CN109967062A - 一种高能晶面暴露TiO2光催化剂的制备方法 - Google Patents

一种高能晶面暴露TiO2光催化剂的制备方法 Download PDF

Info

Publication number
CN109967062A
CN109967062A CN201910179294.1A CN201910179294A CN109967062A CN 109967062 A CN109967062 A CN 109967062A CN 201910179294 A CN201910179294 A CN 201910179294A CN 109967062 A CN109967062 A CN 109967062A
Authority
CN
China
Prior art keywords
preparation
tio
tbt
ethanol
crystal face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910179294.1A
Other languages
English (en)
Inventor
夏静芬
常岩航
谢周云
杨国靖
王宇
唐力
张妮
俞旭成
陆菁菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Wanli University
Zhejiang Wanli College
Original Assignee
Zhejiang Wanli College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Wanli College filed Critical Zhejiang Wanli College
Priority to CN201910179294.1A priority Critical patent/CN109967062A/zh
Publication of CN109967062A publication Critical patent/CN109967062A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高能晶面暴露TiO2光催化剂的制备方法,属于光催化技术领域。本发明高能晶面暴露TiO2光催化剂的制备方法,包括如下步骤:制备TBT‑乙醇溶液和乙醇‑水溶液;在超声条件下将乙醇‑水溶液以1~2滴每秒的速度缓慢滴加至TBT‑乙醇溶液中,得到具有白色沉淀的悬浊液,然后向悬浊液中滴加氢氟酸,之后继续在超声条件下进行超声处理;将步骤S2中制得的样品进行陈化、烘干、焙烧,即得到白色粉末状的高能晶面暴露TiO2光催化剂。本发明高能晶面暴露TiO2光催化剂的制备方法可在常温常压下进行反应、操作简单、成本低。

Description

一种高能晶面暴露TiO2光催化剂的制备方法
技术领域
本发明属于光催化技术领域,涉及一种高能晶面暴露TiO2光催化剂的制备方法。
背景技术
二氧化钛作为优秀的半导体光催化材料受到相关领域研究者的广泛关注。近几十年的研究显示,二氧化钛光催化材料能够利用太阳光降解空气和水中的有毒有害物质,从而改善环境。然而利用二氧化钛光催化材料降解有害物质仍存在诸多问题,如:1、太阳能利用率低,二氧化钛禁带宽度为3.2eV,只能利用太阳光谱中不到5%的紫外光;2、催化效率低,二氧化钛在光激发过程中,光生电子与空穴复合几率较高,会影响催化效率。
为改善二氧化钛的光催化性能,研究者对催化剂表面结构进行了研究,研究发现二氧化钛光催化材料的表面结构和其光催化性能密切相关,由于材料中高表面能晶面较常规晶面存在更多的表面悬挂键,故高表面能晶面暴露的光催化材料具有更好的光催化活性。目前研究最多的锐钛矿相二氧化钛单晶,其不同晶面的表面自由能分别为{110}(1.09J/m2)>{001}(0.90J/m2)>{010}(0.53J/m2)>{101}(0.44J/m2),一般情况下,暴露最多的晶面为表面自由能最低的{101}面。近年来有研究者通过以氟作为表面调节剂,合成了{001}晶面大量暴露的二氧化钛材料,随着方法的改进和创新,其材料粒度也越来越小,从微米级{001}晶面样品到纳米级{001}晶面样品均获得成功制备。
二氧化钛高能晶面暴露光催化材料的合成方法很多,最常用的是水热法和溶剂热法。水热法,是在高温高压和溶液环境下制备纳米材料的方法,采用水溶液作为反应介质(溶剂),通过加热特制的密闭反应容器(带特制的聚四氟乙烯内衬和不锈钢钢套的高压釜),创造一个高温高压的反应环境,在高温高压即水热条件下,反应介质水的性质发生变化,使溶液粘度变小,溶液中粒子扩散速度变大,从而制得粒径小、粒径分布窄、纯度高、晶形好的纳米材料。溶剂热法,是采用有机溶剂或其他非水溶剂代替水作为反应介质,在类似水热反应的高温高压环境下发生反应合成纳米材料的方法,适合一些反应物质会与水反应的体系或者其他不能有水参加的反应体系等,可以扩大原料的范围和制备产物的范围。但这两种方法均需要高温高压的反应环境,对反应设备的要求高,实验条件与步骤相对复杂,且制备过程中具有一定的危险性。
发明内容
本发明的目的是针对现有技术存在的上述问题,提出了一种可在常温常压下进行反应、操作简单、成本较低的高能晶面暴露TiO2光催化剂的制备方法。
本发明的目的可通过下列技术方案来实现:
一种高能晶面暴露TiO2光催化剂的制备方法,所述制备方法包括如下步骤:
S1、制备TBT-乙醇溶液和乙醇-水溶液;
S2、在超声条件下将乙醇-水溶液以1~2滴每秒的速度缓慢滴加至TBT-乙醇溶液中,得到具有白色沉淀的悬浊液,然后向悬浊液中滴加氢氟酸,之后继续在超声条件下进行超声处理;
S3、将步骤S2中制得的样品进行陈化、烘干、焙烧,即得到白色粉末状的高能晶面暴露TiO2光催化剂。
本发明采用超声沉淀法来制备高能晶面暴露TiO2光催化剂,其在室温常压下就可以进行反应,无需高温高压设备,操作简单,成本较低,为高能晶面暴露光催化剂的制备方法提供了一条新的路径。
本发明在制备高能晶面暴露TiO2光催化剂的过程中引入超声场,由于超声空化作用产生的局部高温高压环境为体系提供了能量去克服微小颗粒形成时来自界面能的成核能量势垒,使得TiO2晶核生成速率提高几个数量级;同时,外加超声空化作用在固体颗粒表面产生的大量微小气泡会干扰构晶离子的有序排列,阻止晶核进一步长大。另一方面,超声空化产生的高压冲击波和微射流起到的粉碎、乳化、搅拌等机械效应,在一定时间内又能有效阻止晶核的生长与团聚,使微小颗粒分布更均匀。因此,本发明采用超声沉淀法合成的TiO2纳米光催化剂具有更小的粒径和更好的分散性。进一步地,本发明通过控制高能晶面暴露TiO2光催化剂制备过程中的超声功率,控制晶核生长和长大的相对速率,从而控制TiO2纳米光催化剂颗粒的大小。
本发明将乙醇-水溶液滴加至TBT-乙醇溶液中,相较于将TBT-乙醇溶液滴加至乙醇-水溶液中,白色沉淀逐渐产生,反应更易控制;如果将TBT-乙醇加入乙醇-水溶液中,由于水含量较高易导致水解过快,影响反应进行,反之则减少水解现象。
本发明采用超声沉淀法制备纳米材料,其工艺简单、成本低、所得粉体性能优良,具有较好的实用化前景。利用此方法产生的沉淀颗粒的大小主要取决于晶核生长与长大的相对速率。
作为优选,所述步骤S1中所述制备TBT-乙醇溶液的方法为,于超声条件下在无水乙醇中缓慢加入TBT,超声处理10min~30min,超声功率为150w~200w,即为TBT-乙醇溶液,所述TBT和无水乙醇的体积比为1:(1.8~2.2)。
作为优选,所述步骤S1中所述制备乙醇-水溶液的方法为,将无水乙醇和去离子水混合均均,即为乙醇-水溶液,所述无水乙醇和去离子水的体积比为1:(1.3~2)。
作为优选,所述步骤S2中所述TBT-乙醇溶液、乙醇-水溶液和氢氟酸的体积比为(14~16):(7~9):1。
作为优选,所述步骤S2中所述氢氟酸的浓度为35wt%~45wt%。
作为优选,所述步骤S2中所述超声条件的超声功率为150w~200w,所述继续在超声条件下进行超声处理的时间为30min~50min。
作为优选,所述步骤S3中所述陈化为在室温条件下静置10h~14h。
作为优选,所述步骤S3中所述烘干为将样品置于烘箱内于75℃~85℃烘16h~20h。
作为优选,所述步骤S3中所述焙烧为将烘干后的样品充分研磨后放入马弗炉中,以8℃/min~12℃/min的升温速率升至550℃~650℃,恒温煅烧1.5h~2.5h得到白色粉末状的高能晶面暴露TiO2光催化剂。
与现有技术相比,本发明具有以下有益效果:
本发明采用超声沉淀法制备高能晶面暴露的TiO2纳米光催化剂,避免了传统水热法和溶剂热法高温高压条件限制,降低了反应难度和对设备的高要求,提高了制备安全性,制得的高能晶面暴露TiO2纳米光催化剂,经过粒径测量和光催化活性评价试验证实,粒度更小,催化活性更高。
说明书附图
图1为本发明对比例1中制备的TiO2纳米光催化剂的TEM图一。
图2为本发明对比例1中制备的TiO2纳米光催化剂的TEM图二。
图3为本发明实施例1中制备的TiO2纳米光催化剂的TEM图一。
图4为本发明实施例1中制备的TiO2纳米光催化剂的TEM图二。
图5为本发明实施例1中制备的TiO2纳米光催化剂的HRTEM图。
图6为本发明实施例1和对比例1中的TiO2纳米光催化剂的XRD图。
图7为本发明实施例1(a、c)和对比例1(b、d)中的TiO2纳米光催化剂的吸附-脱附等温线及其孔径分布曲线。
图8为本发明实施例1和对比例中的TiO2纳米光催化剂的活性的对比。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
本实施例中高能晶面暴露TiO2光催化剂的制备方法包括如下步骤:
(1)制备TBT-乙醇溶液,取10mL无水乙醇至塑料烧杯A中,于180W超声功率的超声条件下缓慢加入5mL TBT,继续以180W超声功率超声处理20min,即得为TBT-乙醇溶液(A液),
制备乙醇-水溶液,取3mL无水乙醇与5mL去离子水于烧杯B中,混合均均,即为乙醇-水溶液(B液);
(2)在180W超声功率的超声条件下,将A液以1滴每秒的速度缓慢滴加至B液中,滴加过程中逐渐产生具有白色沉淀的悬浊液,然后向悬浊液中滴加1mL浓度为40wt%的氢氟酸,继续以180W超声功率超声处理40min;
(3)将步骤(2)中制得的样品室温条件下静置12h进行陈化处理,然后将样品置于烘箱内于80℃烘18h,将烘干后的样品充分研磨后放入马弗炉中,以10℃/min的升温速率升至600℃,恒温煅烧2h得到白色粉末状的高能晶面暴露TiO2光催化剂。
实施例2
本实施例中高能晶面暴露TiO2光催化剂的制备方法包括如下步骤:
(1)制备TBT-乙醇溶液,取9mL无水乙醇至塑料烧杯A中,于150W超声功率的超声条件下缓慢加入5mL TBT,继续以150W超声功率超声处理10min,即得为TBT-乙醇溶液(A液),
制备乙醇-水溶液,取3mL无水乙醇与6mL去离子水于烧杯B中,混合均均,即为乙醇-水溶液(B液);
(2)在180W超声功率的超声条件下,将A液以2滴每秒的速度缓慢滴加至B液中,滴加过程中逐渐产生具有白色沉淀的悬浊液,然后向悬浊液中滴加1mL浓度为35wt%的氢氟酸,继续以150W超声功率超声处理30min;
(3)将步骤(2)中制得的样品室温条件下静置10h进行陈化处理,然后将样品置于烘箱内于75℃烘20h,将烘干后的样品充分研磨后放入马弗炉中,以8℃/min的升温速率升至550℃,恒温煅烧2.5h得到白色粉末状的高能晶面暴露TiO2光催化剂。
实施例3
本实施例中高能晶面暴露TiO2光催化剂的制备方法包括如下步骤:
(1)制备TBT-乙醇溶液,取11mL无水乙醇至塑料烧杯A中,于200W超声功率的超声条件下缓慢加入5mL TBT,继续以200W超声功率超声处理30min,即得为TBT-乙醇溶液(A液),
制备乙醇-水溶液,取3mL无水乙醇与4mL去离子水于烧杯B中,混合均均,即为乙醇-水溶液(B液);
(2)在200W超声功率的超声条件下,将A液以1滴每秒的速度缓慢滴加至B液中,滴加过程中逐渐产生具有白色沉淀的悬浊液,然后向悬浊液中滴加1mL浓度为45wt%的氢氟酸,继续以200W超声功率超声处理50min;
(3)将步骤(2)中制得的样品室温条件下静置14h进行陈化处理,然后将样品置于烘箱内于85℃烘16h,将烘干后的样品充分研磨后放入马弗炉中,以12℃/min的升温速率升至650℃,恒温煅烧1.5h得到白色粉末状的高能晶面暴露TiO2光催化剂。
对比例1
制备过程中未添加氢氟酸,其他与实施例1相同。
对比例2
市售TiO2P25(厂家德固赛,平均粒径25nm以下)。
以下以实施例1中为例,对本发明制得的TiO2纳米光催化剂性质和性能进行说明。
如图1~4所示,为本发明实施例1(图3、4)和对比例1(图1、2)中制得的TiO2纳米光催化剂的TEM图,如图5所示,为本发明实施例1制得的TiO2纳米光催化剂的HRTEM图。由图1~5可知,本发明实施例1和对比例1制得的TiO2形貌具有明显差异。如图1、2所示,未添加氢氟酸制得的TiO2样品由大量无规则形貌的TiO2堆积而成,这可能是由于样品在反应过程中水解和成核速率较快,导致晶体形成无规则形貌。由图3、4可知,在添加氢氟酸条件下制得的TiO2样品,其分散性较好,形貌大多为正方形和截断双锥八面体。根据锐钛矿TiO2的对称性,其上下两面为(001)面,周围侧面为(101)面,两面夹角经测量为68°,符合锐钛矿TiO2(001)面与(101)面的晶面夹角理论值。图5显示了添加氢氟酸条件下制备的TiO2样品不同晶面间的晶格条纹,经测量计算得出晶面间距分别为0.234nm和0.35nm,分别对应锐钛矿TiO2的(001)面与(101)面,从而进一步表明暴露了高活性的(001)面。
如图6所示,为本发明实施例1和对比例1中的TiO2纳米光催化剂的XRD图。如图6可知,本发明实施例1制得的TiO2纳米光催化剂其特征峰分别位于25.3°、37.04°、37.8°、38.6°、48.1°、53.9°、55.1°、62.7°、68.8°、70.4°、75.1°、82.7°,这些特征峰分别对应锐钛矿TiO2的(101)、(103)、(004)、(112)、(200)、(105)、(211)、(204)、(116)、(220)、(215)、(224)晶面,未发现其它杂峰,说明样品纯度较高,主要为单晶锐钛矿型。通过Scherrer公式计算,实施例1和对比例1中制得的TiO2纳米光催化剂的平均粒径分别约为20nm和41.5nm,实施例1中添加氢氟酸制备的TiO2的(004)衍射峰明显宽化,表明有大量(001)面暴露,(101)衍射峰强度明显减弱,表明氢氟酸的添加能够有效控制本发明TiO2纳米光催化剂晶体生长方向。
如图7所示,为通过氮气吸附实验测得的样品吸附-脱附等温线图及其孔径分布曲线图,a、c为实施例1中制得的TiO2的图示,b、d是对比例1中制得的TiO2的图示。根据等温线类型分类,实施例1中制得的TiO2等温线为II型,表明此材料属于非多孔性固体,其回滞环属于H3型,进一步表明其孔结构不规整。对比例1中制得的TiO2等温线类型为IV型,说明其孔径分布为介孔,与其孔径分布曲线一致。此外等温线在相对压力0.6以后出现H2型回滞环,表明其孔为均匀粒子堆积的孔,但其等温线后期继续上升,说明除介孔外其还有部分较大孔径的孔存在或者其吸附质分子间相互作用较强。
以光催化剂对RhB的降解为例来说明TiO2纳米光催化剂的活性,如图8所示为本发明实施例1和对比例中的TiO2纳米光催化剂的活性的对比,由图8可知,本发明实施例1制备的TiO2纳米光催化剂光催化效率明显优于对比例1中未添加氢氟酸制得的TiO2和对比例2中市售TiO2P25,在反应20min时,对RhB的降解率相对于市售TiO2P25提高了约20%,而在40min时提高将近30%,未添加氢氟酸的TiO2光催化效率相对实施例1和对比例2更差一些。这是因为市售TiO2P25可能存在混晶效应,所以光催化效率优于单晶未添加氢氟酸的TiO2,而添加氢氟酸的TiO2有效控制了晶面生长取向,使表面自由能较高的(001)面大量暴露,从而提高了其光催化活性。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (9)

1.一种高能晶面暴露TiO2光催化剂的制备方法,其特征在于,所述制备方法包括如下步骤:
S1、制备TBT-乙醇溶液和乙醇-水溶液;
S2、在超声条件下将乙醇-水溶液以1~2滴每秒的速度缓慢滴加至TBT-乙醇溶液中,得到具有白色沉淀的悬浊液,然后向悬浊液中滴加氢氟酸,之后继续在超声条件下进行超声处理;
S3、将步骤S2中制得的样品进行陈化、烘干、焙烧,即得到白色粉末状的高能晶面暴露TiO2光催化剂。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中所述制备TBT-乙醇溶液的方法为,于超声条件下在无水乙醇中缓慢加入TBT,之后继续超声处理10min~30min,超声功率为150w~200w,即为TBT-乙醇溶液,所述TBT和无水乙醇的体积比为1:(1.8~2.2)。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中所述制备乙醇-水溶液的方法为,将无水乙醇和去离子水混合均均,即为乙醇-水溶液,所述无水乙醇和去离子水的体积比为1:(1.3~2)。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S2中所述TBT-乙醇溶液、乙醇-水溶液和氢氟酸的体积比为(14~16):(7~9):1。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤S2中所述氢氟酸的浓度为35wt%~45wt%。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤S2中所述超声条件的超声功率为150w~200w,所述继续在超声条件下进行超声处理的时间为30min~50min。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中所述陈化为在室温条件下静置10h~14h。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中所述烘干为将样品置于烘箱内于75℃~85℃烘16h~20h。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中所述焙烧为将烘干后的样品充分研磨后放入马弗炉中,以8℃/min~12℃/min的升温速率升至550℃~650℃,恒温煅烧1.5h~2.5h得到白色粉末状的高能晶面暴露TiO2光催化剂。
CN201910179294.1A 2019-03-11 2019-03-11 一种高能晶面暴露TiO2光催化剂的制备方法 Pending CN109967062A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910179294.1A CN109967062A (zh) 2019-03-11 2019-03-11 一种高能晶面暴露TiO2光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910179294.1A CN109967062A (zh) 2019-03-11 2019-03-11 一种高能晶面暴露TiO2光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN109967062A true CN109967062A (zh) 2019-07-05

