CN110000375B - 一种超高孔隙率多孔金属材料及其制备方法 - Google Patents

一种超高孔隙率多孔金属材料及其制备方法 Download PDF

Info

Publication number
CN110000375B
CN110000375B CN201910308128.7A CN201910308128A CN110000375B CN 110000375 B CN110000375 B CN 110000375B CN 201910308128 A CN201910308128 A CN 201910308128A CN 110000375 B CN110000375 B CN 110000375B
Authority
CN
China
Prior art keywords
sio
porosity
ultrahigh
porous metal
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910308128.7A
Other languages
English (en)
Other versions
CN110000375A (zh
Inventor
牛高
徐习斌
袁磊
谭秀兰
罗江山
唐兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN201910308128.7A priority Critical patent/CN110000375B/zh
Publication of CN110000375A publication Critical patent/CN110000375A/zh
Application granted granted Critical
Publication of CN110000375B publication Critical patent/CN110000375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

本发明提供了一种超高孔隙率多孔金属材料及其制备方法,属于多孔金属材料制备技术领域。本发明将SiO2微球粉末敏化处理后进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末;将所述复合SiO2微球粉末烧结,将烧结得到的成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。本发明可通过对SiO2微球粉末、化学镀和烧结过程的控制,方便地获得孔隙率≥98%,且具有不同宏观外形、力学性能优异的超高孔隙率多孔金属材料。

Description

一种超高孔隙率多孔金属材料及其制备方法
技术领域
本发明涉及多孔金属材料制备技术领域,特别涉及一种超高孔隙率多孔金属材料及其制备方法。
背景技术
多孔金属材料是一类微观结构像海绵一样的低密度金属材料,一般是由连续或分离的孔和连续的金属韧带组成,且其孔径和韧带尺寸与材料宏观尺寸一般需要相差两个数量级以上。多孔金属材料在催化、电池、痕量检测、电磁屏蔽、降噪、国防研究等多个领域都有广泛地应用。
多孔金属材料常用的制备方法包括熔体发泡法、造孔剂法、脱合金法、粉末冶金法、模板法等,但是这些方法一般不能制备出孔隙率大于90%的块体多孔金属。随着3D打印技术的兴起,以3D打印有机物骨架材料为牺牲模板,结合化学沉积、电化学沉积、原子层沉积等镀膜技术,可以获得孔隙率大于98%的多孔金属。但是,目前3D打印技术还无法获得孔径小于10微米,宏观块体尺寸在厘米级的具有跨尺度结构的多孔材料。
发明内容
有鉴于此,本发明的目的在于提供一种超高孔隙率多孔金属材料及其制备方法。本发明提供的制备方法可方便地获得孔隙率≥98%,孔径≤10μm且具有不同宏观外形、力学性能优异的超高孔隙率多孔金属材料。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种超高孔隙率多孔金属材料的制备方法,包括以下步骤:
(1)将SiO2微球粉末在敏化液中进行敏化处理,得到敏化的SiO2微球粉末;
(2)将所述敏化的SiO2微球粉末在化学镀液中进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末;
(3)将所述复合SiO2微球粉末烧结,得到成型料;
(4)将所述成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。
优选地,所述步骤(1)中SiO2微球粉末的直径≤10μm。
优选地,所述步骤(1)中的敏化液为SnCl2的盐酸溶液;所述SnCl2的盐酸溶液由SnCl2·2H2O、去离子水和盐酸配制而成,所述SnCl2·2H2O、去离子水和盐酸的用量比为2~10g:50~100mL:20~80mL,所述盐酸的质量浓度为30~35%。
优选地,所述步骤(1)中敏化处理的时间为1~10h。
优选地,所述步骤(2)中金属层的材质为金、银、铜、铁或镍;所述金属层的厚度为100~200nm。
优选地,所述步骤(2)中化学镀的时间为1~10h。
优选地,所述步骤(3)中的烧结为放电等离子烧结,所述放电等离子烧结的温度为300~500℃,压力为20~40KN,时间为60~120s。
优选地,所述步骤(4)中HF溶液的质量浓度为10~30%,所述浸泡的时间为10~24h。
优选地,所述步骤(4)中的干燥为二氧化碳超临界干燥。
本发明提供了以上技术方案所述的制备方法制备的超高孔隙率多孔金属材料。
本发明提供了一种超高孔隙率多孔金属材料的制备方法,包括以下步骤:将SiO2微球粉末敏化处理后进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末;将所述复合SiO2微球粉末烧结,将烧结得到的成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。本发明可通过对SiO2微球粉末、化学镀和烧结过程的控制,方便地获得孔隙率≥98%,孔径≤10μm且具有不同宏观外形、力学性能优异的超高孔隙率多孔金属材料。
附图说明
图1为实施例1制备的超高孔隙率多孔金材料的微观结构图。
具体实施方式
本发明提供了一种超高孔隙率多孔金属材料的制备方法,包括以下步骤:
(1)将SiO2微球粉末进行敏化处理,得到敏化的SiO2微球粉末;
(2)将所述敏化的SiO2微球粉末进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末;
(3)将所述复合SiO2微球粉末烧结,得到成型料;
(4)将所述成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。
本发明将SiO2微球粉末进行敏化处理,得到敏化的SiO2微球粉末。在本发明中,所述SiO2微球粉末的直径优选≤10μm。本发明可通过调节SiO2微球粉末的直径,方便地调节所述超高孔隙率多孔金属材料的孔径,获得孔径不大于10μm的多孔金属材料。本发明对所述SiO2微球粉末的来源没有特别的要求,根据孔径需求选用相应的市售产品即可。
在本发明中,所述敏化处理用敏化液优选为SnCl2的盐酸溶液;所述SnCl2的盐酸溶液优选由SnCl2·2H2O、去离子水和盐酸配制而成,所述SnCl2·2H2O、去离子水和盐酸的用量比为优选为2~10g:50~100mL:20~80mL,更优选为6~8g:60~80ml:50~60ml,所述盐酸的质量浓度优选为30~35%,更优选为35%。本发明对所述SnCl2·2H2O、去离子水和盐酸的来源没有特别的要求,采用市售的相应产品即可。在本发明中,所述敏化液中优选还包括锡粒;所述锡粒的直径优选为3mm,所述锡粒的用量优选为2~5颗。本发明优选通过在敏化液中加入锡粒,防止敏化液中的二价锡离子氧化为四价锡离子,影响敏化效果。
在本发明中,所述敏化处理的时间优选为1~10h,更优选为2~8h。本发明优选将所述SiO2微球粉末分散于敏化液中,在搅拌条件下进行敏化处理;所述搅拌优选为磁力搅拌;所述搅拌的转速优选为400~800r/min,更优选为500~600r/min;本发明对所述搅拌的时间没有特别的要求,使SiO2微球粉末均匀分散在敏化液中即可。本发明通过敏化处理在SiO2微球粉末表面形成锡离子附着层,作为化学镀的活性点。
敏化处理后,本发明优选将所述敏化的SiO2微球粉末用去离子水进行清洗,所述清洗优选采用离心的方法进行;本发明对所述清洗的次数没有特别的要求,保证将所述敏化的SiO2微球粉末清洗干净即可。
清洗完成后,本发明将所得敏化的SiO2微球粉末进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末。在本发明中,所述金属层的材质优选为金、银、铜、铁或镍;所述金属层的厚度优选为100~200nm,更优选为120~180nm。
在本发明中,当所述金属层的材质为金时,所述化学镀用化学镀液的组成优选包括以下成分:
去离子水 150~300mL;
盐酸羟胺 0.2~0.8g;
氯金酸溶液 1~2mL;
所述氯金酸溶液的浓度优选为0.4mol/L;
所述化学镀液与SiO2微球粉末的用量比优选为300~500mL:1g。
本发明优选先将所述去离子水加入敏化的SiO2微球粉末中,再依次加入所述盐酸羟胺和氯金酸溶液,进行化学镀。本发明以盐酸羟胺为还原剂,将氯金酸还原为金属金沉积在敏化的SiO2微球粉末表面形成致密的金镀层。
在本发明中,当所述金属层的材质为银时,所述化学镀用化学镀液的组成优选包括以下成分:
Figure BDA0002030524450000041
所述化学镀液与SiO2微球粉末的用量优选为300~500mL:1g。
本发明优选先将所述硝酸银加入氨水和部分去离子水中形成银氨溶液,然后将剩余去离子水加入敏化的SiO2微球粉末中,再依次加入所述银氨溶液和葡萄糖,进行化学镀。本发明以葡萄糖为还原剂,将硝酸银还原为金属银沉积在敏化的SiO2微球粉末表面形成致密的银镀层。
在本发明中,所述金属层的材质还可以为铜、铁或镍。当所述金属层的材质为铜、铁或镍时,本发明对相应的化学镀用化学镀液没有特别的要求,采用本领域熟知的相应化学镀液即可。
在本发明中,所述化学镀的时间优选为1~10h,更优选为2h。在本发明中,所述化学镀的时间以所述化学镀液中各成分加入完毕后开始计算。在本发明中,所述化学镀优选在搅拌的条件下进行;所述搅拌优选为磁力搅拌;所述搅拌的转速优选为400~800r/min。本发明可通过调节化学镀液中金属化合物的添加量以及化学镀的时间,来调节化学镀过程中在SiO2微球表面形成的金属层的厚度,进而方便地调节所述超高孔隙率多孔金属材料的孔隙率。
化学镀完成后,本发明优选将所述复合SiO2微球粉末依次进行清洗和干燥。在本发明中,所述清洗优选采用去离子水进行离心清洗;本发明对所述清洗的次数没有特别的要求,保证将所述复合SiO2微球粉末清洗干净即可。在本发明中,所述干燥的温度优选为60~80℃,时间优选为10~24h。
干燥完成后,本发明将所得复合SiO2微球粉末烧结,得到成型料。在本发明中,所述烧结优选为放电等离子烧结,所述放电等离子烧结的温度优选为300~500℃,更优选为350~450℃,压力优选为20~40KN,更优选为25~35KN,时间优选为60~120s,更优选为80~100s。本发明采用放电等离子烧结提高多孔金属材料的强度和韧性等力学性能。
本发明优选将复合SiO2微球粉末置于模具中进行烧结。本发明可通过设计不同的模具内腔形状,方便地获得具有不同宏观外形的多孔金属块体材料,如当所述模具内腔为圆柱状时,经过烧结,可获得圆柱状的多孔金属块体;同时,由于所述烧结为干粉烧结,模具外形设计具有更大的自由度,可根据需求方便地获得异形多孔金属块体材料。
烧结完成后,本发明将所述成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。在本发明中,所述HF溶液的质量浓度优选为10~30%,更优选为15~25%,所述浸泡的时间优选为10~24h,更优选为15~20h。本发明通过将所述成型料在HF溶液中浸泡来去除SiO2微球,得到开孔结构的超高孔隙率多孔金属材料。浸泡完成后,本发明优选将去除了SiO2微球的成型料进行清洗;所述清洗优选采用去离子水进行清洗,本发明对所述清洗的次数没有特别的要求,能够将微球表面残留的HF溶液清洗干净即可。
在本发明中,所述干燥优选为二氧化碳超临界干燥;所述二氧化碳超临界干燥优选在丙酮溶液中进行。本发明对所述二氧化碳超临界干燥的装置没有特别的要求,采用本领域熟知的装置即可。本发明通过二氧化碳超临界干燥,避免了普通干燥过程中水或其他溶剂的表面张力较大,破坏多孔结构的骨架,引起多孔结构体积收缩的问题。
本发明还提供了以上技术方案所述的制备方法制备的超高孔隙率多孔金属材料。本发明提供的超高孔隙率多孔金属材料的孔隙率≥98%,孔径≤10μm且可具有不同的宏观外形,力学性能优异。
下面结合实施例对本发明提供的超高孔隙率多孔金属材料及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
(1)取直径为1000nm的SiO2微球粉末0.5g,在含锡粒的SnCl2的盐酸溶液中进行敏化处理10h。SnCl2·2H2O的用量为7.8g,去离子水的用量为75mL,35%浓盐酸的用量为40mL,直径约3mm的锡粒3颗。敏化过程保持磁力搅拌,转速600r/min,使SiO2微球粉末均匀分散在溶液中。
(2)敏化结束的SiO2微球粉末用去离子水离心清洗干净,进行表面镀金处理。用240mL的去离子水稀释敏化后的SiO2微球粉末,加入0.6g盐酸羟胺,再加入1mL浓度为0.4mol/L的氯金酸溶液。在600r/min的磁力搅拌情况下反应2h,完成镀金操作。
(3)将镀金结束的SiO2微球粉末用去离子水离心清洗干净,干燥去除水分获得包覆厚度约100nm金层的复合微球粉末。
(4)称取上述烘干后复合粉末0.15g,置入内腔直径为3mm的不锈钢模具中,在300℃和40KN压力下放电等离子烧结60s,可获得带SiO2微球的圆柱状块体。
(5)将上述烧结后的块体至于浓度为30%的HF溶液中,浸泡24小时,去除SiO2微球。用去离子水清洗干净后在丙酮溶液中用二氧化碳进行超临界干燥,可获得超高孔隙率多孔金块体材料。
所得超高孔隙率多孔金材料的微观结构如图1所示,它是由内径约1000nm,厚度约100nm的金球壳堆积而成,其孔径约为球壳的外径。从图1中可以明显看出,球壳的外径约1200nm。孔隙率通过称重和测量体积,结合金的理论密度(19.3g/cc)来测算。本实施例中,多孔金属块体直径为3mm,高度为5mm,重量为0.013g;则其密度为0.368g/cc,其孔隙率为98.1%。
所得超高孔隙率多孔金材料的力学性能用压缩应力应变测试来表征。在常温下,直径为4mm的压头压在直径为3mm,高度为5mm的圆柱形多孔金试样上。压缩速度为0.5mm/min,压缩强度为3.2MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种超高孔隙率多孔金属材料的制备方法,其特征在于,包括以下步骤:
(1)将SiO2微球粉末进行敏化处理,得到敏化的SiO2微球粉末;所述SiO2微球粉末的直径≤10μm;
(2)将所述敏化的SiO2微球粉末进行化学镀,在SiO2微球表面形成金属层,得到复合SiO2微球粉末;所述金属层的厚度为100~200nm;
(3)将所述复合SiO2微球粉末烧结,得到成型料;所述烧结为放电等离子烧结,所述放电等离子烧结的温度为300~500℃,压力为20~40KN,时间为60~120s;
(4)将所述成型料在HF溶液中浸泡后干燥,得到超高孔隙率多孔金属材料;所述超高孔隙率多孔金属材料的孔隙率≥98%。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中敏化处理用敏化液为SnCl2的盐酸溶液;所述SnCl2的盐酸溶液由SnCl2·2H2O、去离子水和盐酸配制而成,所述SnCl2·2H2O、去离子水和盐酸的用量比为2~10g:50~100mL:20~80mL,所述盐酸的质量浓度为30~35%。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中敏化处理的时间为1~10h。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中金属层的材质为金、银、铜、铁或镍。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中化学镀的时间为1~10h。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中HF溶液的质量浓度为10~30%,所述浸泡的时间为10~24h。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中的干燥为二氧化碳超临界干燥。
8.权利要求1~7任意一项所述的制备方法制备的超高孔隙率多孔金属材料。
CN201910308128.7A 2019-04-17 2019-04-17 一种超高孔隙率多孔金属材料及其制备方法 Active CN110000375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910308128.7A CN110000375B (zh) 2019-04-17 2019-04-17 一种超高孔隙率多孔金属材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910308128.7A CN110000375B (zh) 2019-04-17 2019-04-17 一种超高孔隙率多孔金属材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110000375A CN110000375A (zh) 2019-07-12
CN110000375B true CN110000375B (zh) 2021-04-09

Family

ID=67172488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910308128.7A Active CN110000375B (zh) 2019-04-17 2019-04-17 一种超高孔隙率多孔金属材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110000375B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063805B (zh) * 2019-11-11 2021-06-22 上海大学 一种有机-无机钙钛矿太阳能电池及制备和回收方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487108A (zh) * 2003-07-28 2004-04-07 �Ϻ���ͨ��ѧ 由空心金属球构成的二维、三维有序纳米结构金属材料及制备方法
CN101186286A (zh) * 2007-11-29 2008-05-28 同济大学 有序多孔羟基磷灰石材料的制备方法
CN102020268A (zh) * 2011-01-07 2011-04-20 中国科学院化学研究所 一种碳中空球及其制备方法
CN102581296A (zh) * 2012-01-12 2012-07-18 北京理工大学 一种提高溶除模板法制备空心球效率的方法
CN103056366A (zh) * 2013-01-28 2013-04-24 昆明理工大学 一种多孔不锈钢的制备方法
JP2013177658A (ja) * 2012-02-28 2013-09-09 Central Research Institute Of Electric Power Industry 多孔質構造体及びその製造方法
CN103993299A (zh) * 2014-04-22 2014-08-20 中国工程物理研究院激光聚变研究中心 一种纳米多孔金属材料的制备方法
CN104600249A (zh) * 2014-09-18 2015-05-06 四川省有色冶金研究院有限公司 纳米多孔金属及纳米多孔金属锂硫电池正极材料制备方法
CN106064241A (zh) * 2016-07-09 2016-11-02 大连理工大学 一种内径可控泡沫金属的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487108A (zh) * 2003-07-28 2004-04-07 �Ϻ���ͨ��ѧ 由空心金属球构成的二维、三维有序纳米结构金属材料及制备方法
CN101186286A (zh) * 2007-11-29 2008-05-28 同济大学 有序多孔羟基磷灰石材料的制备方法
CN102020268A (zh) * 2011-01-07 2011-04-20 中国科学院化学研究所 一种碳中空球及其制备方法
CN102581296A (zh) * 2012-01-12 2012-07-18 北京理工大学 一种提高溶除模板法制备空心球效率的方法
JP2013177658A (ja) * 2012-02-28 2013-09-09 Central Research Institute Of Electric Power Industry 多孔質構造体及びその製造方法
CN103056366A (zh) * 2013-01-28 2013-04-24 昆明理工大学 一种多孔不锈钢的制备方法
CN103993299A (zh) * 2014-04-22 2014-08-20 中国工程物理研究院激光聚变研究中心 一种纳米多孔金属材料的制备方法
CN104600249A (zh) * 2014-09-18 2015-05-06 四川省有色冶金研究院有限公司 纳米多孔金属及纳米多孔金属锂硫电池正极材料制备方法
CN106064241A (zh) * 2016-07-09 2016-11-02 大连理工大学 一种内径可控泡沫金属的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
模板沉积-去合金化法制备块体泡沫金;谭秀兰 等;《稀有金属材料与工程》;20130131;第42卷(第1期);162-165页 *

Also Published As

Publication number Publication date
CN110000375A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN102179521B (zh) 一种超细球形镍包钛复合粉末的制备方法
CN109989049B (zh) 一种具有闭孔结构的多孔金属材料及其制备方法
CN108213408B (zh) 一种利用3d打印技术制备具有复杂结构的多孔金属零件的方法
Wang et al. Preparation and characterization of polystyrene/Ag core–shell microspheres–A bio-inspired poly (dopamine) approach
CN104610913B (zh) 一种以MOFs分子结构为模板的微波吸收材料的制备方法
CN101423398A (zh) 陶瓷包覆粉末及其制备方法
KR101078253B1 (ko) 구리분말의 은 코팅층 형성방법
CN109894610B (zh) 一种金属包覆球形铸造碳化钨粉末及其制备方法
CN103215470B (zh) 一种孔结构参数可控的开孔泡沫铜的制备方法
CN108610015B (zh) 一种基于煤矸石的微波吸收材料制备方法
CN110000375B (zh) 一种超高孔隙率多孔金属材料及其制备方法
Bian et al. Pd nanoparticles partially embedded in the inner wall of nitrogen-doped carbon hollow spheres as nanoreactors for catalytic reduction of 4-nitrophenol
JP2020023743A (ja) 銀・ニッケル・酸化錫複合粉体及び銀・ニッケル・酸化錫電気接点材料の製造方法
US20210276091A1 (en) Metal foam bodies and process for production thereof
CN102994989A (zh) 一种化学镀银方法
CN104131191A (zh) 一种五元硬质合金用固溶体的制备方法
CN108950529A (zh) 一种碳化钨-铜-镍复合粉体的制备方法
CN110576192B (zh) 基于改进型银镍氧化锡电接触材料的制备方法
EP2925439B1 (en) Core-shell catalyst and method of making a palladium-based core particle
CN104383920B (zh) 一种MnOOH/Ag纳米复合材料的制备方法及其应用
CN106756906A (zh) 一种双镀层金刚石粉末的制备方法
CN1710137A (zh) 一种非晶态镍硼核-壳、空壳结构材料及其制备方法
KR101787809B1 (ko) 금속 마이크로 껍질 입자의 제조방법
JP2012511629A (ja) 焼結された金属部材を製造するための半製品、半製品の製造方法並びに部材の製造
JPS637343A (ja) 金属多孔質体の製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant