CN111334720B - 具有良好冷成型性能的高Al耐磨钢带及其生产方法 - Google Patents

具有良好冷成型性能的高Al耐磨钢带及其生产方法 Download PDF

Info

Publication number
CN111334720B
CN111334720B CN202010238334.8A CN202010238334A CN111334720B CN 111334720 B CN111334720 B CN 111334720B CN 202010238334 A CN202010238334 A CN 202010238334A CN 111334720 B CN111334720 B CN 111334720B
Authority
CN
China
Prior art keywords
percent
wear
rolling
cooling
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010238334.8A
Other languages
English (en)
Other versions
CN111334720A (zh
Inventor
张继永
吕德文
贾改风
李斌
申震
李冠楠
李爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Handan Iron and Steel Group Co Ltd
HBIS Co Ltd Handan Branch
Original Assignee
Handan Iron and Steel Group Co Ltd
HBIS Co Ltd Handan Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Handan Iron and Steel Group Co Ltd, HBIS Co Ltd Handan Branch filed Critical Handan Iron and Steel Group Co Ltd
Priority to CN202010238334.8A priority Critical patent/CN111334720B/zh
Publication of CN111334720A publication Critical patent/CN111334720A/zh
Application granted granted Critical
Publication of CN111334720B publication Critical patent/CN111334720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种具有良好冷成型性能的高Al耐磨钢带,采用高铝成分设计,其化学成分重量百分比为:C:0.10%‑0.24%、Si:1.0%‑1.5%、Mn:1.50%‑2.00%、P≤0.015%、S≤0.010%、Als:0.40%‑0.70%、Ti:0.010%‑0.040%、N≤0.0045%,其它为Fe和不可避免的残余元素。在轧钢工序中采用控轧控冷技术,通过分段冷却在线获得铁素体+马氏体+残余奥氏体的三相金相组织,无需进行轧后热处理,工艺流程短、节能环保。本发明生产的耐磨钢带晶粒尺寸均匀、性能稳定,冷成型和耐磨性能良好,可广泛用于自卸车、混凝土搅拌罐、泵车、料斗等领域。

Description

具有良好冷成型性能的高Al耐磨钢带及其生产方法
技术领域
本发明涉及一种耐磨钢带,尤其涉及一种具有良好冷成型性能的高Al耐磨钢带及其生产方法。
背景技术
高强耐磨钢具有高硬度、高耐磨、易焊接、可成形、长寿命等特点,广泛用于自卸车、载重车、混凝土搅拌车、泵车、料斗和矿产机械等领域。目前高强耐磨钢按照制造方法分为传统工艺耐磨钢和热轧耐磨钢,传统工艺耐磨钢采用轧后离线调制热处理获得,存在工艺流程长、工序能耗高、交货周期长等问题。而热轧耐磨钢通过采用“控制轧制+在线淬火”一步生产法获得,工艺流程短、节能环保,便于大规模工业化生产。
近年来随着国家汽车轻量化和环保政策的实施,热轧耐磨钢的优势不断体现,市场对热轧耐磨钢的需求不断增加,国内各大钢厂及研究机构都在开展相关研究;但从现有技术来看,为了获得耐磨钢所需的高强、高硬和高的淬透性,大部分厂商在成分设计中的添加了大量Cr、Ni、Mo等价格高昂的合金元素,在提高强度的同时也导致材料塑性降低,焊接性能变差,增加材料加工开裂以及焊接质量缺陷出现的风险,影响用户加工及使用。
公开号为CN 106244920A的专利申请公开了“布氏硬度450级耐磨钢及其制造方法”,其化学成分按重量百分比为:C:0.17%-0.22%,Si:0.40%-0.60%,Mn:1.2%-1.45%,P≤0.01%,S≤0.005%,Cr:0.6%-0.85%,Ni≤0.1%,Mo≤0.1%,Als:0.02-0.05%,Ti ≤0.015 %,V≤0.02 %,B≤0.004%,其余为铁和不可避免的杂质;采用离线淬火+低温回火工艺,为传统耐磨钢制造方法,工艺复杂、工序能耗高、交货周期偏长,该专利为了获得高的淬透性,在钢中加入Cr、Ni、Mo、V等合金元素,制造成本较高,且过多合金加入增加了浇铸难度,生产中表面裂纹不易控制。此外,按其方法生产的耐磨钢强度过高,塑性不足,延伸率仅在12.0%以内,在大变形冷加工中容易出现开裂。
公开号为CN108034890A的专利公开了“一种低合金中锰耐磨钢热轧板及制备方法”,其化学成份按重量百分比为:C:0.6%-0.8%,Si:0.1%-0.2%,Mn:4.5%-4.9%,P≤0.02%,S≤0.02%,Cr:3.0%-3.5%,Cu:0.4%-1.0%,其余为Fe和杂质。该专利技术的不足之处在C含量较高,强度有余而冷成型性能不足,同时过高碳当量会影响焊接性能;钢中添加了Cu元素而没有添加抑制Cu热裂的合金元素,在浇铸和轧制工序中易产生Cu热裂现象,生产难度增大,影响产品合格率。
公开号为CN103255341A的专利公开了“一种高强度高韧性热轧耐磨钢及其制造方法”,其化学成分的重量百分比为:C:0.20%-0.50%,Si:0.8%-2.0%,Mn:1.5%-3.0%,P≤0.015%,S≤0.005%,Al:0.02%-0.08%,N≤0.006%,O≤30ppm,Ti:0.005%-0.015%,Ni:0.5%-2.0%,且满足Mn和Ni之和为3.2%-3.6%,其余为Fe 和不可避免杂质。其强化原理采用相变诱导效应来增强耐磨钢的硬度和耐磨性,在这种模式下只有在带有载荷冲击条件下,相变诱导效应才能较好发挥作用,在无载荷冲击下耐磨性能和普通低合金高强钢类似。
发明内容
本发明所要解决的技术问题是提供一种具有良好冷成型性能的高Al耐磨钢带及其生产方法,在常规热连轧产线生产出成本低廉、高强度、高硬度和良好冷成型性能的热轧耐磨钢,无需轧后热处理,工艺流程短,节能环保。
解决上述技术问题的技术方案为:
具有良好冷成型性能的高Al耐磨钢带,其化学成分重量百分比为:C:0.10%-0.24%、Si:1.0%-1.5%、Mn:1.50%-2.00%、P≤0.015%、S≤0.010%、Als: 0.40%-0.70%、Ti:0.010%-0.040%、N≤0.0045%,其它为Fe和不可避免的残余元素。
具有良好冷成型性能的高Al耐磨钢带的生产方法,包括连铸、板坯加热、轧制、冷却和卷取生产工序:所述板坯连铸工序,连铸坯化学成分重量百分比为:C:0.10%-0.24%、Si:1.0%-1.5%、Mn:1.50%-2.00%、P≤0.015%、S≤0.010%、Als: 0.40%-0.70%、Ti:0.010%-0.040%、N≤0.0045%,其它为Fe和不可避免的残余元素。
上述的具有良好冷成型性能的高Al耐磨钢带的生产方法,所述冷却工序,层流冷却采用分段冷却方式,一段冷却速率20-50℃/s,中冷温度630-690℃,空冷保温时间5-10s,然后进入二段冷却,二段冷却速率35-60℃/s,冷却到150℃以下卷取,在线获得10%-20%的铁素体+75%~90%的马氏体+1%~8%的残余奥氏体三相组织。
上述的具有良好冷成型性能的高Al耐磨钢带的生产方法,所述轧制工序,粗轧采用3+5道次轧制,最后2道次压下率控制在20%-30%之间,粗轧累计压下率控制在70%-85%之间,中间辊道投用保温罩,精轧累计压下率按60-80%控制,终轧温度按850-910℃控制。
所述板坯加热工序,板坯加热时间180-300min,在均热段停留时间30-70min,出炉温度1230-1280℃。
上述的具有良好冷成型性能的高Al耐磨钢带的生产方法,所连铸工序,钢水进中包温度控制在1505-1545℃,过热度ΔT=10-30℃,以0.9-1.3m/min恒定拉速拉坯,铸坯凝固末端采用动态轻压下,压下总量≥6mm,全程氩气保护浇铸,防止外界空气进入;钢坯下线后10分钟内吊入用热坯包围的垛位进行缓冷,缓冷时间≥48小时;浇铸期间保持恒定拉速是为了保证浇注稳定减少液面波动卷渣,凝固末端给与足够量的动态轻压下是为破碎柱状晶,使再结晶过程晶粒细化,改善钢坯内质和成分偏析。
上述的一种具有良好冷成型性能的高Al耐磨钢带,其成品厚度2.5-12.0mm;屈服强度≥600MPa,抗拉强度≥900MPa,延伸率≥14.0%,布氏硬度HBW介于200-400之间;冷弯性能:其弯曲压头直径采用5倍厚度时弯曲120°正常。
本发明成分设计主要依据:
C:碳在本发明中起到间隙固溶强化作用,保证钢的强度、硬度和淬透性需要,C可以和Ti形成弥散细小的TiC析出,提高钢的强度的同时又增加了耐磨性;但过高的碳会导致塑性、韧性和焊接性能降低,因此,本发明中C含量控制在0.10wt%-0.24wt %为宜。
Si和Mn:本发明采用高Si中Mn成分设计,主要原因有三方面:一是Si对钢水进行脱氧,并和钙、铝一起形成硅酸盐,改善钢质;二是锰可以降低钢的临界冷却速度,Mn和Si相互协调可以大幅提高钢的淬透性;三是Mn是奥氏体稳定元素,推迟奥氏体向珠光体转变,扩大了工艺窗口,有利于组织调控。但Si过高会使钢的脆性增大,冲击韧性下降,影响表面质量,同时过量的Mn易形成严重的中心偏析,破坏组织均匀性。因此,本发明Si优选控制在1.0wt%-1.5wt%,Mn优选控制在1.50 wt%-2.00wt %。
Al:本发明创造性的采用高Al设计,一方面铝在钢水冶炼中起到脱氧作用,另一方面是出于组织性能调控的考虑,钢中加入适量的铝能够缩小奥氏体区,扩大铁素体相变窗口,有利于通过控制冷却获得一定比例的铁素体,改善钢的冷成型性能和冲击韧性,但过量的Al会形成大尺寸的Al2O3夹杂,降低钢板的低温冲击性能,增加冷加工开裂的风险。另外,过高的Al会使钢的自腐蚀电位降低,耐蚀性能降低。因此,本发明中Al含量优选控制在0.4wt%-0.7wt%之间。
Ti:在本发明中起到析出强化和细化晶粒的作用,Ti是强碳和氮化合物形成元素,其碳化物TiC颗粒细小且具有极高的硬度,弥散分布在钢板的基体中能够有效提高钢板的硬度和耐磨性。钢中加入适量的Ti,形成细小钛的碳氮化物能有效抑制加热时晶粒的长大,起到细化晶粒的作用。但过高的Ti会与N结合形成的粗大的TiN夹杂,降低钢板的低温韧性和疲劳性能。因此,本发明中Ti的加入量控制在0.010wt%-0.040wt%之间。
本发明冷却工序中采用分段冷却技术在线获得铁素体+马氏体+残余奥氏体三相组织,无需轧后热处理,缩短了工艺流程,降低了成本和能耗,其主要依据在于:
分段冷却技术主要涉及两段冷却,在一段冷却中通过冷速、中冷温度和空冷时间的合理调配获得一定比例的先共析铁素体,然后在二段冷却通过快速集中冷却,使剩余的奥氏体转变为马氏体组织,最终获得铁素体+马氏体+残余奥氏体三相组织。在冷却工序中,一段冷却速率、中冷温度和空冷时间的控制是关键,一段冷速过慢、中冷温度太高、空冷时间过短,形成先共析铁素体少,马氏体比例过高,将导致钢的强度过高,冷成型和冲击性能不佳;反之,则形成马氏体比例偏低,钢的强度和硬度不足,耐磨损性能不足。因此,本发明冷却工序中一段冷却速率控制在20-50℃/s之间,中冷温度630-690℃,空冷保温时间5-10s,二段冷却速率按35-60℃/s控制,冷却到150℃以下卷取,最终获得10%-20%的铁素体+75%-90%的马氏体+1%-8%的残余奥氏体的三相组织。
本发明的有益效果:
1)本发明在成分上采用0.4wt%-0.7wt%高Al设计,避免使用Cr、Mo、Ni等昂贵合金,适量Al的加入能够缩小奥氏体区,扩大工艺窗口,有利于组织性能调控,有效改善钢的冷成型性能。高Al设计的耐磨钢延伸率达到14%以上,现有技术生产的耐磨钢延伸率大多数在12%以内,冷加工过程容易开裂。
2)本发明涉及的连铸工序,浇铸中对中包温度、过热度和拉速进行规范控制,提高了钢质纯净度。在铸坯凝固末端采用动态轻压下技术,压下总量≥6mm,可以有效改善钢坯内质和成分偏析。
3)本发明涉及的轧钢工序,采用控制轧制+分段冷却“一步生产法”生产,通过控轧和分段冷却技术在线获得铁素体+马氏体+残余奥氏体三相组织,无需轧后热处理,工艺流程短、节能环保,便于大规模工业化生产。
4) 根据本发明生产的热轧耐磨钢金相组织由铁素体+马氏体+残余奥氏体三相构成,软硬相比例适中,其屈服强度≥600MPa,抗拉强度≥900MPa,延伸率≥14.0%,布氏硬度在200-400 HBW之间,采用5倍厚度弯曲压头直径时弯曲120°无裂纹,具有良好的冷成型性能,可以广泛用于自卸车、混凝土搅拌罐体、泵车等热门领域。
附图说明
图1为按实施例1生产的耐磨钢带厚度1/2处金相组织照片;
图2为按实施例2生产的耐磨钢带厚度1/2处金相组织照片;
图3为按实施例3生产的耐磨钢带厚度1/2处金相组织照片;
图4为按实施例4生产的耐磨钢带厚度1/2处金相组织照片;
图5为按实施例5生产的耐磨钢带厚度1/2处金相组织照片;
图6为按实施例6生产的耐磨钢带厚度1/2处金相组织照片。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容。
本发明涉及一种具有良好冷成型性能的高Al耐磨钢带及其生产方法,其化学成分控制见表1,生产工艺流程包括:连铸→板坯加热→轧制→冷却→卷取。
表1 耐磨钢化学成分控制(单位:wt%)
Figure DEST_PATH_IMAGE001
在连铸工序,中包温度按1505-1545℃之间,过热度ΔT=10-30℃,采用0.9-1.3m/min恒定拉速浇铸,在扇形段凝固末端实施动态轻压下,总压下量≥6mm,有效破碎铸坯柱状晶,使再结晶过程晶粒细化,改善铸坯疏松和成分偏析,全程氩气保护浇铸,防止外界空气进入。
本发明涉及的轧钢工序的生产方法在邯钢2250常规热连轧产线实上施,2250主轧线设备包括:4座加热炉,2台粗轧机(即R1轧机和R2轧机),7台精轧机(即F1-F7轧机),1条层流冷却装置以及3台地下卷取机。
整个轧制过程采用两阶段轧制,一阶段轧制为完全再结晶轧制,粗轧采用3+5道次轧制,即R1轧制3道次+R2轧制5道次,利用粗轧高温大压下的有利条件,充分发挥设备能力,最后两道次的压下率控制在20%-30%之间,粗轧累计压下率控制在70%-85%之间,使奥氏体晶粒在反复变形、再结晶和回复过程中细化。二阶段轧制为未再结晶轧制,主要在精轧完成,在此阶段增加压下率可以进一步细化奥氏体晶粒,使晶粒累积大量的形变带和位错,为后续相变提供足够的形核点,考虑精轧板形控制和设备能力,精轧累计压下率控制在60%-80%之间,终轧温度按850-910℃控制。
层流冷却采用分段冷却,层流冷却采用分段冷却方式,一段冷却速率20-50℃/s,中冷温度630-690℃,空冷保温时间5-10s,然后进入二段快速冷却,二段冷却速率35-60℃/s,冷却到150℃以下卷取。耐磨钢主要轧制工艺参数见表2。
表2 耐磨钢主要轧制工艺参数
Figure 252133DEST_PATH_IMAGE002
根据本发明生产的厚度2.5-12.0mm耐磨钢,其屈服强度在761-825MPa之间,抗拉强度在1068-1215MPa之间,采用A50标距断后延伸率在14.2%-16.8%。冷弯试验中采用5倍厚度弯曲压头直径时弯曲160-180°不出现裂纹或断裂,具有良好的冷弯性能。表面布氏硬度在HBW 291-321,6个实施例所有力学性能均满足标准要求,详情见表3。
六个实施例生产的耐磨钢组织见图1-图6,金相组织由铁素体+马氏体+残余奥氏体三相构成,其中铁素体比例占10%-20%,马氏体比例占75%-90%, 残余奥氏体在1%-8%之间。
表3 耐磨钢力学性能
Figure DEST_PATH_IMAGE003
取实例1-6样做磨粒磨损试验,各实例样板磨损率在0.089-0.116g/h,而对比例1(Q345B)和对比例2(700L)的磨损率分别0.42g/h和0.23g/h,磨损试验对比见表4。试验说明在相同工况下本发明中的耐磨钢相比传统低合金高强钢具有更好的耐磨损性能。
表4 耐磨钢和低合金高强钢磨损试验对比
Figure 60951DEST_PATH_IMAGE004

Claims (4)

1. 具有良好冷成型性能的高Al耐磨钢带,其特征在于:其化学成分重量百分比为:C:0.10%-0.15%、Si:1.25%-1.5%、Mn:1.50%-2.00%、P≤0.015%、S≤0.010%、Als: 0.51%-0.70%、Ti:0.010%-0.040%、N≤0.0045%,其它为Fe和不可避免的残余元素,所述钢带为热轧耐磨钢,金相组织由铁素体+马氏体+残余奥氏体三相构成,钢带厚度2.5-12.0mm,力学性能:屈服强度≥600MPa,抗拉强度≥900MPa,延伸率≥14.0%,布氏硬度HBW:200-400;冷弯性能:采用5倍厚度弯曲压头直径时弯曲120°正常;所述高Al耐磨钢带由下述方法生产:包括连铸、板坯加热、轧制、冷却和卷取生产工序;所述轧制工序,粗轧采用3+5道次轧制,最后2道次压下率控制在20%-30%之间,粗轧累计压下率控制在70%-85%之间,中间辊道投用保温罩,精轧累计压下率按60%-80%控制,终轧温度按850-910℃控制;所述冷却工序,层流冷却采用分段冷却方式,一段冷却速率20-50℃/s,中冷温度630-690℃,空冷保温时间5-10s,二段冷却速率35-60℃/s,冷却到150℃以下卷取。
2.一种如权利要求1所述的具有良好冷成型性能的高Al耐磨钢带的生产方法,包括连铸、板坯加热、轧制、冷却和卷取生产工序,其特征在于:所述轧制工序,粗轧采用3+5道次轧制,最后2道次压下率控制在20%-30%之间,粗轧累计压下率控制在70%-85%之间,中间辊道投用保温罩,精轧累计压下率按60%-80%控制,终轧温度按850-910℃控制;所述冷却工序,层流冷却采用分段冷却方式,一段冷却速率20-50℃/s,中冷温度630-690℃,空冷保温时间5-10s,二段冷却速率35-60℃/s,冷却到150℃以下卷取。
3.如权利要求2所述一种具有良好冷成型性能的高Al耐磨钢带的生产方法,其特征在于:所述板坯加热工序,板坯加热时间180-300min,在均热段停留时间30-60min,出炉温度1230-1280℃。
4.如权利要求2或3所述的一种具有良好冷成型性能的高Al耐磨钢带的生产方法,其特征在于:所述连铸工序,钢水进中包温度控制在1505-1545℃,过热度ΔT=10-30℃,以0.9-1.3m/min恒定拉速拉坯,铸坯凝固末端采用动态轻压下,压下总量≥6mm;钢坯下线后10分钟内吊入用热坯包围的垛位进行缓冷,缓冷时间≥48小时。
CN202010238334.8A 2020-03-30 2020-03-30 具有良好冷成型性能的高Al耐磨钢带及其生产方法 Active CN111334720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010238334.8A CN111334720B (zh) 2020-03-30 2020-03-30 具有良好冷成型性能的高Al耐磨钢带及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010238334.8A CN111334720B (zh) 2020-03-30 2020-03-30 具有良好冷成型性能的高Al耐磨钢带及其生产方法

Publications (2)

Publication Number Publication Date
CN111334720A CN111334720A (zh) 2020-06-26
CN111334720B true CN111334720B (zh) 2022-03-25

Family

ID=71180454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010238334.8A Active CN111334720B (zh) 2020-03-30 2020-03-30 具有良好冷成型性能的高Al耐磨钢带及其生产方法

Country Status (1)

Country Link
CN (1) CN111334720B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176256A (zh) * 2020-09-27 2021-01-05 邯郸钢铁集团有限责任公司 一种高冲击韧性汽车大梁钢带及其生产方法
CN112760560A (zh) * 2020-12-17 2021-05-07 包头钢铁(集团)有限责任公司 一种强度1100MPa级低屈强比混凝土搅拌车用NM300耐磨钢及其制备方法
CN115198188A (zh) * 2022-07-11 2022-10-18 山西太钢不锈钢股份有限公司 低成本hb400级双相耐磨热轧卷板及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131303A1 (ja) * 2009-05-11 2010-11-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
KR101607786B1 (ko) * 2011-09-30 2016-03-30 신닛테츠스미킨 카부시키카이샤 인장 강도 980㎫ 이상 갖는 도금 밀착성, 성형성과 구멍 확장성이 우수한 고강도 용융 아연 도금 강판 및 고강도 합금화 용융 아연 도금 강판과 그 제조 방법
JP2014043629A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal 熱延鋼板
JP6390249B2 (ja) * 2014-08-04 2018-09-19 新日鐵住金株式会社 穴拡げ性に優れた高強度熱延鋼板、その製造方法および穴拡げ性評価方法
CN104532126B (zh) * 2014-12-19 2017-06-06 宝山钢铁股份有限公司 一种低屈强比超高强度热轧q&p钢及其制造方法
BR112017025756A2 (pt) * 2015-06-17 2018-08-14 Nippon Steel & Sumitomo Metal Corporation chapa de aço e método de fabricação
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP6699711B2 (ja) * 2017-11-28 2020-05-27 Jfeスチール株式会社 高強度鋼帯の製造方法
CN107881417B (zh) * 2017-11-29 2019-08-27 东北大学 一种低屈强比马氏体-铁素体-奥氏体复相耐磨钢板及其制造方法

Also Published As

Publication number Publication date
CN111334720A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN101768698B (zh) 一种低成本屈服强度700mpa级非调质处理高强钢板及其制造方法
CN111996441B (zh) 一种高韧性折弯性能良好的TiC增强型马氏体耐磨钢板及其制造方法
US20230125540A1 (en) Tempering-free wear-resistant hot rolled strip and method for producing same
CN111334720B (zh) 具有良好冷成型性能的高Al耐磨钢带及其生产方法
CN111455278A (zh) 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法
CN108929986B (zh) 一种高强度耐磨汽车制动用热轧钢板及其生产工艺
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
CN110684925A (zh) 一种高强耐磨耐腐蚀热轧钢带及其生产方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN111424211B (zh) 宽幅700MPa级热轧集装箱用耐候钢及其制造方法
CN110106322B (zh) 一种薄规格工程机械用高强钢及板形控制方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN111607735B (zh) 一种布氏硬度≥420的热轧耐磨钢及生产方法
CN112831731A (zh) 在线淬火复相组织热轧耐磨钢及制备方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN109518074A (zh) 一种经济型高韧性800MPa级汽车大梁钢及其生产方法
CN111534746B (zh) 宽幅450MPa级热轧集装箱用耐候钢及其制造方法
WO2020108595A1 (zh) 一种高表面质量、低屈强比热轧高强度钢板及制造方法
CN108315662A (zh) 一种屈服强度900MPa级热轧钢板及其生产工艺
CN112795731A (zh) 一种灯罩用冷轧钢板及其生产方法
CN114934156A (zh) 布氏硬度450hbw高强度、高韧性热连轧薄钢板的生产方法
CN102418047B (zh) 一种非调质处理耐疲劳的钢板及其制造方法
JP2022550329A (ja) 高穴拡げ性複相鋼及びその製造方法
CN114000068B (zh) 一种厚度4-10mm的低氮超高强热轧钢带及其生产方法
CN110938771A (zh) 抗拉强度630MPa级车轮用热轧钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant