CN1100741C - 费-托法催化剂与烃的制备方法 - Google Patents

费-托法催化剂与烃的制备方法 Download PDF

Info

Publication number
CN1100741C
CN1100741C CN97197786A CN97197786A CN1100741C CN 1100741 C CN1100741 C CN 1100741C CN 97197786 A CN97197786 A CN 97197786A CN 97197786 A CN97197786 A CN 97197786A CN 1100741 C CN1100741 C CN 1100741C
Authority
CN
China
Prior art keywords
catalyst
fischer
cobalt
catalyzer
tropsch catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97197786A
Other languages
English (en)
Other versions
CN1230164A (zh
Inventor
P·布兰肯斯坦
J·J·C·吉尔林斯
H·M·胡伊斯曼
P·W·莱德纳
B·J·范利姆特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1230164A publication Critical patent/CN1230164A/zh
Application granted granted Critical
Publication of CN1100741C publication Critical patent/CN1100741C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及含有载在二氧化钛催化剂载体上的催化活性金属化合物的费-托法催化剂,该载体的金红石∶锐钛矿之比低于2∶3,表面积低于75米2/克。本发明进一步涉及该催化剂制备方法以及通过在高温和高压下使氢气和一氧化碳的混合物与上述催化剂接触制备烃类的方法。

Description

费-托法催化剂与烃的制备方法
本发明涉及费-托法催化剂,该催化剂的制备以及由合成气,即一氧化碳和氢气的混合物制备烃类的方法。
由合成气制备烃类在现有技术中属于公知内容,通常称为费-托合成法。
适合于费-托合成方法的催化剂,即费-托法催化剂典型地含有元素周期表的第八族催化活性金属(化学和物理手册,第68版,CRC出版社,1987-1988),具体地说铁、镍、钴和钌是该催化剂的众所周知的催化活性金属。钴被发现最适合于合成气转化为含有5个或更多个碳原子且主要为链烷烃的烃的催化方法,换言之,催化剂的
Figure C9719778600041
选择性高。
众多研究努力试图寻求优选比已知催化剂具备更高的
Figure C9719778600042
选择性,且活性相同或更高的可供选择替代的催化剂。
欧洲专利说明书No.178008透露载于多孔载体上的钴催化剂,其中绝大部分钴浓集在催化剂颗粒的表皮。
欧洲专利说明书No.167215透露一种用于催化剂固定床的载于二氧化硅上的钴/氧化锆催化剂,该催化剂满足了内表面与外表面之间的关系。
欧洲专利说明书No.363537指出载于二氧化钛上的钴催化剂的活性随着向二氧化钛载体(优选富金红石型)中添加多达10%的二氧化硅(重量)而增加。
欧洲专利说明书No.370757描述费-托法催化剂由优选富金红石型二氧化钛载体构成,其特征是往上述二氧化钛载体掺入从0.1至20%(重量)的无机粘合剂,该粘合剂选自二氧化硅、氧化铝和氧化锆。
欧洲专利申请公开No.542527描述钴载于锐钛矿多晶型物上的费-托法催化剂,多晶型物化学式为Ti1-xMxO2,其中X范围从0.01至0.14,M选自硅、锆和钽。
欧洲专利申请公开No.498976描述载于二氧化钛载体(优选富金红石型)上的含钴和铼的催化剂,要求保护的催化剂具有高体积产率(活性)。
欧洲专利说明书No.2l6967要求保护的用于甲醇或合成气转化为烃类的催化剂组合物是由催化活性量的钴或钴和氧化钍与二氧化钛或含二氧化钛的载体构成,其特征是二氧化钛载体具有金红石∶锐钛矿之比至少约为2∶3。具体地说优选用于费-托合成方法的催化剂组合物的特征是二氧化钛载体的金红石∶锐钛矿之比为4∶1至100∶1或更高。
尽管在该领域存在众多研究努力,但仍有改进的余地。因此,举例来说,希望找到一种可供选择替代的催化剂,人们更迫切地期望找到一种与已知催化剂相比具有更高的 选择性与相同的,优选更高的活性的催化剂。
因此,本发明试图提供用于制备烃类的催化剂和方法,它们相对于现有技术催化剂和方法在一方面或多方面具有其优势。
具体地说,最令人惊奇地发现经仔细控制富锐钛矿载体表面积能克服该载体的某些缺点。
因此,本发明的一个方面提供含有载于二氧化钛催化剂载体上的钴化合物和/或铁化合物和至少一种选自元素周期表中IIIb、IVb、Vb、VIIb和/或VIII族的助催化剂的费-托法催化剂,该二氧化钛催化剂载体的金红石∶锐钛矿之比大于1∶100并且低于2∶3,表面积低于75m2/g。
按照ASTM D 3720-78采用X-射线衍射法测定金红石∶锐钛矿之比。
适宜按照ASTM D 4567-86描述的氮气吸附法测定表面积。
催化剂载体表面积优选低于65m2/g,更优选低于55m2/g。无需拘束于特殊的理论,催化活性金属和二氧化钛生成的如钛酸钴那样的催化非活性化合物,看来易于在具有高表面积富锐钛矿载体上形成,如同在欧洲专利说明书No.216967中比较试验描述的富锐钛矿费-托法催化剂。
催化剂载体表面积优选高于15m2/g,更优选高于25m2/g,最优选高于35m2/g。
二氧化钛催化剂载体具有金红石∶锐钛矿之比优选低于3∶5,更优选低于1∶2,最优选低于1∶3。
金红石∶锐钛矿之比典型地高于1∶100,优选高于1∶50,更优选高于1∶15。
按照优选实施方案,费-托法催化剂载体具有孔体积至少0.45ml/g,优选至少0.50ml/g,具体地至少0.55ml/g。
令人惊奇地发现由孔体积至少0.45ml/g载体制备的催化剂的活性和选择性比由较低孔体积的载体制备的催化剂要高。
适于按照ASTM D 4284-92采用汞气孔测定法[压力高至60000磅/平方英寸(4.1千巴)]测定孔体积。
孔体积典型地低于0.85ml/g,具体地说低于0.75ml/g。较高的孔体积原则上是可能的,但是,这会有损于催化剂载体强度。通过加入0.1至20%载体重量诸如二氧化硅、氧化铝或氧化锆之类粘合剂能予以解决。可是,粘合剂对催化剂性能有负影响,例如,失活速率会较高,因此,优选不加粘合剂。
催化剂孔体积优选至少0.20ml/g,更优选至少0.25ml/g,最优选至少0.30ml/g。孔体积典型地低于0.80ml/g,具体地说低于0.70ml/g。
用于由合成气选择性地催化制各 烃类的催化活性金属是钴和/或铁,优选钴。
应该理解,催化剂中存在的催化剂活性金属的优选量依所用催化活性金属而定。一般来说,存在于催化剂中催化活性金属量按每100重量份的载体计为0.1至100重量份。如果使用钴或铁,优选3到60重量份,更优选5到50重量份。
本发明含钴的费-托法催化剂中,钴的有利使用量至少0.2克钴/毫升催化剂,优选至少0.25克钴/毫升催化剂。
钴的使用量优选低于0.8克钴/毫升催化剂,更优选低于0.6克钴/毫升催化剂,最优选低于0.5克钴/毫升催化剂。
上述的钴的使用量涉及以金属钴计的总钴量,可用已知的元素分析技术进行测定。
催化剂可进一步含有一种或多种选自元素周期表IIIb、IVb、Vb、VIIb和/或VIII族的助催化剂。优选的助催化剂选自锆、锰、钪、钒、铼、铂和钯。
最适用的催化剂包含作为催化活性金属的钴和作为助催化剂的锆。另一最适用的催化剂包含作为催化活性金属的钴和作为助催化剂的锰和/或钒。助催化剂可采用在下文讨论关于催化活性组分的诸种方法中任一方法加到催化剂中去。
若在催化剂中存在助催化剂,按每100重量份的载体计其用量一般为0.1至60重量份,优选0.5至40重量份。但是,应知道助催化剂最佳用量依作为助催化剂的各自元素而改变。
令人惊奇地发现含有催化活性金属钴和少量锰和/或钒的催化剂在制备烃类方法中相比于除了仅含钴以外其它方面相同的催化剂显示出较高的
Figure C9719778600071
选择性和较高的活性。
因此,按照优选实施方案,本发明涉及含有钴和锰和/或钒的催化剂,其中钴∶(锰+钒)原子比至少是12∶1。
典型地,按照本发明优选实施方案,含钴催化剂除了在催化剂制备方法中因原料而可能引入的杂质以外,不含碱金属或碱土金属。典型地,碱金属或碱土金属与钴金属摩尔比低于0.01,优选低于0.005。
钴∶(锰+钒)原子比优选至多为1500∶1,更优选至多为500∶1,甚至更优选至多为100∶1,最优选至多38∶1。钴∶(锰+钒)原子比优选至少为15∶1,更优选至少为16∶1,最优选至少为18∶1。
除了锰和/或钒以外,催化剂可包含一种或多种其它助催化剂,它们选自周期表的IVB族、VIII族的贵金属或铼、钪、铌或钽。优选其它助催化剂包括锆、钛、钌、铂、钯和/或铼。若有其它助催化剂存在,该助催化剂的用量按每100重量份耐熔的氧化物载体计典型地是在1和150重量份之间。
通过如下步骤可适宜地制备本发明催化剂:a)将具有金红石∶锐钛矿之比低于2∶3的二氧化钛粉末或二氧化钛前体的粉末与液体相混合,该前体粉末能转化成具有上述金红石∶锐钛矿之比的二氧化钛;b)蒸发混合物中液体以获得固体,即附聚的颗粒;随后视具体情况而定进行C)粉碎步骤;并在催化剂中加入钴化合物和/或铁化合物。
优选地,催化剂进一步进行焙烧处理,该焙烧处理可在步骤b)和/或步骤c)之后,和/或在催化剂中至少加入一种催化活性金属化合物之后实施。
典型地,二氧化钛粉末的金红石∶锐钛矿之比或二氧化钛前体在转化为二氧化钛时预期的金红石∶锐钛矿之比要等于或小于期望的最终产品,即本发明的费-托法催化剂中金红石∶锐钛矿之比。
业已发现,采用本方法能制备相对于采用其它方法制备的催化剂具有较高孔体积、较低表面积的催化剂。
按照该方法的步骤a),二氧化钛粉末或二氧化钛前体粉末与液体混合。二氧化钛前体典型地是一种能通过在空气中焙烧转化成二氧化钛的钛化合物的沉淀。适用的二氧化钛前体的示例是水合二氧化钛和氢氧化钛。
适用于生成二氧化钛前体的沉淀方法的实例是经由钛的醇盐溶液的沉淀。适用的醇盐的实例为乙醇钛、正丙醇钛、异丙醇钛、正丁醇钛、异丁醇钛和叔丁醇钛。
在上述方法的步骤a)中优选使用二氧化钛粉末,该粉末采用本领域已知的方法制备,如从含钛化合物的溶液中沉淀析出以制备二氧化钛前体沉淀,如氢氧化钛;随后经焙烧制备二氧化钛。可溶的钛化合物的实例为钛的醇盐、钛的氯化物和其它无机或有机的钛盐。但是,业已发现,痕量的硫会对催化剂性能有不利的影响。因此,优选在方法中使用不经含硫化合物制备的二氧化钛粉末。
优选的二氧化钛粉末是可蒸发的钛的化合物,如四氯化钛经高温水解以高温法制备的粉末。在德国专利说明书No.870242中透露了适用的方法。采用该法所获得的二氧化钛在下文称为烟雾法二氧化钛。因此,在一个优选方面,烟雾法二氧化钛被用于制备本发明催化剂的二氧化钛载体。
二氧化钛粉末或二氧化钛前体粉末一般情况下基本上不溶于步骤a)中所用的液体,适用的液体是水和/或有机化合物。适用的有机化合物应在经过干燥和/或焙烧的催化剂载体中不留下任何像焦炭那样的有机痕留物,并且在与二氧化钛粉末和/或二氧化钛前体粉末混合方法中基本上是惰性的。
典型地,该混合物含20至95%体积液体,优选50至95%体积液体。
按照该方法的步骤b),从混合物中蒸发液体以获得固体,即附聚的颗粒。采用已知干燥方法实施该步骤,如喷雾干燥、气流干燥或箱式干燥。喷雾干燥优点是如果期望的颗粒大小处于从3至300微米范围内,则能直接制造期望的颗粒大小,无需粉碎步骤。其它的干燥方法一般生成较大的颗粒。但是,同样期望这些方法制备3至300微米催化剂颗粒,例如在下文更详细陈述的通过浸渍方法将催化活性金属负载在颗粒上的情况下。
本领域专业人员了解最优选干燥方法依赖于例如期望的催化剂颗粒大小,他们有技能选择特定环境和要求的最适用的方法和条件。
视具体情况而定,按照该方法的步骤c),在步骤b)中所获得的颗粒被粉粹成期望的平均颗粒大小。按照另一实施方案,步骤b)中所获得的颗粒也可经另外的焙烧处理之后再进行粉碎。
可以采用本领域专业人员了解的技术,例如浸渍、喷涂或沉淀将催化活性金属负载到载体上。
制备本发明催化剂的优选方法是将催化活性金属或前体浸渍在二氧化钛载体上。典型地,载体与催化活性金属化合物在液体存在下相接触,最好呈金属化合物溶液形式。活性金属化合物可为无机或有机化合物,优选无机化合物,具体地说优选硝酸盐。所使用液体也可为有机或无机化合物,水是最方便的液体,应知道水至少部分地来自高温浸渍时金属化合物释出的结晶水。
浸渍处理之后通常进行干燥,于温度50至300℃实施干燥至24小时,优选0.2至4小时。
按照一个实施方案,该方法涉及粉碎步骤c),由于固相处理与浸渍相对大的颗粒一般较易,因此期望在粉碎步骤之前浸渍载体。
若优选制备外缘含催化活性金属的催化剂,例如欧洲专利说明书No.178008所透露的那样,则在粉碎步骤之后实施浸渍步骤。另外,还可以在粉碎步骤之后实施喷涂来制备该类催化剂。
按照另一优选实施方案,该方法的步骤a)中一种或多种催化活性金属的一种或多种化合物与二氧化钛或二氧化钛前体粉末混合。
如上所述,催化剂优选经过进一步焙烧处理。可以在步骤b)和/或步骤c)之后和/或在至少一种催化活性金属化合物加入到催化剂中之后实施焙烧处理。
一般在如空气的含氧气氛中于温度200至800℃实施焙烧处理0.2至48小时。温度越高,焙烧处理持续时间越长,则孔体积越小,表面积越小、二氧化钛颗粒中金红石含量越高。对常规试验有经验的人能决定最适宜的焙烧条件,实施焙烧处理优选温度范围从350至650℃,处理持续时间优选从0.5至4小时。
应该理解,在焙烧处理期间的平均温度通常高于在步骤b)的干燥处理期间的平均温度。此外,应该理解,干燥和焙烧步骤可作为一步方法实施。
按照一个优选实施方案,焙烧处理在步骤b)或c)之后实施,经焙烧的产物用催化活性化合物的溶液或熔融盐浸渍,对浸渍后的产物再实施第二次焙烧处理。在这种情况下,通常优选的作法是第二次焙烧步骤的焙烧条件不比应用于第一次焙烧步骤的焙烧条件更加严格。
本发明的催化剂典型地用于催化从合成气制备烃类的方法。当用于该方法中时,至少部分钴,一般至少80%重量的钴以金属状态存在,优选至少90%重量的钴处于金属状态。但是,在制备方法完成后,催化剂中绝大部分钴不再处于金属状态。因此,有利的作法通常是在催化剂使用之前在氢气存在下于高温经还原处理活化催化剂。还原处理通常涉及于温度范围从100至450℃、历时1至48小时、通常在从1至50巴(绝压)高压下处理催化剂。在还原处理期间可使用纯氢,但优选使用氢气和像氮气那样的惰性气体组成的混合物。存在于混合物中氢气相对量范围可在0和100%(体积)之间。在优选实施方案中在氮气氛中使催化剂处于期望的温度和压力下,随后,该催化剂和仅含有少量氢气,其余为氮气的混合气体接触,在还原处理期间混合气体中氢气相对量逐渐提高到50%或甚至到100%(体积)。
已被还原的金属化合物的量适宜通过测量方法中水的累积生成量进行监测,在焙烧处理之后催化剂中绝大部分钴均处于氧化状态的情况下尤为如此。本领域专业人员了解的其它方法包括热重分析和程序升温还原方法。
采用现有技术已知的方法适当地控制还原处理。典型地可通过防止尾气中的水浓度超过某一限度来控制还原处理,该限度依赖于所还原的催化剂,并可用常规试验方法进行测定。
若可能优选就地,即在反应器内活化催化剂。具体地说,若方法中所用反应器是淤浆鼓泡柱或流化床反应器,则期望在液态烃类存在下部分或全部活化催化剂。在欧洲专利申请公开No.0589692中透露在烃类存在下部分还原催化剂的方法。但是,优选在烃类存在下全部还原催化剂。在待批的欧洲专利申请No.95203040.1中透露了最适宜的方法,该法涉及催化剂与氢气分压至少为15巴(绝压)的含氢气体接触。
本发明进一步涉及烃类制备方法,该方法包括一氧化碳和氢气的混合物于高温高压下与在上述催化剂相接触。
该方法通常在125至350℃,优选175至275℃下进行,典型压力范围从5至150巴(绝压),优选从5至80巴(绝压)。
该方法进料氢气和一氧化碳(合成气)典型摩尔比范围从0.4至2.5。众所周知,特别低的氢气对一氧化碳摩尔比会提高费-托法催化刊的 选择性,但是,合乎需要的是使用氢气对一氧化碳摩尔比约为2,该比例与合成气的正常消耗比例相当,此时使用的催化剂实际上无一氧化碳变换反应活性。
最令人惊奇地发现,本发明催化剂,甚至当使用氢气对一氧化碳高摩尔比的合成气时仍表现出很高 选择性。于是,在本发明烃类合成方法的优选实施方案中,氢气对一氧化碳摩尔比范围从1.0至2.5,优选范围从1.5至2.5。
气时空速在较宽的范围内改变,典型范围从400至10000Nl/l/h(标准升气体/升催化剂颗粒/小时)。
烃类制备方法可使用各种类型反应器和各种反应模式,如固定床模式、淤浆相模式或流化床模式。应知道催化剂颗粒大小依打算使用的反应模式而改变,本领域专业人员能够选择特定反应模式的最适当的催化剂颗粒大小。
进一步应了解本领域专业人员能够选择适合于特定反应器结构和反应模式的最适当的条件,例如优选气时空速依赖于所使用的反应模式的类型。因此,若期望用固定床模式运行烃类合成方法,优选气时空速范围从500至2500Nl/l/h,若期望用淤浆相模式运行烃类合成方法,优选气时空速范围从1500至7500Nl/l/h。
本发明现在用如下实施例予以进一步阐明。
实施例I(比较例)
用含硝酸钴和硝酸锰的浓溶液浸渍商业上购得的金红石类(金红石∶锐钛矿98∶2)二氧化钛颗粒(30-80目)。
通过将硝酸钴[Co(NO3)2·6H2O]和硝酸锰[Mn(NO3)2·4H2O]固体加热至60℃,使得金属硝酸盐溶于它们自身的结晶水中而制备成溶液。经浸渍的二氧化钛颗粒于120℃干燥2小时,继而在空气中于400℃焙烧1小时。
催化剂(I)含有10%重量金属化合物,以金属表示。钴∶锰原子比为20∶1,催化剂的孔隙度为30%,催化剂孔体积是0.1ml/g。二氧化钛载体的孔体积是0.3ml/g,载体的表面积是13m2/g,载钴量为0.27g/ml催化剂。
实施例II
喷雾干燥二氧化钛粉末制备如下。商业上购得的烟雾法二氧化钛粉末(P25 Degussa出品)与水混合,混合物含有30%重量的烟雾法二氧化钛粉末,使用Niro喷雾器喷雾干燥混合物,进口温度是250℃,出口温度是117℃,所得产物于500℃焙烧1小时,焙烧后的产物平均颗粒直径为38微米,金红石∶锐钛矿之比为1∶4。
重复实施例I的浸渍步骤,但是现在用喷雾干燥的二氧化钛粉末作为催化剂载体。
催化剂(II)的孔隙度是65%,催化剂孔体积是0.38ml/g,二氧化钛载体孔体积是0.6ml/g,载体的表面积是50m2/g,载钴量为0.29g/ml催化剂。
实施例III
在烃类制备方法中测试催化剂I和II。将分别装有3.5毫升催化剂I和II的微流反应器A和B加热至温度260℃,并且用连续氮气流加压至压力2巴(绝压)。用氮气和氢气混合物就地还原催化剂24小时,在还原期间,混合物的氢气相对量从0%逐渐提高至100%,在尾气中水的浓度维持低于3000ppmv。
还原之后,压力升至26巴(绝压),用氢气和一氧化碳的混合物(H2/CO摩尔比为2∶1)实施反应,GHSV等于2400Nl/l/h,反应温度是225℃。
空时收率(STY)以相对于每小时每升催化剂颗粒(包括颗粒间的空隙)的烃类产物克数表示,
Figure C9719778600141
选择性以总烃类产物的重量百分数表示,每一反应器在运转100小时之后测定空时收率和
Figure C9719778600142
选择性。
结果列于表I。
表I反应器             A                  B催化剂             I                  IISTY(g/l/h)      465(499)              540选择性(%)    85                  88
应该理解,本发明的催化剂II的活性和选择性二者都比非本发明的催化剂I的活性和选择性要好得多,在考虑到每毫升催化剂I载钴量稍低这一因素而对催化剂I的STY进行校正的情况下,其结果也是如此。

Claims (11)

1.费-托法催化剂,其中包括载在二氧化钛催化剂载体上的钴化合物和/或铁化合物与至少一种选自元素周期表中IIIb、IVb、Vb、VIIb和/或VIII族的助催化剂,该二氧化钛催化剂载体的金红石∶锐钛矿之比大于1∶15并且低于1∶3,其表面积低于75米2/克,所述催化剂中相对于每100份载体的钴/铁数量范围为3-60份,所述催化剂中相对于每100份载体材料的助催化剂数量范围为0.1-60份。
2.权利要求1的费-托法催化剂,其中所述载体的表面积低于65米2/克。
3.权利要求1或2的费-托法催化剂,其中所述二氧化钛催化剂载体的金红石∶锐钛矿之比为1∶4,采用汞孔率测定法测定的载体的孔体积至少为0.45毫升/克。
4.权利要求3的费-托法催化剂,其中所述孔体积是至少0.50毫升/克。
5.权利要求1或2的费-托法催化剂,其中包含钴化合物。
6.权利要求5的费-托法催化剂,其中钴的存在量至少是0.2克钴/毫升催化剂。
7.权利要求6的费-托法催化剂,其中锰或钒被用作助催化剂并且钴∶该助催化剂原子比至少是12∶1。
8.权利要求5的费-托法催化剂,其中至少部分钴和/或铁处于金属状态。
9.权利要求1至8中任一项的费—托法催化剂的制备方法,其中包括:
a)将具有金红石∶锐钛矿之比低于2∶3的二氧化钛粉末或二氧化钛前体的粉末与液体相混合,该前体粉末能转化成具有上述金红石∶锐钛矿之比的二氧化钛;
b)蒸发该混合物中液体以获得固体附聚颗粒;随后视具体情况而定进行
c)粉碎步骤;并且
在所述催化剂中加入钴化合物和/或铁化合物。
10.权利要求9的费-托法催化剂的制备方法,其中包括对权利要求1至7中任一项的催化剂在氢气存在下进行还原处理。
11.含有5个或5个以上碳原子的烃类的制备方法,其中包括使一氧化碳和氢气的混合物于125至350℃和5至150巴绝压下与权利要求8的催化剂相接触。
CN97197786A 1996-09-10 1997-09-09 费-托法催化剂与烃的制备方法 Expired - Fee Related CN1100741C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96202524 1996-09-10
EP96202524.3 1996-09-10

Publications (2)

Publication Number Publication Date
CN1230164A CN1230164A (zh) 1999-09-29
CN1100741C true CN1100741C (zh) 2003-02-05

Family

ID=8224370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97197786A Expired - Fee Related CN1100741C (zh) 1996-09-10 1997-09-09 费-托法催化剂与烃的制备方法

Country Status (12)

Country Link
EP (1) EP0927146B1 (zh)
JP (1) JP2001500058A (zh)
CN (1) CN1100741C (zh)
AT (1) ATE228106T1 (zh)
AU (1) AU710231B2 (zh)
CA (1) CA2265643C (zh)
DE (1) DE69717290T2 (zh)
DZ (1) DZ2304A1 (zh)
MY (1) MY125693A (zh)
NO (1) NO316999B1 (zh)
SA (1) SA97180437B1 (zh)
WO (1) WO1998011037A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590415B1 (ko) * 1997-12-30 2006-06-19 쉘 인터내셔날 리서치 마챠피즈 비.브이. 코발트 기재의 피셔-트롭쉬 촉매
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6413490B1 (en) 1999-06-24 2002-07-02 Degussa-Huls Ag Granules based on pyrogenic titanium dioxide and a process for preparing the granules
DE19928851A1 (de) * 1999-06-24 2000-12-28 Degussa Granulate auf Basis von pyrogen hergestelltem Titandioxid, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1306632A1 (en) 2001-10-25 2003-05-02 Shell Internationale Researchmaatschappij B.V. Process for liquefying natural gas and producing liquid hydrocarbons
FR2984347B1 (fr) 2011-12-14 2015-03-20 IFP Energies Nouvelles Procede de fabrication d'hydrocarbures avec conditionnement du catalyseur
BR112017012496B1 (pt) 2014-12-12 2022-05-17 Bp P.L.C. Processo para a conversão de uma alimentação compreendendo uma mistura de hidrogênio e monóxido de carbono de hidrocarbonetos, uso de um catalisador e catalisador de fischer-tropsch
US11273429B2 (en) 2016-10-27 2022-03-15 Shell Oil Company Fischer-Tropsch catalyst body
CN111068766B (zh) * 2018-10-18 2022-04-05 中国石油化工股份有限公司 费托合成制低碳烯烃的催化剂及其应用
CN111068765B (zh) * 2018-10-18 2022-04-05 中国石油化工股份有限公司 费托合成制备低碳烯烃的催化剂及其应用
CN113751017B (zh) * 2020-06-05 2024-01-19 北京低碳清洁能源研究院 费托合成催化剂及其制备方法和应用
CN115957783A (zh) * 2021-10-11 2023-04-14 国家能源投资集团有限责任公司 费托合成催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595703A (en) * 1984-06-29 1986-06-17 Exxon Research And Engineering Co. Preparation of hydrocarbons from synthesis gas
US4847231A (en) * 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558030A (en) * 1984-06-29 1985-12-10 Exxon Research And Engineering Co. Ruthenium-rhenium catalyst on titania support for Fischer-Tropsch synthesis
US5397806A (en) * 1991-11-14 1995-03-14 Exxon Research & Engineering Co. Method for stabilizing titania supported cobalt catalyst (C-2715)
US5169821A (en) * 1991-11-14 1992-12-08 Exxon Research And Engineering Company Method for stabilizing titania supported cobalt catalyst and the catalyst for use in Fischer-Tropsch process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595703A (en) * 1984-06-29 1986-06-17 Exxon Research And Engineering Co. Preparation of hydrocarbons from synthesis gas
US4847231A (en) * 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst

Also Published As

Publication number Publication date
DZ2304A1 (fr) 2002-12-28
EP0927146B1 (en) 2002-11-20
EP0927146A1 (en) 1999-07-07
CN1230164A (zh) 1999-09-29
NO991140D0 (no) 1999-03-09
NO316999B1 (no) 2004-07-19
JP2001500058A (ja) 2001-01-09
DE69717290T2 (de) 2003-07-17
AU4702297A (en) 1998-04-02
WO1998011037A1 (en) 1998-03-19
AU710231B2 (en) 1999-09-16
MY125693A (en) 2006-08-30
DE69717290D1 (de) 2003-01-02
NO991140L (no) 1999-03-09
ATE228106T1 (de) 2002-12-15
CA2265643A1 (en) 1998-03-19
CA2265643C (en) 2006-07-11
SA97180437B1 (ar) 2006-05-13

Similar Documents

Publication Publication Date Title
CN1087193C (zh) 制备烃的催化剂和方法
EP2116300B1 (en) A method for alcohol production
EP0736326B1 (en) Fischer-Tropsch catalysts containing iron and cobalt
CN1100741C (zh) 费-托法催化剂与烃的制备方法
AU2005233035B2 (en) Catalyst for Fischer-Tropsch synthesis and method for producing hydrocarbon
JP2849134B2 (ja) 改良チタニア触媒、その製造およびフィッシャー・トロプシュ合成における使用
US6734133B1 (en) Surface-modified mixed oxides containing precious metal and titanium, for the selective oxidation of hydrocarbons
CA2374600A1 (en) Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
JP2006513020A (ja) チタニア担体に担持されたコバルト触媒の製造法
EA013215B1 (ru) Приготовление катализатора
US20140243436A1 (en) Fischer-tropsch catalyst comprising cobalt, magnesium and precious metal
US20060116542A1 (en) Metathesis catalyst and process
El-Korso et al. The effect of redox properties of ceria-supported vanadium oxides in liquid phase cyclohexene oxidation
CN114585439B (zh) 适用于烃类转化反应的催化剂、其制备方法和应用
CN113578372B (zh) 一种二甘醇合成吗啉用催化剂及其制备方法
WO2020094921A1 (en) Catalyst for dehydrogenation, method for preparing the catalyst and use
CN108698018A (zh) 包含一种或多种酸和/或使用一种或多种酸制备的挤出的二氧化钛基材料
EP0498976A1 (en) Method of preparation of a cobalt-rhenium catalysts for hydrocarbon synthesis
JP2007175588A (ja) 触媒及びその製造方法
AU594977B2 (en) Process for the conversion of hydrocarbon oils.
JP7060994B2 (ja) p-キシレンの製造方法
CN107635659A (zh) 包含均匀分散在多孔载体中的金的催化剂
EA043038B1 (ru) Способ фишера-тропша, катализатор на подложке для синтеза фишера-тропша и его применение
CN115501905A (zh) 具有脱氢功能的催化剂及其制备方法和应用以及制备小分子烯烃的方法
CN114682245A (zh) 一种Ma-Mb金属负载型催化剂的处理、活化和再生方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030205

Termination date: 20130909