CN109918999A - 一种小样本数据下基于生成模型的机械设备故障智能诊断方法 - Google Patents

一种小样本数据下基于生成模型的机械设备故障智能诊断方法 Download PDF

Info

Publication number
CN109918999A
CN109918999A CN201910058792.0A CN201910058792A CN109918999A CN 109918999 A CN109918999 A CN 109918999A CN 201910058792 A CN201910058792 A CN 201910058792A CN 109918999 A CN109918999 A CN 109918999A
Authority
CN
China
Prior art keywords
data
mechanical
model
mechanical equipment
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910058792.0A
Other languages
English (en)
Inventor
陈景龙
张天赐
訾艳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910058792.0A priority Critical patent/CN109918999A/zh
Publication of CN109918999A publication Critical patent/CN109918999A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种小样本数据下基于生成模型的机械设备故障智能诊断方法,对获取到的少量机械信号进行零均值标准化预处理;建立用于机械信号生成的复合网络;结合Wasserstein距离和梯度惩罚方法对抗式地训练生成对抗网络模型;建立使用机械信号对机械设备运行状态进行分类的深度卷积神经网络模型;结合生成对抗复合神经网络模型以及深度卷积神经网络模型,使用少量真实机械信号训练两个网络,最终实现小样本数据下的对机械设备的智能故障诊断。本发明具有对机械信号的特征提取效果好,状态分类正确率高以及机械信号数据扩充性能好的特点。

Description

一种小样本数据下基于生成模型的机械设备故障智能诊断 方法
技术领域
本发明涉及机械设备故障诊断领域,具体涉及一种小样本数据下基于生成模型的机械设备故障智能诊断方法。
背景技术
机械设备运行的过程中,其主要零部件诸如轴承、齿轮、转子等由于持续承受载荷的作用,容易发生故障,进而造成经济损失与人员伤亡。为了降低由于机械设备故障带来的损失,有必要开展针对机械设备的故障诊断和状态监测研究。实际工况下在机械设备上采集到的各类机械信号均会受到噪声的污染,难以进行机械信号的有效特征提取和状态识别。对机械信号进行去噪和特征提取通常被视为机械设备故障诊断的主要工作和主要重、难点,长期以来大量的机械设备智能诊断算法都聚焦于对机械信号进行去噪和特征提取上。
然而,在实际工况中很难获得机械设备的故障信号,获取到的故障信号数量少,种类也少。另一方面,对机械设备智能诊断算法进行训练时需要有大量的故障样本才能提高它的泛化性以及工程实用性。小样本问题严重影响了对机械设备进行故障诊断和状态监测的及时性和准确性,因此有必要开展针对小样本问题下的机械设备故障诊断的研究。
传统上故障诊断过程中扩充数据集的方式是过采样,但过采样也只是在重复利用仅有的少量的故障样本信息,不具有一般性。
发明内容
本发明的目的在于提供一种小样本数据下基于生成模型的机械设备故障智能诊断方法,以克服现有技术存在的问题,本发明使用深度卷积神经网络对机械信号进行特征提取和运行状态识别,能够有效提取出机械信号中的敏感特征,摆脱了传统上特征提取过程对人工经验的依赖性。
为达到上述目的,本发明采用如下技术方案:
一种小样本数据下基于生成模型的机械设备故障智能诊断方法,该方法包括以下步骤:
步骤1:以机械设备各种运行状态下的机械信号作为数据集合,对获取到的少量机械信号进行标准化预处理;
步骤2:建立用于机械信号生成的生成对抗复合神经网络模型,该复合神经网络模型包含生成器以及带有辅助分类器的判别器两个网络子结构;
步骤3:对步骤2建立的复合神经网络模型,结合Wasserstein距离以及梯度惩罚方法,进行对抗式地训练并更新生成器和带有辅助分类器的判别器的网络参数,从而使生成器实现使用高斯噪声生成带标签数据的功能,进而可获得带有运行状态标签的机械信号;
步骤4:建立使用机械信号对机械设备运行状态进行分类识别的神经网络模型,模型输入数据为小于总数据量5%的真实机械信号以及由步骤3的生成器生成的带运行状态标签的机械信号,模型输出为每一条数据所对应的运行状态的概率值;
步骤5:对步骤4所建立的卷积神经网络状态分类模型,使用Dropout以及Batchnormalization参数正则化方法防止训练过拟合,稳定训练过程,从而使网络更快速更稳定完成状态分类工作;
步骤6:结合步骤3所设计的生成对抗复合神经网络模型以及步骤5所设计的卷积神经网络状态分类模型,使用小于总数据量5%的真实机械信号训练两个网络,从而使生成对抗复合神经网络模型能够生成和真实机械信号具有相同分布的数据,并使卷积神经网络状态分类模型能够获得95%以上的状态分类正确率,最终实现小样本数据下的对机械设备的智能故障诊断。
进一步地,步骤1中所述的数据标准化预处理使用零均值规范化,计算式为:
式中,n为单条输入信号的数据点个数,xi为输入信号中的第i个数据点,为输入信号的均值,s为输入信号的样本标准差,yi为零均值规范化处理后的新信号中的第i个数据。
进一步地,步骤2中所述的生成器由4层全连接层构成,负责生成与真实机械信号具有相同分布的数据。带有辅助分类器的判别器由5层全连接层构成,同时完成判断生成数据的真假以及生成数据的类别两项工作。
进一步地,步骤3使用Wasserstein距离优化复合网络模型的损失函数以稳定训练过程,Wasserstein距离计算式定义为:
式中,A1是真实数据服从的分布,A2是生成数据服从的分布,∏(A1,A2)是A1和A2分布组合起来的所有联合分布的集合,γ是其中的一个联合分布,(x,y)是γ中的一对样本,E(x,y)~γ[||x-y||]为该样本距离的期望值。
进一步地,步骤3所用的梯度惩罚是指针对判别器部分,在生成样本集中区域、真实样本集中区域以及夹在它们中间的区域上施加Lipschitz限制。具体地,先随机采样一对真假样本,还有一个0-1的随机数:
xr~Ar,xf~Af,ε~Uniform[0,1]
然后在xr和xf的连线上随机插值采样:记采样得到的所满足的分布记为则由Lipschitz限制所额外带来的损失值计算式为:
式中,Ll为由Lipschitz限制所额外带来的损失值,xr是真实数据样本,Ar为真实数据分布,xf是生成的数据样本,Af为生成的数据分布,ε是一个0-1的随机数,D(x)为判别器的输出值,为判别器输出值的导数值的第二范数,表示该第二范数减一的平方的期望值,λ为任意小于1的正数。
进一步地,步骤4中所设计的卷积神经网络状态分类模型是由6层卷积层6层池化层组成的深度卷积神经网络,采用首层卷积层为大卷积核大步长,中间和末尾卷积层为小卷积核小步长的参数配置策略,具体来说,设置首层卷积层中的卷积核大小为中间和末尾卷积层中卷积核大小的8倍,并设置首层卷积层中的步长大小为中间和末尾卷积层中步长大小的4倍,以达到更好的机械信号特征提取以及运行状态分类的效果。网络模型的损失函数采用交叉熵损失函数,计算式为:
式中,L为损失值,y为期望输出的标签信息,实际网络输出的标签信息。
进一步地,步骤5中使用Dropout参数正则化方法防止卷积神经网络发生过拟合。Dropout方法是指在一轮训练中,首先使每个神经单元节点以概率p被保留(Dropout丢弃率为1-p),其余节点被隐藏,然后再进行本轮的网络训练和参数更新的过程。在下一轮训练中,又将每个神经单元节点以概率p被保留,如此反复,直至训练结束。
进一步地,步骤5中使用Batch normalization参数正则化方法以稳定训练过程。Batch normalization方法分为4个步骤:
对于输入数据x={x1,x2,...,xm},首先计算数据均值m为每一条输入数据中数据点的个数,xi为输入数据中的第i个数据点;
其次计算数据方差
然后进行批规范化得到新的数据中的第i个数据点为其中η为防止发生除零错误而设置的微小正数;
最后进行尺度变换和偏移:α和β为网络自身在训练过程中学习到的参数。
该方法适用于小样本数据下的机械设备故障诊断,仅使用小于总数据量5%的数据对网络进行训练就能够有效地扩充训练数据集,进而获得95%以上的机械设备运行状态分类正确率,提高了小样本数据下对机械设备故障诊断的准确率。
与现有技术相比,本发明具有以下有益的技术效果:
本发明使用深度卷积神经网络对机械信号进行特征提取和运行状态识别,能够有效提取出机械信号中的敏感特征,摆脱了传统上特征提取过程对人工经验的依赖性;本发明通过生成模型的对抗式训练,使用一种网络模型同时生成了多种不同运行状态的机械信号,有效地扩充了机械设备故障信号数据集;本发明通过结合生成模型和深度卷积神经网络,能够有效地在小样本数据下对机械设备进行故障诊断,提高了小样本数据下对机械设备故障诊断的准确率。
本发明采用的生成模型能够学习数据的分布,进而生成与给定数据具有相同分布的新数据,利用生成模型的这一优点,可以生成不同种类的机械信号,生成的信号与实际的机械信号具有相同的数据分布,因此生成的信号更具有一般性,能够用来训练智能诊断算法,提高在小样本数据下对机械设备故障诊断的准确率。
附图说明
图1为本发明小样本数据下基于生成模型的机械设备故障智能诊断方法的流程图;
图2为使用本发明对某包含四种轴承运行状态的数据集进行状态分类的结果图;
图3为使用本发明对某包含四种轴承运行状态的数据集进行状态分类时的特征提取图;
图4为使用本发明对某包含四种轴承运行状态的数据集进行机械信号生成的结果图,其中(a)为外圈故障真实信号;(b)为外圈故障生成信号;(c)为正常状态真实信号;(d)为正常状态生成信号;(e)为内圈故障真实信号;(f)为内圈故障生成信号;(g)为滚珠故障真实信号;(h)为滚珠故障生成信号。
具体实施方式
下面结合附图对本发明作进一步详细描述:
参见图1,为了提高在小样本数据下对机械设备故障诊断的准确率,本发明提供一种小样本数据下基于生成模型的机械设备智能诊断方法。该方法包含两个部分:故障信号生成部分和状态分类识别部分。其中故障信号生成部分是基于生成对抗模型实现的,生成对抗模型中的生成器可以按照给定标签生成对应故障类型的故障信号,带辅助分类器的判别器可以判断生成信号的真假以及判别生成信号的类别。通过对抗式的训练,生成器可以获得良好的生成能力,以此来扩充数据集。状态分类识别部分由深度卷积神经网络实现,能够有效地从机械信号中提取特征信息进而进行机械设备运行状态的分类识别。
一种小样本数据下基于生成模型的机械设备故障智能诊断方法,包括以下步骤:
步骤1:以机械设备各种运行状态下的机械信号作为数据集合,对获取到的少量机械信号进行标准化预处理;
其中数据标准化预处理使用零均值规范化,计算式为:
式中,n为单条输入信号的数据点个数,xi为输入信号中的第i个数据,为输入信号的均值,s为输入信号的样本标准差,yi为零均值规范化处理后的新信号中的第i个数据。
步骤2:建立用于机械信号生成的生成对抗复合神经网络模型,该复合神经网络模型包含生成器以及带有辅助分类器的判别器两个网络子结构。
其中,生成器由4层全连接层构成,负责生成与真实机械信号具有相同分布的数据。带有辅助分类器的判别器由5层全连接层构成,同时完成判断生成数据的真假以及生成数据的类别两项工作。
步骤3:对步骤2建立的复合网络结构,结合Wasserstein距离以及梯度惩罚方法,进行对抗式地训练并更新生成器和带有辅助分类器的判别器的网络参数,从而使生成器实现使用随机高斯噪声生成带标签数据的功能,进而可获得具有运行状态标签的机械信号。
使用Wasserstein距离优化复合网络模型的损失函数以稳定训练过程,Wasserstein距离计算式定义为:
式中,A1是真实数据服从的分布,A2是生成数据服从的分布,∏(A1,A2)是A1和A2分布组合起来的所有联合分布的集合,γ是其中的一个联合分布,(x,y)是γ中的一对样本,E(x,y)~γ[||x-y||]为该样本距离的期望值。
所用的梯度惩罚是指针对判别器部分,在生成样本集中区域、真实样本集中区域以及夹在它们中间的区域上施加Lipschitz限制。具体地,先随机采样一对真假样本,还有一个0-1的随机数:
xr~Ar,xf~Af,ε~Uniform[0,1]
然后在xr和xf的连线上随机插值采样:记采样得到的所满足的分布记为则由Lipschitz限制所额外带来的损失值计算式为:
式中,Ll为由Lipschitz限制所额外带来的损失值,xr是真实数据样本,Ar为真实数据分布,xf是生成的数据样本,Af为生成的数据分布,ε是一个0-1的随机数,D(x)为判别器的输出值,为判别器输出值的导数值的第二范数,表示该第二范数减一的平方的期望值,λ为任意小于1的正数。
步骤4:建立使用机械信号对机械设备运行状态进行分类的神经网络模型,模型输入数据为小于总数据量5%的真实机械信号以及由步骤3的生成器生成的带标签的机械信号,模型输出为每一条数据所对应的运行状态的概率值。
所设计的卷积神经网络状态分类模型是由6层卷积层6层池化层组成的深度卷积神经网络,采用首层卷积层为大卷积核大步长,中间和末尾卷积层为小卷积核小步长的参数配置策略,具体来说,设置首层卷积层中的卷积核大小为中间和末尾卷积层中卷积核大小的8倍,并设置首层卷积层中的步长大小为中间和末尾卷积层中步长大小的4倍,以达到更好的机械信号特征提取以及运行状态分类的效果。网络模型的损失函数采用交叉熵损失函数,计算式为:
式中,Lc为交叉熵损失函数的损失值,y为期望输出的标签信息,实际网络输出的标签信息。
步骤5:对步骤4所建立的卷积神经网络状态分类模型,使用Dropout以及Batchnormalization参数正则化方法防止训练过拟合,稳定训练过程,从而使网络更快速更稳定完成状态分类工作。
其中,使用Dropout参数正则化方法防止卷积神经网络发生过拟合。Dropout方法是指在一轮训练中,首先使每个神经单元节点以概率p被保留(Dropout丢弃率为1-p),其余节点被隐藏,然后再进行本轮的网络训练和参数更新的过程。在下一轮训练中,又将每个神经单元节点以概率p被保留,如此反复,直至训练结束。
使用Batch normalization参数正则化方法以稳定训练过程。Batchnormalization方法分为4个步骤:
对于输入数据x={x1,x2,...,xm},首先计算数据均值m为每一条输入数据中数据点的个数,xi为输入数据中的第i个数据点;
其次计算数据方差
然后进行批规范化得到新的数据中的第i个数据点为其中η为防止发生除零错误而设置的微小正数;
最后进行尺度变换和偏移:α和β为网络自身在训练过程中学习到的参数。
步骤6:结合步骤3所设计的生成对抗复合网络模型以及步骤5所设计的卷积神经网络状态分类模型,使用小于总数据量5%的真实机械信号训练两个网络,从而使生成对抗复合网络模型能够生成和真实机械信号具有相同分布的数据,并使卷积神经网络状态分类模型能够获得95%以上的状态分类正确率,最终实现小样本数据下的对机械设备的智能故障诊断。
下面结合具体实施例对本发明做进一步详细描述:
所使用的某包含四种轴承运行状态的数据集一共有正常、内圈故障、外圈故障和滚珠故障四种滚动轴承运行状态,每种运行状态包含148条样本,总共包含592条样本。取其中的16条样本作为训练数据,剩余576条样本作为测试数据,训练样本数据量仅占总样本数据量的2.7%。
如图1所示,本发明包括以下步骤:
步骤1:对获取到的少量滚动轴承四种运行状态的振动信号进行标准化预处理,使用零均值规范化,计算式为:
式中,n为单条输入信号的数据点个数,xi为输入信号中的第i个数据,为输入信号的均值,s为输入信号的样本标准差,yi为零均值规范化处理后的新信号中的第i个数据。
步骤2:建立用于滚动轴承振动信号生成的生成对抗复合神经网络模型,该复合神经网络模型包含生成器以及带有辅助分类器的判别器两个网络子结构。生成器由4层全连接层构成,完成生成机械振动数据的工作。带有辅助分类器的判别器由5层全连接层构成,同时完成判断生成数据的真假以及生成数据的类别两项工作。
步骤3:对步骤2建立的复合神经网络模型,结合Wasserstein距离以及梯度惩罚方法,对抗式地训练并更新生成器和带有辅助分类器的判别器的网络参数,从而使生成器实现使用随机高斯噪声生成带标签数据的功能,进而可获得具有运行状态标签的滚动轴承振动数据。
Wasserstein距离计算式定义为:
式中,A1是真实数据服从的分布,A2是生成数据服从的分布,∏(A1,A2)是A1和A2分布组合起来的所有联合分布的集合,γ是其中的一个联合分布,(x,y)是γ中的一对样本,E(x,y)~γ[||x-y||]为该样本距离的期望值。
梯度惩罚是指针对判别器部分,在生成样本集中区域、真实样本集中区域以及夹在它们中间的区域上施加Lipschitz限制。具体地,先随机采样一对真假样本,还有一个0-1的随机数:
xr~Ar,xf~Af,ε~Uniform[0,1]
然后在xr和xf的连线上随机插值采样:记采样得到的所满足的分布记为则由Lipschitz限制所额外带来的损失值计算式为:
式中,Ll为由Lipschitz限制所额外带来的损失值,xr是真实数据样本,Ar为真实数据分布,xf是生成的数据样本,Af为生成的数据分布,ε是一个0-1的随机数,D(x)为判别器的输出值,为判别器输出值的导数值的第二范数,表示该第二范数减一的平方的期望值,λ为任意小于1的正数。
步骤4:建立使用振动信号对滚动轴承运行状态进行分类的神经网络模型,该模型是由6层卷积层6层池化层组成的深度卷积神经网络,采用首层卷积层为大卷积核大步长,中间和末尾卷积层为小卷积核小步长的参数配置策略,具体来说,设置首层卷积层中的卷积核大小为中间和末尾卷积层中卷积核大小的8倍,并设置首层卷积层中的步长大小为中间和末尾卷积层中步长大小的4倍,以达到更好的振动数据特征提取以及运行状态分类的效果。网络模型的损失函数采用交叉熵损失函数,定义式为:
式中,Lc为交叉熵损失函数的损失值,y为期望输出的标签信息,实际网络输出的标签信息。
步骤5:对步骤4所建立的卷积神经网络状态分类模型,使用Dropout以及Batchnormalization参数正则化方法防止训练过拟合,稳定训练过程,从而使网络更快速更稳定完成状态分类工作。
Dropout方法是指在一轮训练中,首先使每个神经单元节点以概率p被保留(Dropout丢弃率为1-p),其余节点被隐藏,然后再进行本轮的网络训练和参数更新的过程。在下一轮训练中,又将每个神经单元节点以概率p被保留,如此反复,直至训练结束。
而使用的Batch normalization方法分为4个步骤:
对于输入数据x={x1,x2,...,xm},首先计算数据均值m为每一条输入数据中数据点的个数,xi为输入数据中的第i个数据点;
其次计算数据方差
然后进行批规范化得到新的数据中的第i个数据点为其中η为防止发生除零错误而设置的微小正数;
最后进行尺度变换和偏移:α和β为网络自身在训练过程中学习到的参数。
步骤6:结合步骤3所设计的生成对抗复合神经网络模型以及步骤5所设计的卷积神经网络状态分类模型,使用少量滚动轴承真实振动信号训练两个网络,使生成对抗复合神经网络模型能够生成和真实振动信号具有相同分布的数据,并使卷积神经网络状态分类模型能够在使用小于总数据量5%的真实振动信号以及生成模型生成的信号训练的情况下获得95%以上的状态分类精度,最终实现小样本数据下的对滚动轴承的智能故障诊断。
在图2中,数字0代表外圈故障状态,数字1代表正常状态,数字2代表内圈故障状态,数字3代表滚珠故障状态。如图2所示,本发明在小样本数据下实现了对某包含四种轴承运行状态的数据集的正确分类,并且从图3可见本发明良好地完成了对轴承振动信号的特征提取。同时从图4可见本发明有效地生成了不同运行状态下了轴承振动信号,成功地对数据集进行了扩充。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明。所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,包括以下步骤:
步骤1:以机械设备各种运行状态下的机械信号作为数据集合,对获取到的机械信号进行标准化预处理;
步骤2:建立用于机械信号生成的生成对抗复合神经网络模型,该复合神经网络模型包含生成器以及带有辅助分类器的判别器两个网络子结构;
步骤3:对步骤2建立的复合神经网络模型,结合Wasserstein距离以及梯度惩罚方法,进行对抗式地训练并更新生成器和带有辅助分类器的判别器的网络参数,从而使生成器实现使用高斯噪声生成带标签数据的功能,进而获得带有运行状态标签的机械信号;
步骤4:建立使用机械信号对机械设备运行状态进行分类识别的神经网络模型,模型输入数据为小于总数据量5%的真实机械信号以及由步骤3的生成器生成的带运行状态标签的机械信号,模型输出为每一条数据所对应的运行状态的概率值;
步骤5:对步骤4所建立的卷积神经网络状态分类模型,使用Dropout以及Batchnormalization参数正则化方法防止训练过拟合及稳定训练过程,从而使网络更快速更稳定完成状态分类工作;
步骤6:结合步骤3所设计的生成对抗复合神经网络模型以及步骤5所设计的卷积神经网络状态分类模型,使用小于总数据量5%的真实机械信号训练两个网络,从而使生成对抗复合神经网络模型能够生成和真实机械信号具有相同分布的数据,并使卷积神经网络状态分类模型能够获得95%以上的状态分类正确率,最终实现小样本数据下的对机械设备的智能故障诊断。
2.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤1中所述的数据标准化预处理使用零均值规范化,计算式为:
式中,n为单条输入信号的数据点个数,xi为输入信号中的第i个数据,为输入信号的均值,s为输入信号的样本标准差,yi为零均值规范化处理后的新信号中的第i个数据。
3.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤2中所述的生成器由4层全连接层构成,用于生成与真实机械信号具有相同分布的数据;带有辅助分类器的判别器由5层全连接层构成,用于同时完成判断生成数据的真假以及生成数据的类别。
4.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤3使用Wasserstein距离优化复合网络模型的损失函数以稳定训练过程,Wasserstein距离计算式定义为:
式中,A1是真实数据服从的分布,A2是生成数据服从的分布,∏(A1,A2)是A1和A2分布组合起来的所有联合分布的集合,γ是其中的一个联合分布,(x,y)是γ中的一对样本,E(x,y)~γ[||x-y||]为该样本距离的期望值。
5.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤3所用的梯度惩罚是指针对判别器部分,在生成样本集中区域、真实样本集中区域以及夹在它们中间的区域上施加Lipschitz限制,具体地,先随机采样一对真假样本,还有一个0-1的随机数:
xr~Ar,xf~Af,ε~Uniform[0,1]
然后在xr和xf的连线上随机插值采样:记采样得到的所满足的分布记为则由Lipschitz限制所额外带来的损失值计算式为:
式中,Ll为由Lipschitz限制所额外带来的损失值,xr是真实数据样本,Ar为真实数据分布,xf是生成的数据样本,Af为生成的数据分布,ε是一个0-1的随机数,D(x)为判别器的输出值,为判别器输出值的导数值的第二范数,表示该第二范数减一的平方的期望值,λ为任意小于1的正数。
6.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤4中所建立的神经网络模型是由6层卷积层及6层池化层组成的深度卷积神经网络,采用首层卷积层为大卷积核大步长,中间和末尾卷积层为小卷积核小步长的参数配置策略,神经网络模型的损失函数采用交叉熵损失函数,计算式为:
式中,Lc为交叉熵损失函数的损失值,y为期望输出的标签信息,实际网络输出的标签信息。
7.根据权利要求6所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,采用首层卷积层为大卷积核大步长,中间和末尾卷积层为小卷积核小步长的参数配置策略具体为:设置首层卷积层中的卷积核大小为中间和末尾卷积层中卷积核大小的8倍,并设置首层卷积层中的步长大小为中间和末尾卷积层中步长大小的4倍。
8.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤5中使用Dropout参数正则化方法防止卷积神经网络发生过拟合,Dropout方法是指在一轮训练中,首先使每个神经单元节点以概率p被保留,其余节点被隐藏,然后再进行本轮的网络训练和参数更新的过程,在下一轮训练中,又将每个神经单元节点以概率p被保留,如此反复,直至训练结束。
9.根据权利要求1所述的一种小样本数据下基于生成模型的机械设备故障智能诊断方法,其特征在于,步骤5中使用Batch normalization参数正则化方法以稳定训练过程;Batch normalization方法分为4个步骤:
对于输入数据x={x1,x2,...,xm},首先计算数据均值m为每一条输入数据中数据点的个数,xi为输入数据中的第i个数据点;
其次计算数据方差
然后进行批规范化得到新的数据中的第i个数据点为其中η为防止发生除零错误而设置的微小正数;
最后进行尺度变换和偏移:α和β为网络自身在训练过程中学习到的参数。
CN201910058792.0A 2019-01-22 2019-01-22 一种小样本数据下基于生成模型的机械设备故障智能诊断方法 Pending CN109918999A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910058792.0A CN109918999A (zh) 2019-01-22 2019-01-22 一种小样本数据下基于生成模型的机械设备故障智能诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910058792.0A CN109918999A (zh) 2019-01-22 2019-01-22 一种小样本数据下基于生成模型的机械设备故障智能诊断方法

Publications (1)

Publication Number Publication Date
CN109918999A true CN109918999A (zh) 2019-06-21

Family

ID=66960547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910058792.0A Pending CN109918999A (zh) 2019-01-22 2019-01-22 一种小样本数据下基于生成模型的机械设备故障智能诊断方法

Country Status (1)

Country Link
CN (1) CN109918999A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363163A (zh) * 2019-07-18 2019-10-22 电子科技大学 一种方位角可控的sar目标图像生成方法
CN110414604A (zh) * 2019-07-30 2019-11-05 重庆邮电大学 感知对抗生成网络驱动的锂电池故障数据生成方法
CN110428004A (zh) * 2019-07-31 2019-11-08 中南大学 数据失衡下基于深度学习的机械零部件故障诊断方法
CN110458039A (zh) * 2019-07-19 2019-11-15 华中科技大学 一种工业过程故障诊断模型的构建方法及其应用
CN110516305A (zh) * 2019-07-26 2019-11-29 西安交通大学 基于注意机制元学习模型的小样本下故障智能诊断方法
CN110533070A (zh) * 2019-07-26 2019-12-03 西安交通大学 一种小样本下基于迁移原形网络的机械故障智能诊断方法
CN110567720A (zh) * 2019-08-07 2019-12-13 东北电力大学 非平衡小样本场景下风机轴承故障深度对抗诊断方法
CN110619386A (zh) * 2019-09-09 2019-12-27 国家电网有限公司 一种tmr运行监测及故障智能研判方法及***
CN110647923A (zh) * 2019-09-04 2020-01-03 西安交通大学 小样本下基于自我学习的变工况机械故障智能诊断方法
CN111006865A (zh) * 2019-11-15 2020-04-14 上海电机学院 一种电机轴承故障诊断方法
CN111008692A (zh) * 2019-11-08 2020-04-14 国网天津市电力公司 基于改进生成对抗网络的多能计量特征数据生成方法及装置
CN111026058A (zh) * 2019-12-16 2020-04-17 浙江大学 基于瓦瑟斯坦距离和自编码器的半监督深度学习故障诊断方法
CN111310791A (zh) * 2020-01-17 2020-06-19 电子科技大学 一种基于小样本数目集的动态渐进式自动目标识别方法
CN111337243A (zh) * 2020-02-27 2020-06-26 上海电力大学 基于acgan的风电机组行星轮齿轮箱故障诊断方法
CN111586728A (zh) * 2020-04-30 2020-08-25 南京邮电大学 一种面向小样本特征的异构无线网络故障检测与诊断方法
CN111624977A (zh) * 2020-05-09 2020-09-04 黄河水利职业技术学院 一种电容触摸屏设备的机械控制装置及方法
CN111832428A (zh) * 2020-06-23 2020-10-27 北京科技大学 一种应用于冷轧轧机断带故障诊断的数据增强方法
CN112328588A (zh) * 2020-11-27 2021-02-05 哈尔滨工程大学 一种工业故障诊断非平衡时序数据扩充方法
CN112329579A (zh) * 2020-10-28 2021-02-05 厦门大学 基于acgan-gp的小样本无线设备rf指纹识别方法及装置
CN112649198A (zh) * 2021-01-05 2021-04-13 西交思创智能科技研究院(西安)有限公司 类不平衡滚动轴承智能故障诊断方法、***、设备及应用
CN112784930A (zh) * 2021-03-17 2021-05-11 西安电子科技大学 基于cacgan的hrrp识别数据库样本扩充方法
CN113256443A (zh) * 2021-04-29 2021-08-13 西安交通大学 核电水泵导轴承故障检测方法、***、设备及可读存储介质
CN113505876A (zh) * 2021-06-11 2021-10-15 国网浙江省电力有限公司嘉兴供电公司 一种基于生成式对抗网络的高压断路器故障诊断方法
CN114021285A (zh) * 2021-11-17 2022-02-08 上海大学 基于相互局部对抗迁移学习的旋转机械故障诊断方法
CN114176549A (zh) * 2021-12-23 2022-03-15 杭州电子科技大学 基于生成式对抗网络的胎心率信号数据增强方法和装置
CN114611233A (zh) * 2022-03-08 2022-06-10 湖南第一师范学院 一种旋转机械故障不平衡数据生成方法及计算机设备
CN116821697A (zh) * 2023-08-30 2023-09-29 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341546A (zh) * 2016-04-29 2017-11-10 北京中科寒武纪科技有限公司 一种用于执行batch normalization运算的装置和方法
US20180286034A1 (en) * 2017-04-03 2018-10-04 General Electric Company Equipment damage prediction system
CN108680807A (zh) * 2018-05-17 2018-10-19 国网山东省电力公司青岛供电公司 基于条件生成式对抗网络的变压器故障诊断方法和***
CN108711138A (zh) * 2018-06-06 2018-10-26 北京印刷学院 一种基于生成对抗网络的灰度图片彩色化方法
CN108830334A (zh) * 2018-06-25 2018-11-16 江西师范大学 一种基于对抗式迁移学习的细粒度目标判别方法
CN109120652A (zh) * 2018-11-09 2019-01-01 重庆邮电大学 基于差分wgan网络安全态势预测

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341546A (zh) * 2016-04-29 2017-11-10 北京中科寒武纪科技有限公司 一种用于执行batch normalization运算的装置和方法
US20180286034A1 (en) * 2017-04-03 2018-10-04 General Electric Company Equipment damage prediction system
CN108680807A (zh) * 2018-05-17 2018-10-19 国网山东省电力公司青岛供电公司 基于条件生成式对抗网络的变压器故障诊断方法和***
CN108711138A (zh) * 2018-06-06 2018-10-26 北京印刷学院 一种基于生成对抗网络的灰度图片彩色化方法
CN108830334A (zh) * 2018-06-25 2018-11-16 江西师范大学 一种基于对抗式迁移学习的细粒度目标判别方法
CN109120652A (zh) * 2018-11-09 2019-01-01 重庆邮电大学 基于差分wgan网络安全态势预测

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIYU SHAO等: "Generative adversarial networks for data augmentation in machine fault diagnosis", 《COMPUTERS IN INDUSTRY》 *
汪晋宽等: "《电子商务实用技术》", 31 December 2003 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363163A (zh) * 2019-07-18 2019-10-22 电子科技大学 一种方位角可控的sar目标图像生成方法
CN110363163B (zh) * 2019-07-18 2021-07-13 电子科技大学 一种方位角可控的sar目标图像生成方法
CN110458039A (zh) * 2019-07-19 2019-11-15 华中科技大学 一种工业过程故障诊断模型的构建方法及其应用
CN110516305A (zh) * 2019-07-26 2019-11-29 西安交通大学 基于注意机制元学习模型的小样本下故障智能诊断方法
CN110533070A (zh) * 2019-07-26 2019-12-03 西安交通大学 一种小样本下基于迁移原形网络的机械故障智能诊断方法
CN110414604A (zh) * 2019-07-30 2019-11-05 重庆邮电大学 感知对抗生成网络驱动的锂电池故障数据生成方法
CN110428004A (zh) * 2019-07-31 2019-11-08 中南大学 数据失衡下基于深度学习的机械零部件故障诊断方法
CN110567720A (zh) * 2019-08-07 2019-12-13 东北电力大学 非平衡小样本场景下风机轴承故障深度对抗诊断方法
CN110647923A (zh) * 2019-09-04 2020-01-03 西安交通大学 小样本下基于自我学习的变工况机械故障智能诊断方法
CN110619386B (zh) * 2019-09-09 2022-12-16 国家电网有限公司 一种tmr运行监测及故障智能研判方法及***
CN110619386A (zh) * 2019-09-09 2019-12-27 国家电网有限公司 一种tmr运行监测及故障智能研判方法及***
CN111008692A (zh) * 2019-11-08 2020-04-14 国网天津市电力公司 基于改进生成对抗网络的多能计量特征数据生成方法及装置
CN111006865A (zh) * 2019-11-15 2020-04-14 上海电机学院 一种电机轴承故障诊断方法
CN111026058A (zh) * 2019-12-16 2020-04-17 浙江大学 基于瓦瑟斯坦距离和自编码器的半监督深度学习故障诊断方法
CN111310791A (zh) * 2020-01-17 2020-06-19 电子科技大学 一种基于小样本数目集的动态渐进式自动目标识别方法
CN111337243B (zh) * 2020-02-27 2022-04-01 上海电力大学 基于acgan的风电机组行星轮齿轮箱故障诊断方法
CN111337243A (zh) * 2020-02-27 2020-06-26 上海电力大学 基于acgan的风电机组行星轮齿轮箱故障诊断方法
CN111586728A (zh) * 2020-04-30 2020-08-25 南京邮电大学 一种面向小样本特征的异构无线网络故障检测与诊断方法
CN111624977A (zh) * 2020-05-09 2020-09-04 黄河水利职业技术学院 一种电容触摸屏设备的机械控制装置及方法
CN111832428B (zh) * 2020-06-23 2024-02-23 北京科技大学 一种应用于冷轧轧机断带故障诊断的数据增强方法
CN111832428A (zh) * 2020-06-23 2020-10-27 北京科技大学 一种应用于冷轧轧机断带故障诊断的数据增强方法
CN112329579A (zh) * 2020-10-28 2021-02-05 厦门大学 基于acgan-gp的小样本无线设备rf指纹识别方法及装置
CN112328588A (zh) * 2020-11-27 2021-02-05 哈尔滨工程大学 一种工业故障诊断非平衡时序数据扩充方法
CN112649198A (zh) * 2021-01-05 2021-04-13 西交思创智能科技研究院(西安)有限公司 类不平衡滚动轴承智能故障诊断方法、***、设备及应用
CN112784930A (zh) * 2021-03-17 2021-05-11 西安电子科技大学 基于cacgan的hrrp识别数据库样本扩充方法
CN112784930B (zh) * 2021-03-17 2022-03-04 西安电子科技大学 基于cacgan的hrrp识别数据库样本扩充方法
CN113256443B (zh) * 2021-04-29 2023-06-20 西安交通大学 核电水泵导轴承故障检测方法、***、设备及可读存储介质
CN113256443A (zh) * 2021-04-29 2021-08-13 西安交通大学 核电水泵导轴承故障检测方法、***、设备及可读存储介质
CN113505876A (zh) * 2021-06-11 2021-10-15 国网浙江省电力有限公司嘉兴供电公司 一种基于生成式对抗网络的高压断路器故障诊断方法
CN114021285A (zh) * 2021-11-17 2022-02-08 上海大学 基于相互局部对抗迁移学习的旋转机械故障诊断方法
CN114021285B (zh) * 2021-11-17 2024-04-12 上海大学 基于相互局部对抗迁移学习的旋转机械故障诊断方法
CN114176549A (zh) * 2021-12-23 2022-03-15 杭州电子科技大学 基于生成式对抗网络的胎心率信号数据增强方法和装置
CN114176549B (zh) * 2021-12-23 2024-04-16 杭州电子科技大学 基于生成式对抗网络的胎心率信号数据增强方法和装置
CN114611233A (zh) * 2022-03-08 2022-06-10 湖南第一师范学院 一种旋转机械故障不平衡数据生成方法及计算机设备
CN114611233B (zh) * 2022-03-08 2022-11-11 湖南第一师范学院 一种旋转机械故障不平衡数据生成方法及计算机设备
CN116821697A (zh) * 2023-08-30 2023-09-29 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法
CN116821697B (zh) * 2023-08-30 2024-05-28 聊城莱柯智能机器人有限公司 一种基于小样本学习的机械设备故障诊断方法

Similar Documents

Publication Publication Date Title
CN109918999A (zh) 一种小样本数据下基于生成模型的机械设备故障智能诊断方法
CN110533070A (zh) 一种小样本下基于迁移原形网络的机械故障智能诊断方法
CN111539152B (zh) 一种基于两级孪生卷积神经网络的滚动轴承故障自学习方法
CN105629958B (zh) 一种基于子时段mpca‑svm的间歇过程故障诊断方法
CN111046945A (zh) 基于组合卷积神经网络的故障类型及损坏程度诊断方法
CN102879677A (zh) 基于粗糙贝叶斯网络分类器的智能故障诊断方法
CN112257767B (zh) 针对类不均衡数据的产品关键零部件状态分类方法
CN106198000A (zh) 一种采煤机摇臂齿轮故障诊断方法
CN105865784A (zh) 基于局部均值分解和灰色关联的滚动轴承检测方法
CN113538353B (zh) 基于单通道图数据增强和迁移训练残差网络的五相异步电动机滚动轴承故障诊断方法
CN106271881A (zh) 一种基于SAEs和K‑means的刀具破损监测方法
CN111680875A (zh) 基于概率基线模型的无人机状态风险模糊综合评价方法
CN112284735A (zh) 基于一维卷积与动态路由的多传感器滚动轴承故障诊断
EP2392120A1 (de) Verfahren und sensornetz zur merkmalsauswahl für eine ereigniserkennung
CN106768933A (zh) 一种基于遗传算法的风电机组叶片故障诊断方法
CN114462480A (zh) 基于非均衡数据集下的多源传感器轧机故障诊断的方法
Shang et al. Fault diagnosis method of rolling bearing based on deep belief network
CN115587290A (zh) 基于变分自编码生成对抗网络的航空发动机故障诊断方法
CN111458145A (zh) 一种基于路图特征的缆车滚动轴承故障诊断方法
CN115545070A (zh) 基于综合平衡网络的类不平衡轴承智能诊断方法
CN113869451B (zh) 一种基于改进jgsa算法的变工况下滚动轴承故障诊断方法
CN113324758B (zh) 一种基于半监督对抗网络的轴承故障诊断方法
CN113985156A (zh) 一种基于变压器声纹大数据的智能故障识别方法
CN114964783B (zh) 基于vmd-ssa-lssvm的齿轮箱故障检测模型
CN116561692A (zh) 一种动态更新的实时量测数据检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190621

RJ01 Rejection of invention patent application after publication