Family

ID=67078352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910179294.1A Pending CN109967062A (zh) 2019-03-11 2019-03-11 一种高能晶面暴露TiO2光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109967062A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555916A (zh) * 2003-12-30 2004-12-22 上海交通大学 光催化活性氟掺杂二氧化钛纳米材料的制备方法
US20090123985A1 (en) * 2007-11-10 2009-05-14 Chung Yuan Christian University Method for fabricating aerogels and their application in biocomposites
CN102674451A (zh) * 2012-05-22 2012-09-19 哈尔滨工业大学 一种{001}面暴露二氧化钛纳米晶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555916A (zh) * 2003-12-30 2004-12-22 上海交通大学 光催化活性氟掺杂二氧化钛纳米材料的制备方法
US20090123985A1 (en) * 2007-11-10 2009-05-14 Chung Yuan Christian University Method for fabricating aerogels and their application in biocomposites
CN102674451A (zh) * 2012-05-22 2012-09-19 哈尔滨工业大学 一种{001}面暴露二氧化钛纳米晶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周明华: "介孔二氧化钛光催化剂的制备、表征及性能研究", 《中国优秀博硕士学位论文全文数据库 (博士) 信息科技辑》 *
姜兆华: "《固体界面物理化学原理及应用》", 31 January 2017, 哈尔滨工业大学出版社 *
鲁启鹏等: "《基于金属氧化物TiO2和Y2O3纳米材料光电性能的研究》", 30 April 2016, 北京交通大学出版社 *

Similar Documents

Publication Publication Date Title
CN101456585A (zh) 一种尿素改性的高光催化活性二氧化钛空心微球的原位自转变制备方法
Shahini et al. Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder
Moura et al. TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation
CN101049555A (zh) 一种制备高活性二氧化钛空心微球的氟化物调制自转变方法
Sheikhnejad-Bishe et al. performance of TiO2 Nanoparticles
CN103626225B (zh) 一种含有束缚单电子氧空位且暴露{001}面锐钛矿二氧化钛纳米晶及其制备方法
CN104190442A (zh) 一种硫化镉可见光光催化剂及其制备方法
CN102795664B (zh) 一种粒径可控的介孔二氧化钛微球的制备方法
Han et al. Relationship between synthesis conditions and photocatalytic activity of nanocrystalline TiO2
CN104226291A (zh) 一种水热合成TiO2/C复合空心微球的方法
Loryuenyong et al. Sol-gel template synthesis and photocatalytic behavior of anatase titania nanoparticles
CN102350331B (zh) 超声-水热耦合制备TiO2纳米管的方法
CN105727922B (zh) 一种Li掺杂SrTiO3十八面体纳米颗粒的制备方法及产物
KR101108691B1 (ko) 수열합성법에 의한 나노 산화아연 분말의 제조방법
CN102515269A (zh) 水热法制备高活性多孔纳米晶二氧化钛光催化剂的方法
CN102718257B (zh) 一种由空心纳米颗粒组装成二氧化钛空心微球的制备方法
Hamisu et al. A novel poly (vinyl alcohol) post-precipitation template synthesis and property tuning of photoactive mesoporous nano-TiO2
CN104909405A (zh) 基于纤维素基模板的纺锤形纳米二氧化钛及其制备方法
CN109967062A (zh) 一种高能晶面暴露TiO2光催化剂的制备方法
CN101524642A (zh) 一种制备高光催化活性介孔二氧化钛粉末的水热表面氟化方法
JP2001276621A (ja) チタン酸カリウム光触媒及びその製造方法
CN113070057B (zh) 一种光电-压电复合材料及其制备方法
Fu et al. A general synthesis strategy for hierarchical porous metal oxide hollow spheres
CN105836799B (zh) 一种调控溴氧铋暴露晶面的方法
Nam et al. Characterization and photocatalytic performance of nanosize TiO 2 powders prepared by the solvothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination