CN109939698A - 铜锡硫-碳纳米管复合光催化剂的制备方法 - Google Patents

铜锡硫-碳纳米管复合光催化剂的制备方法 Download PDF

Info

Publication number
CN109939698A
CN109939698A CN201910248016.7A CN201910248016A CN109939698A CN 109939698 A CN109939698 A CN 109939698A CN 201910248016 A CN201910248016 A CN 201910248016A CN 109939698 A CN109939698 A CN 109939698A
Authority
CN
China
Prior art keywords
cnts
cts
composite photo
carbon nanotube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910248016.7A
Other languages
English (en)
Other versions
CN109939698B (zh
Inventor
何骁
宋挺辉
冯贤斌
朱凡凡
诸琳
刘文超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910248016.7A priority Critical patent/CN109939698B/zh
Publication of CN109939698A publication Critical patent/CN109939698A/zh
Application granted granted Critical
Publication of CN109939698B publication Critical patent/CN109939698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种铜锡硫‑碳纳米管(Cu4SnS4‑Carbon NanoTubes,CTS‑CNTs)复合光催化剂的制备方法,包括如下步骤:(1)将碳纳米管(CNTs)进行酸化处理,离心洗涤后进行烘干;(2)将烘干好的CNTs超声,放入铜锡硫(CTS)的前驱体中水热反应,离心洗涤烘干样品,得到CTS‑CNTs复合光催化剂;(3)利用CTS‑CNTs复合光催化剂对有机污染物苏丹红(III)进行光催化降解。采用这种方法设备简单、成本低廉并且能取得较好的产品效果,是一种新型的制备CTS‑CNTs复合光催化剂的方法,可广泛应用于光催化降解有机污染物。

Description

铜锡硫-碳纳米管复合光催化剂的制备方法
技术领域
本发明涉及光催化领域,具体涉及一种铜锡硫-碳纳米管复合光催化剂的制备方法。
背景技术
1.随着经济发展,环境污染问题日益严重,是全球关注的热点问题。有机污染物是对人类健康有严重危害的一类污染物,降解有机污染物的危害迫在眉睫。光催化降解技术是一种清洁且高效的技术,它利用可再生太阳能来实现降解有机污染物,从而达到环境友好的目的。
2.三元半导体材料铜锡硫(Cu4SnS4,CTS)是一种光学带隙为1.5eV左右的直接带隙半导体材料,其吸收系数高达4×104cm-1,且所含元素地壳含量丰富、成本低廉、毒性小,是很好的太阳能电池和光催化剂候选材料。碳纳米管(Carbon nanotube,CNTs)作为具有大比表面积、较好的化学和热稳定性、良好的导电能力、超强的机械性能的一维材料,被广泛用于电极印刷、存储器等领域。
3.基于CTS和CNTs的催化性能,我们充分利用各自的优势,将它们复合形成CTS-CNTs纳米复合物。一方面,CNTs是一种窄带半导体材料,具有宽的对太阳光的吸收范围,能吸收大范围的光产生较多的载流子。另一方面,光生载流子沿着CNTs的一维方向传送,减少了光生电势对电荷分离的抑制作用,从而提高了载流子分离效率。此外,CNTs具有大比表面积的优点,可以对降解中间产物与污染物进行富集,让光催化剂与降解物充分接触,达到提高降解效率的目的。
4.据申请人了解,目前铜锡硫-碳纳米管(CTS-CNTs)复合光催化剂的制备方法还没有被报道过,是一种全新的合成复合光催化剂方法。
发明内容
本发明的目的是合成CTS-CNTs复合光催化剂,提高材料的光催化降解有机污染物的性能,解决了单一的三元的铜锡硫化物CTS光催化降解有机污染物性能低的缺点。
本发明的具体技术方案如下:
(1)CNTs的酸化:将CNTs加入到浓硝酸中进行加热回流,加热温度为110℃,加热时间为2h,然后冷却至室温,然后利用离心分离酸化的CNTs,离心条件为:离心速度12000rpm/min,离心时间5分钟,用去离子水洗至中性,最后在60℃条件下烘干12h;
(2)CTS-CNTs复合物的制备:1)水相溶液的制备:将烘干的CNTs加入到40ml去离子水中,进行超声处理1h,接着加入铜盐3.2mmol的Cu(Ac)2·H2O和锡盐0.8mmol的SnCl2·2H2O,磁力搅拌该体系1h至反应物完全溶解;2)油相溶液制备:将10ml正十二硫醇溶解在30ml的甲苯中,形成油相溶液。接着将油相溶液缓慢滴加入水相溶液中,然后将所有水/油反应前驱物移入具有聚四氟乙烯(PTFE)内衬的水热反应釜中,旋紧并密封,将反应釜放在200℃下保持36然后冷却至室温,然后用离心机离心反应物,离心条件为:离心速度12000rpm/min离心时间5分钟,最后用正己烷、去离子水反复多次洗涤,在60℃条件下烘干12h得到CTS-CNTs复合物;
(3)测试CTS-CNTs复合物的光催化降解性能:将CTS-CNTs分散至30ml的10mg/l的苏丹红(III)(溶剂为乙酸乙酯)溶液中,在氙灯的照射下不断搅拌,光源距离溶液10cm。每隔一段时间光照后取出3ml混合溶液在12000rpm/min下离心5min,上清液用紫外-可见光分光光度计测其吸光度,根据吸收锋峰值的变化来判断苏丹红(III)浓度的变化。
步骤(1)中,要求利用单一浓硝酸对CNTs进行酸化。采用混酸(硝酸与硫酸混合)效果不如采用单一浓硝酸酸化处理效果好。
步骤(1)中,所述的碳纳米管管径为20-40nm,合适的碳纳米管直径大小对于与铜锡硫纳米晶体的复合优劣尤为重要。
步骤(2)中,所述PTFE内衬中要排除多余气体。排除多余气体有利于CNTs与CTS充分结合在一起形成较好的复合材料。
步骤(3)中,所述光源为300W的氙灯光源。氙灯光源光谱接近于太阳光,从而进行良好的太阳光模拟催化实验。
本专利将酸化好的CNTs与CTS的前驱体在水热反应釜PTFE内衬中进行反应,反应前要排除PTFE内衬中的多余气体,得到产物离心后利用正己烷与去离子水多次洗涤,烘干后进行光催化降解苏丹红(III)测试。这种方法的优点是可控度高、设备简单、成本低,适用于大面积降解有机污染物,为工业上处理有机污染物提供了可行性路线。
附图说明
图1为实施例一中所获得的成品CTS-CNTs复合光催化剂的X-射线衍射(XRD)图谱;
图2为实施例一中所获得的成品CTS-CNTs复合光催化剂的透射电镜(TEM)图;
图3为实施例一中所获得的成品CTS-CNTs复合光催化剂在氙灯照射下降解苏丹红(III)图,不同照射时间的苏丹红(III)吸收谱图;
图4为实施例一中所获得的成品CTS-CNTs复合光催化剂在氙灯照射下降解苏丹红(III)的性能曲线,也就是不同照射时间的苏丹红(III)吸收峰峰值C(t)与原吸收峰峰值C(0)的对比C(t)/C(0)随时间变化曲线;
图5为实施例二中所获得的成品纯CTS光催化剂在氙灯照射下降解苏丹红(III)图,不同照射时间的苏丹红(III)吸收谱图;
图6为实施例二中所获得的成品纯CTS光催化剂在氙灯照射下降解苏丹红(III)的性能曲线,也就是不同照射时间的苏丹红(III)吸收峰峰值C(t)与原吸收峰峰值C(0)的对比C(t)/C(0)随时间变化曲线;
具体实施方式
本发明中,采用水热法制备CTS-CNTs复合光催化剂。在X射线衍射(XRD)图谱中衍射峰分别在26.6°,33.8°,37.6°,46.3°和48.7°对应正交晶系的CTS相(JCPDS card 27-0196)。
实施例一
将1gCNTs加入到80ml浓硝酸中进行加热回流,加热温度为110℃,加热时间为2h,然后冷却至室温,之后用离心机在离心速度为12000rpm/min下离心5分钟分离得到酸化的CNTs,用去离子水洗至中性,在烘箱中温度为60℃下烘干12h;
水相溶液的制备:将烘干的CNTs称取100mg加入到40ml的离子水中,进行超声处理1h,接着加入铜盐3.2mmol的Cu(Ac)2·H2O、锡盐0.8mmol的SnCl2·2H2O,磁力搅拌该混合溶液1h至反应物均匀分散,得到水相溶液。油相溶液制备:将10ml正十二硫醇溶解在30ml的甲苯中。接着将油相溶液缓慢滴加入水相溶液中,然后将水/油反应前驱物移入具有PTFE内衬的水热反应釜中,旋紧并密封,在烘箱温度200℃下保持36h。之后将反应物冷却至室温,离心,条件为:离心速度12000rpm/min,离心时间5分钟。然后用正己烷、去离子水反复多次洗涤,在烘箱温度60℃下烘干12h得到所需的CTS-CNTs复合光催化剂。如图1的XRD图谱所示,从图中可以看出具有纯的CTS相。从图2的不同放大倍数的TEM图可以看出,大部分CTS纳米晶都粘附在CNTs上,CTS与CNTs较为良好地结合在一起形成CTS-CNTs复合结构。
将78.75mg的CTS-CNTs复合光催化剂分散至30ml的10mg/L的苏丹红(III)(溶剂为乙酸乙酯)溶液中,在300W氙灯的照射下不断搅拌,光源距离溶液10cm,每隔一段时间光照后取出3ml混合溶液并用离心机在12000rpm/min下离心5min,取出上清液用紫外分光光度计测其吸光度,根据吸收峰峰值的变化判断苏丹红(III)浓度的变化。图3为用实施例一中所获得的成品CTS-CNTs在氙灯照射下降解苏丹红(III)随光照时间的吸收光谱变化图。图4为用实施例一中所获得的成品CTS-CNTs在氙灯照射下降解苏丹红(III)的浓度随时间变化曲线。相比于实施例二中的图5、图6,可以明显的看出CTS-CNTs复合光催化剂比CTS具有更为优秀的降解效率。图4表明CTS-CNTs复合光催化剂可以在15分钟时间内快速降解89%的苏丹红(III),而图6表明纯CTS光催化剂3小时内才降解39%的苏丹红(III)。
实施例二
将铜盐3.2mmol的Cu(Ac)2·H2O、锡盐0.8mmol的SnCl2·2H2O加入到40ml去离子水中,磁力搅拌1h至反应物完全溶解。将10ml正十二硫醇溶解在30ml的甲苯中。接着将油相溶液缓慢滴加入水相溶液中,然后将水/油反应前驱物移入具有PTFE内衬的水热反应釜中,在烘箱温度200℃下保持36h后冷却至室温,然后离心得到CTS,离心条件为:离心速度12000rpm/min,离心时间5分钟。之后用正己烷、去离子水反复多次洗涤,最后在烘箱温度60℃条件下烘干12h得到纯CTS纳米晶。
将75mg的CTS纳米晶分散至30ml的10mg/L的苏丹红(III)(溶剂为乙酸乙酯)溶液中,在氙灯的照射下不断搅拌,光源距离溶液10cm,每隔一段时间光催化后取出3ml混合溶液在12000rpm/min下离心5min,上清液用紫外可见光分光光度计测其吸光度,根据吸收峰峰值的变化可以判断浓度的变化。图5为用实施例二中所获得的成品CTS在氙灯照射下降解苏丹红(III)随光照时间的吸收光谱变化图。图6为用实施例二中所获得的成品CTS在氙灯照射下降解苏丹红(III)的浓度随时间变化曲线。从图6中可以看出纯CTS光催化剂3小时内降解了39%的苏丹红(III)。
本专利不限于上述实施方式,任何采用与本专利相同或相似的制备方法,均在本专利的保护范围内。

Claims (5)

1.一种铜锡硫-多壁碳纳米管(CTS-CNTs)复合光催化剂的制备方法,其特征在于包括如下步骤:
(1)CNTs的酸化:将CNTs加入到浓硝酸中进行加热回流,加热温度为110℃,加热时间为2h,冷却至室温15℃-20℃,然后离心分离酸化的CNTs,离心条件为离心速度12000rpm/min和离心时间5min,再用去离子水洗至中性,最后在烘箱温度60℃下烘12h;
(2)CTS-CNTs复合物制备:将烘干的CNTs加入去离子水中,进行超声处理1h,接着加入铜盐、锡盐,磁力搅拌该体系1h至反应物完全溶解;油相溶液制备:将正十二硫醇溶解在甲苯中。接着将油相溶液缓慢滴加入水相溶液中,然后将水油反应前驱物移入水热反应釜的聚四氟乙烯(PTFE)内衬中,排除PTFE内衬中多余气体,在烘箱条件为200℃下保持36h。冷却至室温15℃-20℃,离心该混合物体系,条件为在离心速度为12000rpm/min离心5分钟,用正己烷、去离子水反复多次洗涤,在烘箱温度为60℃条件下烘干12h;
(3)将CTS-CNTs分散至5mg/L的苏丹红(III)(溶剂为乙酸乙酯)溶液中,在氙灯的照射下不断搅拌,光源距离溶液10cm,光照后每隔一段时间取出混合溶液在12000rpm/min下离心5min,上清液用紫外分光光度计测其吸光度。
2.根据权利要求1所述的方法,其特征在于步骤(1)中,要求利用单一浓硝酸对碳纳米管进行酸化。
3.根据权利要求1所述的方法,其特征在于步骤(1)中,所述的碳纳米管管径(OD)为20-40nm。
4.根据权利要求1所述的方法,其特征在于步骤(2)中,所述PTFE内衬中要排除多余气体。
5.根据权利要求1所述的方法,其特征在于步骤(3)中,所述光源为功率为300W的氙灯光源。
CN201910248016.7A 2019-03-28 2019-03-28 铜锡硫-碳纳米管复合光催化剂的制备方法 Active CN109939698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910248016.7A CN109939698B (zh) 2019-03-28 2019-03-28 铜锡硫-碳纳米管复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910248016.7A CN109939698B (zh) 2019-03-28 2019-03-28 铜锡硫-碳纳米管复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN109939698A true CN109939698A (zh) 2019-06-28
CN109939698B CN109939698B (zh) 2023-03-31

Family

ID=67012903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910248016.7A Active CN109939698B (zh) 2019-03-28 2019-03-28 铜锡硫-碳纳米管复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109939698B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934012A (zh) * 2014-04-14 2014-07-23 大连民族学院 SnS2/g-C3N4复合纳米片光催化剂及制备方法
CN106807414A (zh) * 2017-01-06 2017-06-09 华南理工大学 一种磷酸银/溴化银/碳纳米管复合光催化剂及制备与应用
CN106881115A (zh) * 2017-03-13 2017-06-23 济南大学 一种Zn0.25Cd0.75S/Zn2GeO4复合可见光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934012A (zh) * 2014-04-14 2014-07-23 大连民族学院 SnS2/g-C3N4复合纳米片光催化剂及制备方法
CN106807414A (zh) * 2017-01-06 2017-06-09 华南理工大学 一种磷酸银/溴化银/碳纳米管复合光催化剂及制备与应用
CN106881115A (zh) * 2017-03-13 2017-06-23 济南大学 一种Zn0.25Cd0.75S/Zn2GeO4复合可见光催化剂的制备方法

Also Published As

Publication number Publication date
CN109939698B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
Dong et al. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production
Luo et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants
Wang et al. In situ preparation of pn BiOI@ Bi5O7I heterojunction for enhanced PFOA photocatalytic degradation under simulated solar light irradiation
Liang et al. Constructing a novel pn heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity
Shi et al. Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B
Zhao et al. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation
Jiao et al. Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance
Jiang et al. Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities
Hou et al. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance
Mao et al. Facile synthesis of porous Bi2O3-BiVO4 pn heterojunction composite microrods with highly efficient photocatalytic degradation of phenol
Rajender et al. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance
Sun et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst
Wang et al. Nanostructured porous ZnO film with enhanced photocatalytic activity
Yang et al. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst
Wang et al. Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect
Zeng et al. Attapulgite-interpenetrated g-C3N4/Bi2WO6 quantum-dots Z-scheme heterojunction for 2-mercaptobenzothiazole degradation with mechanism insight
Xin et al. Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method
Liu et al. Visible light-driven Bi2Sn2O7/reduced graphene oxide nanocomposite for efficient photocatalytic degradation of organic contaminants
CN105536819B (zh) 一种石墨烯/硫化锑复合光催化剂的制备方法
CN107790157A (zh) 一种三元铋基复合光催化剂Bi/Bi4O5Br2/BiOI及其制备方法和应用
Shekofteh-Gohari et al. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation
CN106732686B (zh) 一种硫化铟掺杂溴氧化铋复合光催化剂的制备方法
Yu et al. Facile synthesis of a robust visible-light-driven AgCl/WO3 composite microrod photocatalyst
Peng et al. Construction of ZnO nanosheet arrays within BiVO4 particles on a conductive magnetically driven cilia film with enhanced visible photocatalytic activity
CN105013511A (zh) 一种以聚乙烯吡咯烷酮为分散剂的硫化镉量子点/碳纳米管光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant