CN109979811B - 一种钽掺杂二氧化铪铁电材料的制备方法 - Google Patents

一种钽掺杂二氧化铪铁电材料的制备方法 Download PDF

Info

Publication number
CN109979811B
CN109979811B CN201910211530.3A CN201910211530A CN109979811B CN 109979811 B CN109979811 B CN 109979811B CN 201910211530 A CN201910211530 A CN 201910211530A CN 109979811 B CN109979811 B CN 109979811B
Authority
CN
China
Prior art keywords
hfo
film
ferroelectric
doped
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910211530.3A
Other languages
English (en)
Other versions
CN109979811A (zh
Inventor
毕磊
袁秀芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910211530.3A priority Critical patent/CN109979811B/zh
Publication of CN109979811A publication Critical patent/CN109979811A/zh
Application granted granted Critical
Publication of CN109979811B publication Critical patent/CN109979811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明属于材料领域,具体涉及一种钽掺杂二氧化铪新型铁电材料的制备方法。本发明首次提出了施主掺杂,为制备HfO2铁电薄膜材料提供了一种新的路径;采用Pt电极避免了Ta掺杂HfO2材料与电极材料的反应,利用脉冲激光沉积、快速退火等方式获得了施主Ta掺杂的HfO2铁电薄膜,证明了施主元素也可用于通过掺杂促使HfO2薄膜产生铁电性。施主掺杂HfO2铁电薄膜的实现,可以帮助我们了解掺杂元素化合价对HfO2薄膜铁电性的影响,对更好地应用HfO2铁电薄膜产生积极的推动作用。

Description

一种钽掺杂二氧化铪铁电材料的制备方法
技术领域
本发明属于材料领域,具体涉及一种钽掺杂二氧化铪铁电材料的制备方法,用脉冲激光(PLD)法制备钽掺杂二氧化铪铁电薄膜,从而制备具有介电异常和铁电性能的铁电材料。
背景技术
二氧化铪作为一种被大量研究和使用的材料,其最主要的用途是在半导体行业中作为高k介电材料,作为高k材料,其介电常数是其关键参数,而掺杂是调节介电常数非常常用和有效的方式。在2011年二氧化铪被发现有铁电性后,其因为具备传统铁电材料不具备的可在几纳米厚度仍具有铁电性、与半导体工艺兼容等优势有成为铁电存储器新型材料而备受关注。
而要使二氧化铪产生铁电性,其中一个非常重要的方式就是掺杂,学者们发现通过掺杂不同类型、不同剂量的元素可以使二氧化铪具有不同参数的铁电性。但是迄今为止只有只有少量元素掺杂HfO2薄膜的铁电性能被探索,主要是+2、+3和+4价元素的受主或等价掺杂;还有大量元素的掺杂作用(是否能产生铁电性、铁电性能如何)未被研究,且掺杂促使HfO2薄膜产生铁电性的机理还不清楚,因此探索新的可以使HfO2薄膜产生铁电性的掺杂元素及了解其产生的铁电薄膜的性能非常重要,对于产生不同铁电性能的HfO2铁电薄膜、了解掺杂促使HfO2薄膜产生铁电性的机理及更好地应用HfO2铁电薄膜都有很重要的价值。
综上所述,掺杂可以使二氧化铪的性质发生很大变化,可以使其产生介电性、铁电性、反铁电性等,但是掺杂HfO2薄膜研究还需要很多工作需要完成。
发明内容
针对上述存在的问题或不足,本发明提供了一种钽掺杂二氧化铪铁电材料的制备方法,基于施主+5价元素Ta掺杂HfO2薄膜,实现薄膜介电异常和铁电性的薄膜制备方法。为HfO2铁电薄膜制备提供了一种新路径。
具体包括以下步骤:
步骤1:采用脉冲激光沉积(PLD)对Ta2O5靶、HfO2靶交替打靶的方式在Pt/Si基底上沉积10~25nm厚Ta掺杂的HfO2非晶薄膜,通过控制对两个靶的打靶次数的比例来控制Ta掺杂含量,获得掺杂含量为15~25mol%的Ta:HfO2薄膜。
步骤2:在步骤1制备的Ta:HfO2薄膜上制备70~90nm厚的Pt顶电极。
步骤3:采用快速退火RTA技术,将步骤2所得的样品进行快速退火使其结晶。采用99.999%氮气,气压保持在2Torr,升温至600~800℃,保温1分钟,自然冷却至室温的退火条件。
本发明首次提出了施主掺杂,为制备HfO2铁电薄膜材料提供了一种新的路径。本发明采用Pt电极避免了Ta掺杂HfO2材料与电极材料的反应,利用脉冲激光沉积、快速退火等方式获得了施主Ta掺杂的HfO2铁电薄膜,证明了施主元素也可用于通过掺杂促使HfO2薄膜产生铁电性。施主掺杂HfO2铁电薄膜的实现,可以帮助我们了解掺杂元素化合价对HfO2薄膜铁电性的影响,对更好地应用HfO2铁电薄膜产生积极的推动作用。
附图说明
图1为本发明制备流程图;
图2为实施例的XRD图谱;
图3为实施例的C-V特性图谱;
图4为实施例的I-V特性图谱;
图5为实施例的电滞回线特性图谱;
图6为实施例的瞬态IV特性图谱;
具体实施方式
下面结合附图和实施例对本发明作进一步阐述。
以薄膜厚度为20nm,钽含量为15.8mol.%的铁电HfO2薄膜为实施例对本发明中的具体步骤进行详细描述。
具体步骤如附图1所示,在此我们对这一流程进行详细描述:
步骤1:采用脉冲激光沉积(PLD)技术在Pt/Si基底上生长20nm的Ta掺杂HfO2薄膜。具体为:
将Pt基底置于真空腔内靶材上方,靶基距固定为55mm,基片温度升高至150℃;
升温结束后通入99.999%氧气,控制氧压在1Pa,采用波长为248nm的激光(KrF)烧蚀旋转的靶材表面,激光能量为2.5J/cm2,进行HfO2靶材和氧化钽Ta2O5靶材交换打靶,其中激光打击HfO2靶材的脉冲频率为5Hz,打击50下;打击氧化钽靶材的脉冲频率为5Hz,打击5下。如此循环5遍,得到厚度为20nm,钽含量为15.8mol.%的非晶HfO2薄膜。
步骤2:采用溅射技术,在步骤1制得的非晶掺钇的HfO2薄膜上生长80nm的面积为25μm×25μm的Pt顶电极。具体为:
对步骤1制备的样品在120℃的加热板上烘干5-10min,用涂胶机旋使用1000转/min 10s(预转)、3000转/min 30s(实转)的转速旋涂AZ5216光刻胶,在100℃的加热板上烘干60s,利用接触式光刻机曝光1.6s(光刻图形为25μm×25μm正方形),在120℃的加热板烘干90s,在用光刻机泛曝45s,然后在显影液显影45s,在去离子水清洗1min。
光刻结束后,将样品置于真空腔内靶材上方,通入99.999%氩气,将气压保持在0.5Pa,采用射频功率100W溅射Ti靶35s,生长2nmTi薄膜作为粘附层,然后将气压调节到1Pa,采用直流功率50W溅射Pt靶8min,生长80nmPt电极。
生长完Pt电极后将样品依次放入丙酮、酒精、去离子水,对样品进行剥离。将曝光区的光刻胶、Ti、Pt进行剥离,得到为25μm×25μm的Pt顶电极。
步骤3:采用快速退火RTA技术,将步骤2中得到的样品置于快速退火炉中,通入99.999%氮气,气压保持在2Torr,30s升温至600℃,保温1分钟,自然冷却至室温。取出样品,得到具有铁电性的多晶HfO2薄膜。
对实施例制得的HfO2铁电材料进行结构和电学测试。
制得的HfO2的金属-介质-金属(MIM)结构的XRD测试结果如图2所示。从图2中可以看出,制得的HfO2薄膜发生结晶,其31°左右的峰值应为具有铁电性的正交相,下面的电学特性发生薄膜具有铁电性证明了这一点。
制得的HfO2的MIM结构的C-V特性测试结果如图3所示。从图3中可以看出,该材料极化率与施加电场不是线性关系,产生了铁电材料的蝴蝶形C-V曲线。
制得的HfO2的MIM结构的I-V特性测试结果如图4所示。从图4标记①处极化反转电流可知该材料为铁电材料。
制得的HfO2的MIM结构的电滞回线特性测试结果如图5所示。从图5中可以看出,该材料的电滞回线表示该材料应为漏电较大的铁电材料。
制得的HfO2的MIM结构的瞬态IV曲线如图6所示。从图6标记②部分极化反转电流可知该材料为铁电材料。
通过上述测试可以证明,本发明制备的Ta掺杂HfO2材料为铁电材料,具有传统HfO2介电材料不具备的介电异常和铁电性能。可用于存储器,铁电逻辑器件等;并对了解掺杂元素化合价对HfO2薄膜铁电性的影响,以更好地应用HfO2铁电薄膜产生积极的推动作用。

Claims (2)

1.一种钽掺杂二氧化铪铁电材料的制备方法,包括以下步骤:
步骤1:采用脉冲激光沉积PLD对Ta2O5靶、HfO2靶交替打靶的方式在Pt/Si基底上沉积10~25nm厚Ta掺杂的HfO2非晶薄膜,通过控制对两个靶的打靶次数的比例来控制Ta掺杂含量,获得掺杂含量为15~25mol%的Ta:HfO2薄膜,Ta为+5价施主元素掺杂HfO2薄膜;
步骤2:在步骤1制备的Ta:HfO2薄膜上制备70~90nm厚的Pt顶电极;
步骤3:采用快速退火RTA技术,将步骤2所得的样品进行快速退火使其结晶。
2.如权利要求1所述钽掺杂二氧化铪铁电材料的制备方法,其特征在于:所述快速退火采用99.999%氮气,气压保持在2Torr,升温至600~800℃,保温1分钟,自然冷却至室温的退火条件。
CN201910211530.3A 2019-03-20 2019-03-20 一种钽掺杂二氧化铪铁电材料的制备方法 Active CN109979811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910211530.3A CN109979811B (zh) 2019-03-20 2019-03-20 一种钽掺杂二氧化铪铁电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910211530.3A CN109979811B (zh) 2019-03-20 2019-03-20 一种钽掺杂二氧化铪铁电材料的制备方法

Publications (2)

Publication Number Publication Date
CN109979811A CN109979811A (zh) 2019-07-05
CN109979811B true CN109979811B (zh) 2021-09-24

Family

ID=67079606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910211530.3A Active CN109979811B (zh) 2019-03-20 2019-03-20 一种钽掺杂二氧化铪铁电材料的制备方法

Country Status (1)

Country Link
CN (1) CN109979811B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242989B2 (en) * 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
US10153155B2 (en) * 2015-10-09 2018-12-11 University Of Florida Research Foundation, Incorporated Doped ferroelectric hafnium oxide film devices
US10319426B2 (en) * 2017-05-09 2019-06-11 Micron Technology, Inc. Semiconductor structures, memory cells and devices comprising ferroelectric materials, systems including same, and related methods
CN109100900B (zh) * 2018-07-23 2020-11-17 电子科技大学 一种HfO2基铁电材料的使用方法

Also Published As

Publication number Publication date
CN109979811A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN108441830A (zh) 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法
CN108493102A (zh) 采用全无机前驱体溶液制备二氧化铪基铁电薄膜的方法及应用
CN109979811B (zh) 一种钽掺杂二氧化铪铁电材料的制备方法
CN114360929B (zh) 一种氧化铪基铁电薄膜电容器及其制备方法
CN108588693A (zh) 采用全无机前驱体溶液制备钇掺杂二氧化铪铁电薄膜的方法及应用
Yin et al. Improved properties of Pb (Zr 0.52 Ti 0.48) O 3 films by hot plate annealing on LaNiO 3 bottom electrode
CN110648902A (zh) 一种镧掺杂的二氧化铪铁电薄膜的制备方法及应用
CN104362094A (zh) 一种调控铁磁性能的铁电场效应管的制备方法
CN111029244A (zh) 一种铈掺杂的氧化铪基铁电薄膜及电容结构制备方法
CN114999895B (zh) 具有铁电阻电耦合特性的铈掺杂二氧化铪薄膜及制备方法
Tang et al. Frequency-dependent electrical properties in Bi (Zn0. 5Ti0. 5) O3 doped Pb (Zr0. 4Ti0. 6) O3 thin film for ferroelectric memory application
CN1298962A (zh) 一种制备具有有序表面结构的镧钙锰氧薄膜的方法
Chen et al. KrF excimer laser annealing with an ultra-low laser fluence for enabling ferroelectric HfZrO
CN102603288A (zh) 一种无铅压电薄膜材料及其制备方法
CN115020210A (zh) 一种具有高剩余极化强度的铈掺杂铪锆氧铁电薄膜的制备方法及应用
CN108376737A (zh) 一种制备高开关比TaOx阻变随机存储器的方法
CN113241407A (zh) 一种二氧化铪基纳米铁电薄膜的制备方法及应用
CN106783531A (zh) 一种HfO2基铁电材料的使用方法
Tan et al. Ferroelectric Si-doped HfO 2 capacitors for next-generation memories
TWI541847B (zh) 磁性電容結構
CN113540254B (zh) 一种钕掺杂的氧化锆薄膜晶体管及其制备方法和应用
CN105448821B (zh) 一种获得大面积铁电薄膜晶体管阵列制备工艺的方法
CN112133753B (zh) 一种硅集成bto薄膜及其制备方法
Mardare et al. Bottom electrode crystallization of PZT thin films for ferroelectric capacitors
Li et al. Deposition of Bi3. 15Nd0. 85Ti3O12 ferroelectric thin films on 5-inch diameter Si wafers by a modified pulsed laser deposition method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant