CN110088332B - 具有优异的可成形性的经回火和涂覆的钢板及其制造方法 - Google Patents

具有优异的可成形性的经回火和涂覆的钢板及其制造方法 Download PDF

Info

Publication number
CN110088332B
CN110088332B CN201780078783.7A CN201780078783A CN110088332B CN 110088332 B CN110088332 B CN 110088332B CN 201780078783 A CN201780078783 A CN 201780078783A CN 110088332 B CN110088332 B CN 110088332B
Authority
CN
China
Prior art keywords
steel sheet
tempered
equal
less
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780078783.7A
Other languages
English (en)
Other versions
CN110088332A (zh
Inventor
让-马可·皮帕尔
马克·奥利维尔·泰诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN110088332A publication Critical patent/CN110088332A/zh
Application granted granted Critical
Publication of CN110088332B publication Critical patent/CN110088332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明涉及一种经回火和涂覆的钢板及其制造方法,以重量百分比表示,所述钢板具有包含以下元素的组成:0.17%≤碳≤0.25%,1.8%≤锰≤2.3%,0.5%≤硅≤2.0%,0.03%≤铝≤1.2%,硫≤0.03%,磷≤0.03%,以及能够包含以下任选元素中的一种或更多种:铬≤0.4%,钼≤0.3%,铌≤0.04%,钛≤0.1%,剩余组成包括铁和因加工引起的不可避免的杂质,以面积分数计,所述钢板的显微组织包含:4%至20%的残余奥氏体、0%至15%的铁素体、40%至85%的回火贝氏体和最少5%的回火马氏体,其中回火马氏体和残余奥氏体的累计量为10%至30%。

Description

具有优异的可成形性的经回火和涂覆的钢板及其制造方法
本发明涉及适用于制造车辆的具有优异的机械性能的经回火和涂覆的钢板。
进行了深入的研究和开发努力以通过增加材料的强度来减少汽车中所使用的材料量。相反地,钢板强度的增加降低了可成形性,因此需要开发具有高强度和高可成形性两者的材料。
因此,已经开发了许多具有优异的可成形性的高强度钢,比如TRIP钢。近来,做出了坚定的努力以开发具有诸如高强度和高可成形性的特性的TRIP钢,因为TRIP钢由于其复杂的组织而是机械强度与可成形性之间的良好折衷,所述组织包含:铁素体(其是延性组分);更硬的组分,比如马氏体和奥氏体(MA)的岛,其大部分由残余奥氏体组成;以及最后贝氏体铁素体基体,其具有介于铁素体与MA岛之间的机械强度和延展性。
TRIP钢具有非常高的固结能力,这使得在碰撞情况下或甚至在汽车部件的成形期间良好的变形分布成为可能。因此,可以生产与由常规钢制成的部件一样复杂但具有改善的机械性能的部件,这又可以减小部件的厚度,以符合机械性能方面的相同功能规格。因此,这些钢是对减轻车辆重量并提高安全性的需求的有效解决方案。在热轧或冷轧钢板领域,这种类型的钢尤其可以用于机动车辆的结构和***件。
这些特性与这种钢的组织有关,所述组织由可以单独或以彼此组合包含铁素体、贝氏体或马氏体的基体组成,同时可以存在其他显微组织成分、比如残余奥氏体。通过添加硅或铝来使残余奥氏体稳定,这些元素阻碍了碳化物的析出。在钢板被成形为部件之前残余奥氏体的存在给予了钢板高延展性。在随后的变形作用下,例如当单轴受力时,由TRIP钢制成的板的残余奥氏体逐渐转变为马氏体,导致显著硬化并延迟了颈缩的出现。
为了实现大于800MPa至1000MPa的抗拉强度,已经开发出具有占主导的贝氏体组织的多相钢。在汽车工业或一般工业中,这种钢有利地用于结构部件(比如,保险杠横向构件、柱、各种增强件)和耐磨损部件。然而,这些部件的可成形性同时需要足够水平的总延伸率、即大于10%的总延伸率。
所有这些钢板都呈现出抗性与延展性的相对良好的平衡,但是需要提高当前生产中的钢的屈服强度和扩孔性能,特别是对经涂覆的钢板。
本发明的目的是通过制造同时具有以下各者的可获得的钢板来解决这些问题:
-大于或等于950MPa且优选地大于1050MPa,或者甚至大于1100MPa的极限抗拉强度,
-至少700Mpa的屈服强度,
-大于或等于12%的总延伸率,
-大于或等于18%的扩孔率。
优选地,这种钢还可以具有良好的成形适用性,特别是对于轧制的良好的成形适用性以及良好的可焊性。
本发明的另一个目的是使得可获得用于制造这些板的下述方法:所述方法与常规的工业应用相兼容且同时对制造参数变化稳健。
该目的通过提供根据方案1的钢板来实现。
方案1:一种经回火和涂覆的钢板,以重量百分比表示,所述经回火和涂覆的钢板具有包含以下元素的组成:
0.17%≤碳≤0.25%
1.8%≤锰≤2.3%
0.5%≤硅≤2.0%
0.03%≤铝≤1.2%
硫≤0.03%
磷≤0.03%
以及能够包含以下任选元素中的一种或更多种:
铬≤0.4%
钼≤0.3%
铌≤0.04%
钛≤0.1%
剩余组成包括铁和因加工引起的不可避免的杂质,以面积分数计,所述钢板的显微组织包含:4%至20%的残余奥氏体、0%至15%的铁素体、40%至85%的回火贝氏体和最少5%的回火马氏体,其中回火马氏体和残余奥氏体的累计量为10%至30%。
该钢板还可以包含根据方案2至8的特征。
方案2.根据方案1所述的经回火和涂覆的钢板,其中所述组成包含0.6%至1.8%的硅。
方案3.根据方案1或2所述的经回火和涂覆的钢板,其中所述组成包含0.03%至0.6%的铝。
方案4.根据方案1至3中任一项所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累计量为10%至25%。
方案5.根据方案1至4中任一项所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累积量大于或等于15%,回火马氏体的百分比大于10%。
方案6.根据方案1至5中任一项所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
方案7.根据方案1至6中任一项所述的经回火和涂覆的钢板,其中所述钢板具有大于700MPa的屈服强度、大于950MPa的极限抗拉强度、大于18%的孔延伸率和大于12%的总延伸率。
方案8.根据方案7所述的经回火和涂覆的钢板,其中所述钢板具有1000MPa至1100MPa的极限抗拉强度和大于20%的扩孔率。
另一目的通过提供根据方案9至10的方法来实现。
方案9.一种生产经回火和涂覆的钢板的方法,包括以下顺序步骤:
-提供根据方案1至3中任一项所述的钢组成;
-将所述半成品再加热至高于Ac3的温度;
-在奥氏体范围内轧制所述半成品以获得热轧钢板,其中热轧结束温度应为750℃至1050℃;
-以20℃/秒至150℃/秒的冷却速率使所述板冷却至小于或等于600℃的卷取温度;以及卷取所述热轧板;
-将所述热轧板冷却至室温;
-任选地对所述热轧钢板进行氧化皮去除过程;
-在400℃至750℃的温度下对热轧钢板进行退火;
-任选地对所述热轧退火钢板进行氧化皮去除过程;
-以30%至80%的压下率对所述热轧退火钢板进行冷轧以获得冷轧钢板;
-然后以1℃/秒至20℃/秒的速率将所述冷轧钢板加热至高于Ae3的均热温度,在此保持所述冷轧钢板持续小于600秒;
-然后以大于5℃/秒的速率使所述板冷却至高于Ms且低于475℃的温度,以及将所述冷轧钢板保持在这样的温度下持续20秒至400秒;
-然后以不大于200℃/秒的冷却速率将所述钢板冷却至室温;
-然后以1℃/秒至20℃/秒的速率将所述退火钢板再加热至440℃至600℃的均热温度,在此保持所述退火钢板持续小于100秒,然后在锌或锌合金涂覆浴中热浸所述钢板以对所述钢板进行回火和涂覆,
-以1℃/秒至20℃/秒的冷却速率将经回火和涂覆的钢板冷却至室温。
方案10.根据方案9所述的方法,其中,所述卷取温度高于400℃。
另一方面通过提供根据方案11至12的部件或车辆来实现。
方案11.根据方案1至8中任一项所述的钢板或根据方案9或10所述的方法生产的钢板用于制造车辆的结构或***件的用途。
方案12.包括根据方案11中任一项所获得的部件的车辆。
通过以下对本发明的详细描述,本发明的其他特征和优点将变得明显。
碳以0.17%至0.25%的含量存在根据本发明的钢中。碳是γ-形成元素,并且碳促进奥氏体的稳定化。此外,碳可以参与形成使铁素体硬化的析出物。优选地,碳含量至少为0.18%以通过残余奥氏体实现TRIP效应并且至多0.25%以避免损害可焊性。碳含量有利地为0.18%至0.23%(包括端值),以优化高强度和延伸特性两者。
锰以1.8%至2.3%的含量存在于根据本发明的钢中。锰是通过铁素体中的置换固溶体来提供硬化的元素。需要以重量%计1.8%的最小含量以获得期望的抗拉强度。然而,大于2.3%的锰阻碍了贝氏体的形成,并且进一步促进了具有较低的碳百分比的奥氏体的形成,具有较低碳百分比的奥氏体在后期转变为马氏体,这对钢的机械性能是有害的。
硅以0.5%至2.0%的含量存在于根据本发明的钢中。硅通过减缓碳化物的析出(这使得将碳浓缩在残余奥氏体中以用于残余奥氏体的稳定)而在显微组织的形成中发挥重要作用。硅与铝的作用相组合地发挥有效的作用,对于指定的特性,由该有效的作用产生的最佳结果是在大于0.5%的含量水平获得的。硅含量必须限制在以重量%计2.0%,以提高热浸涂覆性能。硅含量将优选地为0.6%至1.8%,当硅含量大于1.8%,硅与锰结合可以形成脆性马氏体而不是贝氏体。小于或等于1.8%的含量同时提供非常好的焊接适用性以及良好的可涂覆性。
铝以0.03%至1.2%并且优选地以0.03%至0.6%的含量存在于根据本发明的钢中。铝通过大大减缓碳化物的析出而在本发明中发挥重要作用;铝的效果与硅的效果组合,以充分阻碍碳化物的析出并稳定残余奥氏体。当铝含量大于0.03%并且在铝含量小于1.2%时,获得了该效果。铝含量将优选地小于或等于0.6%。通常还认为,高的铝水平会增加耐火材料的侵蚀和在轧制上游的钢铸造期间出现堵塞水口的风险。过量时,铝会降低热延展性以及增加连续铸造期间出现缺陷的风险。在不仔细控制铸造条件的情况下,微观偏析缺陷和宏观偏析缺陷最终导致退火钢板中的中心偏析。该中心带将比其周围基体更硬并且将不利地影响材料的可成形性。
硫也是残余元素,硫的含量应保持尽可能低。因此,在本发明中硫的含量限制为0.03%。0.03%或更高的硫含量由于硫化物、比如MnS(锰硫化物)的过量存在而降低了延展性,这降低了钢的可加工性,并且也是裂纹萌生的来源。
磷可以以最高至0.03%的含量存在,磷是在固溶体中硬化但特别地由于磷趋向于晶界偏析或磷趋向于与锰共偏析而显著降低了点焊的适用性和热延性的元素。由于这些原因,磷的含量必须限制为0.03%,以获得良好的点焊适用性和良好的热延性。磷也是残余元素,其含量应被限制。
铬可以以最高至0.4%、优选地最高至0.05%至0.4%的含量任选地存在于根据本发明的钢中。与锰类似,铬在促进马氏体形成中提高了淬透性。当铬元素以大于0.05%的含量存在时,铬元素可以用于达到最小抗拉强度。当铬大于0.4%时,贝氏体的形成被延迟,使得奥氏体未充分富集碳。实际上,在冷却至室温期间,这种奥氏体或多或少地完全转变成马氏体,并且总延伸率将会太低。
钼是任选元素并且可以以最高至0.3%添加至根据本发明的钢中。钼在调整淬透性和硬度、延迟贝氏体的出现以及避免贝氏体中的碳化物析出方面发挥有效作用。然而,过度添加钼增加了合金元素的添加成本,因此,出于经济原因,其含量限制为0.3%。
铌可以以最高至0.04%的含量添加至钢。铌是适于形成碳氮化物以通过析出硬化向根据本发明的钢赋予强度的元素。因为铌延迟了加热期间的再结晶,所以在退火结束时形成的显微组织更细,从而导致产品硬化。但是,当铌含量大于0.04%时,碳氮化物的量会变大,这会降低钢的延展性。
钛是可以以最高至0.1%并且优选地0.005%至0.1%的含量添加至本发明的钢中的任选元素。与铌一样,钛参与碳氮化物,因此发挥硬化的作用。但是钛也参与形成在铸造产品的固化期间出现的TiN。因此Ti的量限制为0.1%以避免对扩孔有害的粗TiN。在钛含量低于0.005%的情况下,其不会对本发明的钢产生任何影响。
根据本发明的钢呈现以面积分数计包含以下的显微组织:4%至20%的残余奥氏体、0%至15%的铁素体、40%至85%的贝氏体和最少5%的回火马氏体,其中回火马氏体和残余奥氏体的累积量为10%至30%。
铁素体成分赋予根据本发明的钢提高的延伸率。为了确保达到所要求水平的延伸率和扩孔率,铁素体可以以面积分数计最大水平15%存在,以便具有950MPa或更大的抗拉强度、以及至少12%的总延伸率和18%或更大的扩孔率。铁素体在加热和保持阶段的退火处理步骤期间或在退火之后的冷却期间形成。这样的铁素体可以通过在固溶体中引入一种或更多种元素而硬化。通常将硅和/或锰添加至这样的钢中或者通过引入析出物形成元素,比如钛、铌和钒。这样的硬化通常在冷轧钢板的退火期间发生,并因此在回火步骤之前是有效的,但不会损害加工性。
回火马氏体以面积分数计最小水平5%并且优选地10%存在于根据本发明的钢中。马氏体在由退火期间形成的不稳定奥氏体在均热之后的冷却期间以及在贝氏体转变保持处理之后的最终冷却期间形成。这样的马氏体在最终的回火步骤期间受到回火。这种回火的效果之一是降低马氏体的碳含量,因此马氏不太硬且不太脆。回火马氏体包含在由初生奥氏体晶粒产出的各晶粒内沿一个方向伸长的细板条,其中长50nm至200nm的细的铁碳化物棒沿<111>方向在板条之间析出。由于马氏体相与铁素体相或贝氏体相之间的硬度差距减小,因此马氏体的这种回火还允许增加屈服强度。
回火贝氏体存在于根据本发明的钢中并且赋予这样的钢以强度。回火贝氏体以面积分数计40%与85%存在于钢中。贝氏体是在退火之后在贝氏体转变温度下的保持期间形成的。这样的贝氏体可以包含粒状贝氏体、上贝氏体和下贝氏体。该贝氏体在最终的回火步骤期间受到回火以产生回火贝氏体。
残余奥氏体是用于确保TRIP效应和用于带来延展性的必需成分。其可以单独或者作为马氏体和奥氏体的岛(MA岛)包含在内。本发明的残余奥氏体以面积分数计4%至20%的量存在,并且优选地具有0.9%至1.1%的碳百分比。富含碳的残余奥氏体有助于贝氏体的形成,并且还阻碍了贝氏体中碳化物的形成。因此,富含碳的残余奥氏体的含量必须优选地足够高,使得本发明的钢的延展性足够、即总延伸率优选地大于12%,并且富含碳的残余奥氏体的含量不应当超过20%,因为这将产生机械性能值的降低。
通过称为sigmametry的磁性方法来测量残余奥氏体,该方法包括在热处理之前和在热处理之后对钢进行磁矩测量,所述热处理使与铁磁性的其他相相反的顺磁性奥氏体不稳定。
除了显微组织的各个元素的单独比例之外,回火马氏体和残余奥氏体的累积量必须为以面积分数计的10%至30%、优选地10%至25%、并且更优选地等于或大于15%,特别是当回火马氏体量大于10%时。这可确保达到目标性能。
根据本发明的钢板可以通过任何适当的制造方法来生产,并且本领域技术人员可以限定所述方法。然而,优选的是使用根据本发明的方法,该方法包括以下连续步骤:
-提供根据本发明的钢组成;
-将所述半成品再加热至高于Ac3的温度;
-在奥氏体范围内轧制所述半成品以获得热轧钢板,其中热轧结束温度应为750℃至1050℃;
-以20℃/秒至150℃/秒的冷却速率使钢板冷却至小于或等于600℃的卷取温度;以及卷取所述热轧板;
-使所述热轧板冷却至室温;
-任选地对所述热轧钢板进行氧化皮去除过程;
-在400℃至750℃的温度下对热轧钢板进行退火;
-任选地对所述热轧退火钢板进行氧化皮去除过程;
-以30%至80%的压下率对热轧退火钢板进行冷轧以获得冷轧钢板;
-然后以1℃/秒至20℃/秒的速率将所述冷轧钢板加热至高于Ae3的均热温度,在此保持冷轧钢板持续小于600秒;
-然后以大于5℃/秒的速率使板冷却至高于Ms且低于475℃的温度,其中保持冷轧钢板持续20秒至400秒;
-然后以不大于200℃/秒的冷却速率将钢板冷却至室温;
-然后以1℃/秒至20℃/秒的速率将退火钢板再加热至440℃与至600℃的均热温度,在此保持退火钢板持续小于100秒,然后在锌或锌合金涂覆浴中热浸所述钢板以用于对所述钢板进行回火和涂覆,
-以1℃/秒至20℃/秒的冷却速率将经回火和经涂覆的钢板冷却至室温。
特别地,本发明人已经发现,在根据本发明的钢板的热浸涂覆之前和在根据发明的钢板的热浸涂覆期间进行最终回火步骤将提高可成形性而不会对所述钢板的其他性能产生显著影响。这种回火步骤减小了诸如铁素体的软相与诸如马氏体和贝氏体的硬相之间的硬度差距。该硬度差距的减小改善了扩孔性和成形特性。此外,硬度差距的进一步降低借助于通过添加硅和锰来增加铁素体的硬度和/或通过在退火期间碳化物的析出来获得。通过受控的软相硬化和硬相软化,实现了可成形性的显著增加,同时不降低这样的钢的强度。
根据本发明的方法包括提供具有如上所述的本发明范围内的化学组成的半成品钢铸件。该铸件可以做成铸锭或者可以连续地呈板坯或带坯的形式,即厚度从约220mm的板坯直至数十毫米的带坯。例如,具有上述化学组成的板坯通过连铸来制造,以及被提供用于热轧。此处,板坯可以根据连铸在线轧制,或者可以首先冷却至室温然后再加热高于Ac3。
经受热轧的板坯的温度通常高于1000℃并且必须低于1300℃。本文中提到的温度被定义成确保板坯的所有点都达到奥氏体范围。在板坯的温度低于1000℃的情况下,对轧机施加了过大的负荷。此外,温度绝不可高于1300℃,以避免奥氏体晶粒的不利生长的风险,奥氏体晶粒的不利生长导致粗的铁素体晶粒,这降低了这些晶粒在热轧期间再结晶的能力。此外,高于1300℃的温度提高了形成厚的氧化物层的风险,这在热轧期间是有害的。精轧温度必须为750℃至1050℃,以确保热轧完全在奥氏体范围内发生。
然后以20℃/秒至150℃/秒的速率将以这种方式获得的热轧钢板冷却至低于600℃的温度。然后在低于600℃的卷取温度下卷取该板,因为高于该温度,存在粒间氧化的风险。用于本发明的热轧钢板的优选卷取温度为400℃至500℃。随后,允许热轧钢板冷却至室温。
根据需要,根据本发明的热轧钢板通过诸如酸洗、由刷子去除或对热轧钢板进行洗涤之类的任何合适的工艺来经历氧化皮去除步骤。
在完成氧化皮的去除之后,使钢板经历400℃至750℃温度下退火的步骤,以确保卷材中的硬度均匀性。该退火可以例如持续12分钟至150小时。根据需要,在这种退火之后经退火的热轧板可以经历任选的氧化皮去除过程以除去氧化皮。然后,将经退火的热轧板以30%至80%的厚度压下率冷轧。
然后使冷轧板经历退火步骤,其中以1℃/秒至20℃/秒、优选地大于2℃/秒的加热速率将冷轧板加热直至高于Ae3的均热温度,在完全奥氏体域中,其中保持冷轧钢板持续大于10秒(以确保奥氏体转变的准平衡)且小于600秒。
然后以大于5℃/秒、优选地大于30℃/秒的速率将所述板冷却至高于Ms且低于475℃的温度,将板保持在此温度下持续20秒至400秒、优选地持续30秒至380秒。进行Ms至475℃的保持以形成贝氏体,以使马氏体(如果较早形成的话)回火并促进奥氏体富集碳。将冷轧钢板保持小于20秒将会导致太低量的贝氏体和奥氏体的不充足富集,奥氏体的不充足富集导致残余奥氏体的量低于4%。另一方面,将冷轧板保持持续大于400秒将导致贝氏体中的碳化物析出,从而降低奥氏体中的碳含量并降低奥氏体的稳定性。
然后以不大于200℃/秒的冷却速率将板冷却至室温。在该冷却期间,不稳定的残余奥氏体转变成呈MA岛形式的新鲜马氏体,赋予本发明的钢以目标抗拉强度水平。
然后以1℃/秒至20℃/秒、优选地大于2℃/秒的加热速率将经退火的冷轧钢板加热直至440℃至600℃、优选地440℃至550℃的均热温度,持续小于100秒以使带坯的温度均匀并稳定并且也同时开始显微组织的回火。
然后,在回火过程正进行的同时,通过在液态Zn浴中经过来用锌或锌合金涂覆经退火的冷轧钢板。Zn浴的温度通常为440℃与475℃。其后,获得经涂覆和回火的钢板。这种回火过程确保了贝氏体相和马氏体相的回火,并且还用于通过碳的扩散来调整最终残余奥氏体和马氏体的含量。
其后,以1℃/秒至20℃/秒并且优选地5℃/秒至15℃/秒的冷却速率使经涂覆和经回火的钢板冷却至室温。
实施例
本文中所提出的以下试验和实施例本质上是非限制性的,并且必须仅出于说明的目的而被考虑,并且将显示本发明的有利特征并阐明本发明人在大量实验之后选择的参数的重要性,并进一步确定了可以通过根据本发明的钢实现的特性。
用表1中总结的组成以及表2和表3中总结的工艺参数来制备根据本发明的钢板样品和一些比较钢种。这些钢板的对应显微组织总结在表4中,以及特性如表5中所示。
表1:试验的组成
C Mn Si Al S P N Cr Nb Ti
1 0.218 2.08 1.491 0.038 0.003 0.014 0.0052 0.350 0.002 0.0041
2 0.211 2.11 1.488 0.042 0.003 0.012 0.0065 0.357 0.001 0.0038
3 0.200 2.20 1.501 0.040 0.006 0.012 0.0050 0.200 - -
4 0.213 2.14 1.490 0.040 0.003 0.010 0.0030 0.350 - -
5 0.210 2.10 0.750 0.750 0.005 0.012 0.0048 0.1 0.02 -
表2和表3:试验的工艺参数
在进行退火处理之前,将本发明的所有钢以及参照物再加热至1000℃至1280℃的温度,然后经受高于850℃的精轧温度的热轧,并且其后在低于580℃的温度下卷取。然后按照要求加工热轧卷材,并且其后以30%至80%的厚度压下率冷轧。然后将这些冷轧钢板递送至如下所示的退火步骤和回火步骤:
Figure GDA0003349079970000111
表3:试验的回火工艺参数
Figure GDA0003349079970000112
表4:样品的显微组织
使用根据关于不同的显微镜、比如扫描电子显微镜的通常标准进行的测试来确定所有样品的最终显微组织。结果总结如下:
试验 铁素体 回火贝氏体 回火马氏体 残余奥氏体
发明1 4 75.5 12 8.5
发明2 3 75.3 12 9.7
发明3 3 75.8 12 9.2
发明4 8 77.0 11 4.0
发明5 3 76.5 11 9.5
发明6 7.5 76.0 12 4.5
发明7 3 76.0 12 9.0
发明8 7 75.5 12 5.5
比较1 12 75.7 12 <u>0.3</u>
比较2 11 76.9 12 <u>0.1</u>
比较3 <u>39</u> 42 11 8.0
比较4 <u>43</u> 42 11 4.0
比较5 <u>44</u> 41 11 <u>3.0</u>
表5:样品的机械特性
确定了所有本发明钢和比较钢的以下机械特性:
YS:屈服强度
UTS:极限抗拉强度
Tel:总延伸率
HER:扩孔率
Figure GDA0003349079970000131
实施例表明,根据本发明的钢板由于它们特定的组成和显微组织而是表现出所有目标特性的仅有钢板。

Claims (23)

1.一种经回火和涂覆的钢板,以重量百分比表示,所述经回火和涂覆的钢板具有包含以下元素的组成:
0.17%≤碳≤0.25%
1.8%≤锰≤2.3%
0.5%≤硅≤2.0%
0.03%≤铝≤1.2%
硫≤0.03%
磷≤0.03%
以及能够包含以下任选元素中的一种或更多种:
铬≤0.4%
钼≤0.3%
铌≤0.04%
钛≤0.1%
剩余组成包括铁和因加工引起的不可避免的杂质,以面积分数计,所述钢板的显微组织包含:4%至20%的残余奥氏体、大于0%并且小于等于8%的铁素体、40%至85%的回火贝氏体和最少5%的回火马氏体,其中回火马氏体和残余奥氏体的累计量为10%至30%;以及
其中所述钢板具有大于700MPa的屈服强度、大于1050MPa的极限抗拉强度、大于18%的孔延伸率和大于12%的总延伸率。
2.根据权利要求1所述的经回火和涂覆的钢板,其中所述组成包含0.6%至1.8%的硅。
3.根据权利要求1或2所述的经回火和涂覆的钢板,其中所述组成包含0.03%至0.6%的铝。
4.根据权利要求1至2中任一项所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累计量为10%至25%。
5.根据权利要求3所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累计量为10%至25%。
6.根据权利要求1至2中任一项所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累积量大于或等于15%,回火马氏体的百分比大于10%。
7.根据权利要求3所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累积量大于或等于15%,回火马氏体的百分比大于10%。
8.根据权利要求4所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累积量大于或等于15%,回火马氏体的百分比大于10%。
9.根据权利要求5所述的经回火和涂覆的钢板,其中回火马氏体和残余奥氏体的累积量大于或等于15%,回火马氏体的百分比大于10%。
10.根据权利要求1至2中任一项所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
11.根据权利要求3所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
12.根据权利要求4所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
13.根据权利要求5所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
14.根据权利要求6所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
15.根据权利要求7所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
16.根据权利要求8所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
17.根据权利要求9所述的经回火和涂覆的钢板,其中残余奥氏体的碳含量为0.9%至1.1%。
18.根据权利要求1所述的经回火和涂覆的钢板,其中所述钢板具有大于1050MPa并且小于等于1100MPa的极限抗拉强度和大于20%的扩孔率。
19.一种生产经回火和涂覆的钢板的方法,包括以下顺序步骤:
-提供根据权利要求1至3中任一项所述的钢组成;
-将半成品再加热至高于Ac3的温度;
-在奥氏体范围内轧制所述半成品以获得热轧钢板,其中热轧结束温度应为750℃至1050℃;
-以20℃/秒至150℃/秒的冷却速率使所述板冷却至小于或等于600℃的卷取温度;以及卷取所述热轧板;
-将所述热轧板冷却至室温;
-在400℃至750℃的温度下对热轧钢板进行退火;
-以30%至80%的压下率对所述热轧退火钢板进行冷轧以获得冷轧钢板;
-然后以1℃/秒至20℃/秒的速率将所述冷轧钢板加热至高于Ae3的均热温度,在此保持所述冷轧钢板持续小于600秒;
-然后以大于5℃/秒的速率使所述板冷却至高于Ms且低于475℃的温度,以及将所述冷轧钢板保持在这样的温度下持续20秒至400秒;
-然后以不大于200℃/秒的冷却速率将所述钢板冷却至室温;
-然后以1℃/秒至20℃/秒的速率将所述退火钢板再加热至440℃至600℃的均热温度,在此保持所述退火钢板持续小于100秒,然后在锌或锌合金涂覆浴中热浸所述钢板以对所述钢板进行回火和涂覆,
-以1℃/秒至20℃/秒的冷却速率将经回火和涂覆的钢板冷却至室温;以及
所述钢板具有大于700MPa的屈服强度、大于1050MPa的极限抗拉强度、大于18%的孔延伸率和大于12%的总延伸率。
20.根据权利要求19所述的方法,其中在将所述热轧板冷却至室温的步骤后和/或在400℃至750℃的温度下对热轧钢板进行退火的步骤后,还包括对所述钢板进行氧化皮去除过程。
21.根据权利要求19所述的方法,其中,所述卷取温度高于400℃。
22.根据权利要求1至18中任一项所述的钢板或根据权利要求19至21中任一项所述的方法生产的钢板用于制造车辆的结构或***件的用途。
23.包括根据权利要求22中任一项所获得的部件的车辆。
CN201780078783.7A 2016-12-21 2017-12-15 具有优异的可成形性的经回火和涂覆的钢板及其制造方法 Active CN110088332B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2016/057907 WO2018115936A1 (en) 2016-12-21 2016-12-21 Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
IBPCT/IB2016/057907 2016-12-21
PCT/IB2017/057996 WO2018116099A1 (en) 2016-12-21 2017-12-15 Tempered and coated steel sheet having excellent formability and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
CN110088332A CN110088332A (zh) 2019-08-02
CN110088332B true CN110088332B (zh) 2022-03-01

Family

ID=57868289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780078783.7A Active CN110088332B (zh) 2016-12-21 2017-12-15 具有优异的可成形性的经回火和涂覆的钢板及其制造方法

Country Status (15)

Country Link
US (1) US11655516B2 (zh)
EP (1) EP3559298B8 (zh)
JP (2) JP6992070B2 (zh)
KR (1) KR102325717B1 (zh)
CN (1) CN110088332B (zh)
BR (1) BR112019011142A2 (zh)
CA (1) CA3047690C (zh)
FI (1) FI3559298T3 (zh)
MA (1) MA63900B1 (zh)
MX (1) MX2019007169A (zh)
PL (1) PL3559298T3 (zh)
RU (1) RU2753173C2 (zh)
UA (1) UA124354C2 (zh)
WO (2) WO2018115936A1 (zh)
ZA (1) ZA201903329B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
KR102276740B1 (ko) * 2018-12-18 2021-07-13 주식회사 포스코 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
ES2911661T3 (es) * 2019-06-17 2022-05-20 Tata Steel Ijmuiden Bv Tratamiento térmico de un fleje de acero laminado en frío de alta resistencia
ES2911662T3 (es) * 2019-06-17 2022-05-20 Tata Steel Ijmuiden Bv Método de tratamiento térmico de un fleje de acero laminado en frío de alta resistencia
EP3754034B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Heat treatment of cold rolled steel strip
PT3754035T (pt) * 2019-06-17 2022-04-21 Tata Steel Ijmuiden Bv Método de tratamento térmico de uma tira de aço laminada a frio
JP2023506477A (ja) * 2019-12-13 2023-02-16 アルセロールミタル 熱処理された冷間圧延鋼板及びその製造方法
WO2021123877A1 (en) * 2019-12-17 2021-06-24 Arcelormittal Hot rolled steel sheet and method of manufacturing thereof
CN111270160B (zh) * 2020-03-25 2021-06-15 武汉钢铁有限公司 一种抗拉强度≥1200MPa的高延伸率热轧组织调控钢及生产方法
CN111334720B (zh) * 2020-03-30 2022-03-25 邯郸钢铁集团有限责任公司 具有良好冷成型性能的高Al耐磨钢带及其生产方法
WO2022018501A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
US20240060163A1 (en) * 2020-12-23 2024-02-22 Voestalpine Stahl Gmbh A zinc or zinc-alloy coated strip or steel with improved zinc adhesion
WO2022264585A1 (ja) * 2021-06-15 2022-12-22 Jfeスチール株式会社 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法
CN117425743A (zh) * 2021-06-15 2024-01-19 杰富意钢铁株式会社 高强度镀锌钢板及部件以及它们的制造方法
DE102021119047A1 (de) * 2021-07-22 2023-01-26 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit einem bainitischen Grundgefüge und kaltgewalztes Stahlflachprodukt mit einem bainitischen Grundgefüge
CN115725900B (zh) * 2022-11-14 2023-10-24 武汉科技大学 一种高强度高塑性贝氏体钢及生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098413A (ja) * 2014-11-21 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板
JP2016098427A (ja) * 2014-11-26 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440894B2 (ja) * 1998-08-05 2003-08-25 Jfeスチール株式会社 伸びフランジ性に優れる高強度熱延鋼板およびその製造方法
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4445365B2 (ja) * 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
JP5223360B2 (ja) 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP1990431A1 (fr) 2007-05-11 2008-11-12 ArcelorMittal France Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
UA112771C2 (uk) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів
TWI494447B (zh) 2011-07-29 2015-08-01 Nippon Steel & Sumitomo Metal Corp High-strength steel sheet excellent in formability, high-strength zinc plated steel sheet and the like (2)
CA2850195C (en) * 2011-09-30 2016-10-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP5413539B2 (ja) 2011-09-30 2014-02-12 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2013047836A1 (ja) 2011-09-30 2013-04-04 新日鐵住金株式会社 亜鉛めっき鋼板及びその製造方法
EP2684975B1 (de) * 2012-07-10 2016-11-09 ThyssenKrupp Steel Europe AG Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
WO2015011511A1 (fr) * 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier à très hautes caractéristiques mécaniques de résistance et de ductilité, procédé de fabrication et utilisation de telles tôles
CN105793455B (zh) 2013-11-29 2018-10-12 新日铁住金株式会社 热成形钢板构件及其制造方法以及热成形用钢板
JP5862651B2 (ja) * 2013-12-18 2016-02-16 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN105940134B (zh) * 2014-01-29 2018-02-16 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
JP6398210B2 (ja) * 2014-02-07 2018-10-03 新日鐵住金株式会社 冷延鋼板の製造方法
JP6237364B2 (ja) 2014-03-17 2017-11-29 新日鐵住金株式会社 衝突特性に優れた高強度鋼板及びその製造方法
WO2016001702A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
KR101915917B1 (ko) 2014-10-30 2018-11-06 제이에프이 스틸 가부시키가이샤 고강도 강판, 고강도 용융 아연 도금 강판, 고강도 용융 알루미늄 도금 강판 및 고강도 전기 아연 도금 강판, 그리고 그것들의 제조 방법
WO2016139876A1 (ja) 2015-03-03 2016-09-09 Jfeスチール株式会社 高強度鋼板及びその製造方法
JP6762797B2 (ja) * 2016-08-03 2020-09-30 株式会社神戸製鋼所 高強度鋼板およびその製造方法
DE102016012321A1 (de) * 2016-10-17 2018-04-19 Fiona Gabriella Saygivar Absturzsicherung für Personen
WO2018115935A1 (en) 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098413A (ja) * 2014-11-21 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板
JP2016098427A (ja) * 2014-11-26 2016-05-30 株式会社神戸製鋼所 高強度高延性鋼板

Also Published As

Publication number Publication date
FI3559298T3 (fi) 2024-03-18
EP3559298B8 (en) 2024-04-10
WO2018115936A1 (en) 2018-06-28
EP3559298B1 (en) 2024-01-24
CA3047690C (en) 2023-02-14
PL3559298T3 (pl) 2024-04-29
RU2019122654A3 (zh) 2021-01-22
BR112019011142A2 (pt) 2019-10-01
RU2753173C2 (ru) 2021-08-12
RU2019122654A (ru) 2021-01-22
KR102325717B1 (ko) 2021-11-15
CA3047690A1 (en) 2018-06-28
KR20190089010A (ko) 2019-07-29
ZA201903329B (en) 2020-01-29
EP3559298A1 (en) 2019-10-30
JP6992070B2 (ja) 2022-01-13
MX2019007169A (es) 2019-08-29
JP2020503443A (ja) 2020-01-30
JP2021176993A (ja) 2021-11-11
US11655516B2 (en) 2023-05-23
WO2018116099A1 (en) 2018-06-28
CN110088332A (zh) 2019-08-02
UA124354C2 (uk) 2021-09-01
MA63900B1 (fr) 2024-02-29
US20190338388A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
CN110088332B (zh) 具有优异的可成形性的经回火和涂覆的钢板及其制造方法
CN110088320B (zh) 具有优异的可成形性的经回火和涂覆的钢板及其制造方法
CN108463340B (zh) 具有优异的可成形性的高强度钢板及其制造方法
KR102314590B1 (ko) 높은 성형성을 갖는 고강도의 냉간 압연된 강 시트 및 그의 제조 방법
JP7275137B2 (ja) 靭性、延性及び強度に優れた鋼板及びその製造方法
US20170101695A1 (en) Double annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
JP7117381B2 (ja) 冷間圧延された被覆鋼板及びその製造方法
KR101489243B1 (ko) 가공성 및 도금밀착성이 우수한 고강도 합금화 용융 아연도금강판 및 그 제조방법
KR20120044152A (ko) 버링 가공성이 우수한 780MPa급 고강도 냉연강판 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant