂与去离子水混合,加入氨水并不断搅拌使各成分充分溶解得到澄清溶液;
(2)将溶液在一定温度下加热,待溶液蒸发至底部冒泡时加入阴极粉体,继续加热搅拌,直至水分蒸发得到凝胶;
(3)将所得凝胶在一定温度下干燥,得到复合阴极前驱体,将其磨碎后在一定温度下煅烧,即得到纳米结构的复合阴极材料;
所述阴极粉体为PrBa1-xCaxCo2O5+δ,其中,x为0~1。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所加入Ce(NO3)3·6H2O与Gd(NO3)3·6H2O的摩尔比为(0.4~0.99):(0.01~0.6)。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述络合剂的制备方法为:将柠檬酸和EDTA按摩尔比(0.1~2.5):(0.1~2)形成的混合物。
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述络合剂的加入量为EDTA与溶液中金属阳离子的摩尔比为(1~10):1。
5.根据权利要求1所述的制备方法,其特征在于: 步骤(1)中加入氨水后,澄清溶液的pH值为4~10。
6.根据权利要求1所述的制备方法,其特征在于:步骤(2)中的加热温度为50~500℃。
7.根据权利要求1所述的制备方法,其特征在于:步骤(2)中阴极粉体的加入量为最终所得复合阴极材料重量的10%~99%。
8.根据权利要求1所述的制备方法,其特征在于:步骤(3)中凝胶干燥的温度为50~500℃,干燥时间为0.1~50小时。
9.根据权利要求1所述的制备方法,其特征在于:步骤(3)中的煅烧温度为400~1200℃,煅烧时间为0.1~20小时。
10.一种如权利要求1所述方法制得的固体氧化物燃料电池阴极材料。
CN201910412563.4A 2019-05-17 2019-05-17 一种纳米结构含钴复合阴极材料的合成方法 Active CN110098410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910412563.4A CN110098410B (zh) 2019-05-17 2019-05-17 一种纳米结构含钴复合阴极材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910412563.4A CN110098410B (zh) 2019-05-17 2019-05-17 一种纳米结构含钴复合阴极材料的合成方法

Publications (2)

Publication Number Publication Date
CN110098410A true CN110098410A (zh) 2019-08-06
CN110098410B CN110098410B (zh) 2021-03-30

Family

ID=67448469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910412563.4A Active CN110098410B (zh) 2019-05-17 2019-05-17 一种纳米结构含钴复合阴极材料的合成方法

Country Status (1)

Country Link
CN (1) CN110098410B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729492A (zh) * 2019-12-06 2020-01-24 福州大学 一种高性能的纳米结构含钴复合阴极材料的共合成方法
CN110729491A (zh) * 2019-10-29 2020-01-24 福州大学 一种细化含钴阴极粉体的方法
CN113871636A (zh) * 2021-09-30 2021-12-31 福州大学 一种耐铬中毒的固体氧化物燃料电池纳米结构复合阴极
CN113991124A (zh) * 2021-10-26 2022-01-28 福州大学 一种提升陶瓷氧化物阴极性能的方法
CN114230330A (zh) * 2021-12-09 2022-03-25 南华大学 一种固体氧化物燃料电池阴极材料及阴极层的制备方法
CN116072892A (zh) * 2023-01-16 2023-05-05 福州大学 表面重构改进含Ba复合氧电极的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918337A (zh) * 2005-08-09 2010-12-15 休斯敦***大学 用于固体氧化物燃料电池和离子传输膜的新型阴极和电解质材料
CN102104153A (zh) * 2011-01-07 2011-06-22 上海交通大学 中低温固体氧化物燃料电池阴极制备方法
CN103346330A (zh) * 2013-07-17 2013-10-09 上海交通大学 一种抗铬污染固体氧化物燃料电池的复合阴极及其制备方法
CN103985880A (zh) * 2014-06-04 2014-08-13 哈尔滨工业大学 一种BaFeO3-δ基B位Bi2O3掺杂的固体氧化物燃料电池阴极材料及其制备方法和应用
US20150060743A1 (en) * 2013-08-27 2015-03-05 Tokyo Institute Of Technology Perovskite related compound
CN109449453A (zh) * 2018-11-09 2019-03-08 福州大学 一种高性能的燃料电池纳米复合阴极材料的制备方法
CN109546164A (zh) * 2018-11-30 2019-03-29 福州大学 一种经修饰的固体氧化物燃料电池阴极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918337A (zh) * 2005-08-09 2010-12-15 休斯敦***大学 用于固体氧化物燃料电池和离子传输膜的新型阴极和电解质材料
CN102104153A (zh) * 2011-01-07 2011-06-22 上海交通大学 中低温固体氧化物燃料电池阴极制备方法
CN103346330A (zh) * 2013-07-17 2013-10-09 上海交通大学 一种抗铬污染固体氧化物燃料电池的复合阴极及其制备方法
US20150060743A1 (en) * 2013-08-27 2015-03-05 Tokyo Institute Of Technology Perovskite related compound
CN103985880A (zh) * 2014-06-04 2014-08-13 哈尔滨工业大学 一种BaFeO3-δ基B位Bi2O3掺杂的固体氧化物燃料电池阴极材料及其制备方法和应用
CN109449453A (zh) * 2018-11-09 2019-03-08 福州大学 一种高性能的燃料电池纳米复合阴极材料的制备方法
CN109546164A (zh) * 2018-11-30 2019-03-29 福州大学 一种经修饰的固体氧化物燃料电池阴极材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAWEI FU等: "A-site calcium-doped Pr1-xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells", 《JOURNAL OF POWER SOURCES》 *
张文锐 等: "双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用", 《化学进展》 *
李向国 等: "4种方法制备的阴极材料PrBa0.85Ca0.15Co2O5+δ性能研究", 《内蒙古科技大学学报》 *
陈涛: "双钙钛矿结构中温固体氧化物燃料电池阴极材料掺杂改性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729491A (zh) * 2019-10-29 2020-01-24 福州大学 一种细化含钴阴极粉体的方法
CN110729491B (zh) * 2019-10-29 2022-05-31 福州大学 一种细化含钴阴极粉体的方法
CN110729492A (zh) * 2019-12-06 2020-01-24 福州大学 一种高性能的纳米结构含钴复合阴极材料的共合成方法
CN113871636A (zh) * 2021-09-30 2021-12-31 福州大学 一种耐铬中毒的固体氧化物燃料电池纳米结构复合阴极
CN113871636B (zh) * 2021-09-30 2023-09-29 福州大学 一种耐铬中毒的固体氧化物燃料电池纳米结构复合阴极
CN113991124A (zh) * 2021-10-26 2022-01-28 福州大学 一种提升陶瓷氧化物阴极性能的方法
CN114230330A (zh) * 2021-12-09 2022-03-25 南华大学 一种固体氧化物燃料电池阴极材料及阴极层的制备方法
CN116072892A (zh) * 2023-01-16 2023-05-05 福州大学 表面重构改进含Ba复合氧电极的方法
CN116072892B (zh) * 2023-01-16 2024-04-30 福州大学 表面重构改进含Ba复合氧电极的方法

Also Published As

Publication number Publication date
CN110098410B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN110098410A (zh) 一种纳米结构含钴复合阴极材料的合成方法
CN104078687B (zh) 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途
CN103811772A (zh) 含有钙钛矿型结构氧化物的复合材料及其制备方法和用途
CN110729491B (zh) 一种细化含钴阴极粉体的方法
Du et al. A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells
CN101662033A (zh) 一种固体氧化物燃料电池以及这种电池的制备方法
CN102867965A (zh) 一种多孔微球钙钛矿型钙锰氧化合物及其制备方法和应用
CN105742646A (zh) 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备
JPH11297333A (ja) 燃料極及びそれを用いた固体電解質型燃料電池
CN109473679A (zh) 一种新型氢气极材料及其应用
CN112290034B (zh) 固体氧化物燃料电池阳极材料及其制备方法
JP5969632B2 (ja) ゾルゲル法による中低温型の固体酸化物燃料電池用の空気極粉末の合成方法
CN112331865B (zh) 一种固体氧化物电池的复合阴极电极及其制备方法和固体氧化物电池
CN102479958B (zh) 一种催化剂在中温固体氧化物燃料电池阴极中的应用
CN105140526B (zh) 一种燃料电池及燃料电池的制作方法
CN102097626A (zh) 一种中温固体氧化物燃料电池阴极材料的制备方法
CN106159288B (zh) 一种抗积碳的Ni基阳极材料、制备方法和用途
CN102867966A (zh) 一种多孔微球后尖晶石型钙锰氧化合物及其制备和应用
CN101572313A (zh) 中低温固体氧化物燃料电池阴极材料及其复合阴极材料
CN108565479A (zh) 凹凸棒土复合材料及其制备方法和应用
CN115058733A (zh) 一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料及其制备方法与应用
CN110729492A (zh) 一种高性能的纳米结构含钴复合阴极材料的共合成方法
CN102658152A (zh) 一种氧电极钙钛矿型催化剂的制备方法
CN109546164A (zh) 一种经修饰的固体氧化物燃料电池阴极材料及其制备方法
CN113488665A (zh) 一种可逆固体氧化物电池空气电极材料及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210712

Address after: 315899 building 7-4, Chuangye Avenue, Ningbo Free Trade Zone, Ningbo City, Zhejiang Province

Patentee after: Zhejiang Hydrogen Technology Co.,Ltd.

Address before: No.2 Xueyuan Road, Fuzhou University Town, Shangjie Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: FUZHOU University

TR01 Transfer of patent right