CN109913764B - 一种提高铁锰铝镍合金记忆性能稳定性的方法 - Google Patents

一种提高铁锰铝镍合金记忆性能稳定性的方法 Download PDF

Info

Publication number
CN109913764B
CN109913764B CN201910283076.2A CN201910283076A CN109913764B CN 109913764 B CN109913764 B CN 109913764B CN 201910283076 A CN201910283076 A CN 201910283076A CN 109913764 B CN109913764 B CN 109913764B
Authority
CN
China
Prior art keywords
manganese
aluminum
alloy
nickel alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910283076.2A
Other languages
English (en)
Other versions
CN109913764A (zh
Inventor
彭华备
雍立秋
王勇宁
文玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910283076.2A priority Critical patent/CN109913764B/zh
Publication of CN109913764A publication Critical patent/CN109913764A/zh
Application granted granted Critical
Publication of CN109913764B publication Critical patent/CN109913764B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种提高铁锰铝镍合金记忆性能稳定性的方法,属形状记忆合金领域。本发明所述铁锰铝镍合金的各元素的原子百分比含量为:Mn 25‑42%,Al 12‑18%,Ni 4‑10%,余为Fe和不可避免的杂质,所述方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中;(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次;(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。经本发明处理后,铁锰铝镍合金的形状记忆性能稳定。

Description

一种提高铁锰铝镍合金记忆性能稳定性的方法
技术领域
本发明涉及形状记忆合金领域,具体涉及一种提高铁锰铝镍合金形状记忆性能稳定性的方法。经过该方法处理后,铁锰铝镍合金不存在纳米β相室温时效析出现象,进而获得了稳定的形状记忆性能。
背景技术
2011年,日本东北大学Ishida等首次报道了通过时效析出与α母相共格的纳米β相(B2结构)将α ⇌ γ′马氏体相变从非热弹性诱发为热弹性,进而在多晶Fe-34Mn-15Al-7.5Ni(数字代表原子百分比,下同)合金中获得了大于5%的超弹性(Science, 2011, 333:68–71)。同年,他们的专利就公开了拥有形状记忆效应和超弹性的铁锰铝镍基形状记忆合金(专利号:US8815027B2),该类合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 5-12%,余为Fe和不可避免的杂质;Mn 25-42%,Al 12-18%,Ni 5-12%,Si 0.1-5%,Ti0.1-5%,V 0.1-5%,Cr 0.1-5%,Co 0.1-5%,Cu 0.1-5%,Mo 0.1-5%,W 0.1-5%,B 0.001-1%,C0.001-1%,其中Si、Ti、V、Cr、Co、Cu、Mo、W、B和C元素的原子百分比含量之和小于等于15%,余为Fe和不可避免的杂质。铁锰铝镍基形状记忆合金可在﹣263℃至240℃的超宽温度范围内呈现超弹性,是目前所有记忆合金体系中马氏体转变临界应力对温度依赖最小的合金,仅为0.30~0.74MPa/℃。所以,铁锰铝镍基形状记忆合金展现出在多个领域应用的潜力。
目前,研究表明铁锰铝镍形状记忆合金存在纳米β相室温时效析出的现象。Ozcan等发现固溶态Fe-34Mn-15Al-7.5Ni合金室温放置30天后,纳米β相不仅数量增加而且平均尺寸从5.6 nm增加至7.1 nm,再在室温放置30天后纳米β相的分布仍在变化;同时,甚至通过200℃×3h预先时效的方法也不能避免纳米β相室温时效析出(Scripta Mater., 2018,142: 153–157)。值得指出的是,铁锰铝镍形状记忆合金的马氏体相变和记忆性能主要由纳米β相的析出特征所决定。而纳米β相的室温时效析出会导致铁锰铝镍形状记忆合金的记忆性能随着室温放置时间的延长而变化,甚至出现记忆性能消失的极端情况。上述情况在工程实际应用中是不允许发生的。综上,目前铁锰铝镍形状记忆合金存在纳米β相室温时效析出的问题,这就导致铁锰铝镍形状记忆合金很难获得稳定的形状记忆性能。
发明内容
针对现有技术存在的问题,本发明提供一种抑制纳米β相室温时效析出进而提高铁锰铝镍合金形状记忆性能稳定性的方法。
在铁锰铝镍合金中,纳米β相与α母相共格,所以时效热处理时纳米β相以弥散的方式析出。然而,正是这种弥散析出的方式使得纳米β相的形核长大不受控制。本发明通过研究发现:首先在α母相内引入均匀分布的高密度β相形核核心;然后在后续热处理中让β相形核核心充分长大,使得α母相中β相形成元素的含量低于β相析出的临界值;同时,由于高密度β相形核核心在α母相中均匀分布,纳米β相充分长大后的尺寸仍小于形状记忆性能恶化的临界尺寸;最终,纳米β相室温时效现象被抑制,铁锰铝镍合金形状记忆性能的稳定性得到保障。
本发明适用的铁锰铝镍合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 4-10%,余为Fe和不可避免的杂质。方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中。该步骤的目的和效果是抑制热处理后淬火过程中纳米β相的析出和长大。(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次。该步骤的目的和效果是通过拉压循环变形在α母相中均匀引入大量空位,从而促进室温下原子的扩散,进而形成均匀分布的高密度β相形核核心,并且保障后续热处理后纳米β相的尺寸仍小于形状记忆性能恶化的临界尺寸。(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。该步骤的目的和效果是通过热处理让纳米β相的形核核心充分长大,使得α母相中β相形成元素的含量低于β相析出的临界值,最终抑制纳米β相室温时效析出。此外,该步骤还能消除拉压循环变形时可能引入的γ′马氏体,从而保障合金拥有优良的形状记忆性能。
步骤(1)中所述液态淬火介质为水或盐水或碱水或液态金属。上述液态淬火介质中液态金属冷却速度最快。所以,为了完全抑制纳米β相淬火过程的析出长大,液态淬火介质最好选择液态金属,并且液态金属的温度≤200℃。步骤(2)中拉压循环变形时拉伸和压缩变形量均不超过3%,最好是拉压循环变形时拉伸和压缩变形量为1%~2%。上述拉压循环变形由疲劳试验机完成。由于应力过高将导致合金中残余不能逆转变的γ′马氏体,导致形状记忆性能恶化,所以拉压循环变形时拉应力和压应力最好均不超过500MPa。
本发明有益效果是:(1)抑制了铁锰铝镍合金中纳米β相的室温时效析出;(2)提高了铁锰铝镍合金形状记忆性能的稳定性。
具体实施方式
下面结合实施例对本发明作进一步说明。值得指出的是,给出的实施例不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述本发明的内容对本发明做出的一些非本质的改进和调整仍应属于本发明保护范围。
实施例1
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 37.3%,Al 15.1%,Ni8.6%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理3小时,随后淬火在温度为50℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形1000次,拉伸和压缩变形量均为0.5%;(3)最后将步骤(2)处理后的合金在100℃处理10小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例2
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 36.5%,Al 14.7%,Ni7.1%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理2小时,随后淬火在温度为60℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形800次,拉伸和压缩变形量均为1%;(3)最后将步骤(2)处理后的合金在150℃处理8小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例3
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 34.5%,Al 13.9%,Ni6.2%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为60℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形600次,拉伸和压缩变形量均为1.5%;(3)最后将步骤(2)处理后的合金在180℃处理6小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例4
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 35.3%,Al 16.7%,Ni4.9%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为70℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形400次,拉伸和压缩变形量均为1.5%;(3)最后将步骤(2)处理后的合金在200℃处理4小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。
实施例5
本实施例选择的铁锰铝镍合金的各元素的原子百分比为:Mn 35.9%,Al 15.2%,Ni3.4%,余为Fe和不可避免的杂质。具体处理步骤如下:(1)将上述铁锰铝镍合金先在1200℃处理1小时,随后淬火在温度为80℃的液态金属中;(2)将步骤(1)处理后的合金在室温下拉压循环变形100次,拉伸和压缩变形量均为3%;(3)最后将步骤(2)处理后的合金在200℃处理2小时。经上述处理的合金在室温放置180天前后应力诱发马氏体临界应力和形状记忆性能没有变化,说明不存在纳米β相室温时效析出,合金的形状记忆性能稳定。

Claims (7)

1.一种提高铁锰铝镍合金记忆性能稳定性的方法,所述铁锰铝镍合金的各元素的原子百分比含量为:Mn 25-42%,Al 12-18%,Ni 4-10%,余为Fe和不可避免的杂质,其特征在于,方法的具体步骤如下:(1)将所述铁锰铝镍合金先在1150℃至1300℃处理10分钟至10小时,随后淬火在液态淬火介质中;(2)将步骤(1)处理后的合金在室温下拉压循环变形不低于100次,拉压循环变形时拉应力和压应力均不超过500MPa;(3)最后将步骤(2)处理后的合金在50℃至200℃处理1小时至24小时。
2.根据权利要求1所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,步骤(1)中所述液态淬火介质为水或盐水或碱水或液态金属。
3.根据权利要求2所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,所述液态淬火介质为液态金属。
4.根据权利要求3所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,所述液态金属的温度≤200℃。
5.根据权利要求1所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形时拉伸和压缩变形量均不超过3%。
6.根据权利要求5所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形时拉伸和压缩变形量为1%~2%。
7.根据权利要求1或5或6所述的一种提高铁锰铝镍合金记忆性能稳定性的方法,其特征在于,拉压循环变形由疲劳试验机完成。
CN201910283076.2A 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法 Expired - Fee Related CN109913764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283076.2A CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283076.2A CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Publications (2)

Publication Number Publication Date
CN109913764A CN109913764A (zh) 2019-06-21
CN109913764B true CN109913764B (zh) 2020-12-01

Family

ID=66969239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283076.2A Expired - Fee Related CN109913764B (zh) 2019-04-10 2019-04-10 一种提高铁锰铝镍合金记忆性能稳定性的方法

Country Status (1)

Country Link
CN (1) CN109913764B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358963B (zh) * 2019-07-15 2021-07-09 哈尔滨工程大学 一种FeMnAlNi形状记忆合金及其制备方法
CN110684918B (zh) * 2019-11-06 2021-03-23 四川大学 一种高超弹性铁锰铝镍基多主元合金
CN110684917B (zh) * 2019-11-06 2021-03-23 四川大学 相变诱导塑性的高强度铁锰铝镍基多主元合金
CN110819872B (zh) * 2019-11-09 2021-08-27 天津理工大学 一种Fe-Mn-Al-Ni-Nb形状记忆合金及其制备方法
CN111155041B (zh) * 2020-01-19 2021-08-03 北京科技大学 一种再生变形铝合金复合强韧化的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120346A1 (de) * 1991-06-19 1992-12-24 Krupp Industrietech Eisen-nickel-kobalt-titan-formgedaechtnislegierung und verfahren zu ihrer herstellung
CN1139667C (zh) * 2001-09-05 2004-02-25 中国科学院金属研究所 一种钛镍形状记忆合金力学训练方法
JP2003105438A (ja) * 2001-09-27 2003-04-09 National Institute For Materials Science NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法
CN1158399C (zh) * 2002-09-03 2004-07-21 四川大学 形变诱导时效型铁基形状记忆合金及其制备方法
CN1521286A (zh) * 2003-01-29 2004-08-18 上海交通大学 稀土改性的FeMnSiCr形状记忆合金及其制备方法
US20080222853A1 (en) * 2007-03-14 2008-09-18 Gm Global Technology Operations, Inc. Shape memory alloy reinforced hoses and clamps
US10018385B2 (en) * 2012-03-27 2018-07-10 University Of Maryland, College Park Solid-state heating or cooling systems, devices, and methods
CN104232982A (zh) * 2013-06-17 2014-12-24 镇江忆诺唯记忆合金有限公司 一种提高机械循环下超弹性滞回耗能的铜锌铝记忆合金
CN104342538A (zh) * 2013-08-09 2015-02-11 镇江忆诺唯记忆合金有限公司 一种提高高锰铁基合金记忆性能的淬火工艺方法
JP2016540121A (ja) * 2013-11-15 2016-12-22 マサチューセッツ インスティテュート オブ テクノロジー 表面粗さを用いて形状記憶合金のエネルギー減衰を制御する方法
CN103773933B (zh) * 2014-01-21 2016-06-08 四川大学 一种提高亚稳奥氏体不锈钢形状记忆效应的方法
JP2015200022A (ja) * 2014-03-31 2015-11-12 国立大学法人横浜国立大学 鉄基形状記憶合金の製造方法、及び鉄基形状記憶合金
JP6490608B2 (ja) * 2016-02-10 2019-03-27 国立大学法人東北大学 Cu−Al−Mn系合金材の製造方法
CN108517441B (zh) * 2018-04-15 2019-04-16 烟台浩忆生物科技有限公司 低相变温度钛锆铌钽形状记忆合金、制备方法及其应用
CN109457091B (zh) * 2018-10-15 2020-02-07 四川大学 一种制备粗晶铁锰硅基形状记忆合金的方法

Also Published As

Publication number Publication date
CN109913764A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109913764B (zh) 一种提高铁锰铝镍合金记忆性能稳定性的方法
KR20080064994A (ko) 형상 기억성 및 초탄성을 가지는 철계 합금 및 그 제조방법
JPWO2008023734A1 (ja) Fe基合金及びその製造方法
US10920305B2 (en) Fe-based shape memory alloy material and method of producing the same
US10000830B2 (en) Method for manufacturing martensite-based precipitation strengthening stainless steel
JP2013533921A (ja) 高温用途向けの焼きもどしマルテンサイト系耐熱鋼の製造方法
He et al. Comparative study on the microstructure and mechanical properties of a modified 9Cr–2WVTa steel by normalizing-tempering and quenching-partitioning treatments
CN106939396B (zh) 一种获得镍铁铬基变形高温合金弯曲锯齿晶界的热处理工艺
CN102154600B (zh) 一种提高中锰锰铜合金阻尼稳定性的热处理方法
CN109182662B (zh) 一种提高铁锰硅基形状记忆合金可恢复应变的方法
JP6252730B2 (ja) バネ用ステンレス鋼帯及びその製造方法
CN109457091B (zh) 一种制备粗晶铁锰硅基形状记忆合金的方法
JP2012082517A (ja) 機械的性質が改良されたNiCrMoNb合金
RU2688017C1 (ru) Способ термомеханической обработки жаропрочной стали мартенситного класса
CN108359875B (zh) 低镍型FeMnAlNi基形状记忆合金及其处理方法
CN113930693B (zh) 一种Fe-Mn-Al-Ni-Cu超弹性合金及其制备方法
CN113061821B (zh) 一种改善高合金化镁合金耐疲劳能力的方法
CN110106458B (zh) 一种锻造态锰铜减振合金的热处理方法
Yuan et al. Investigation on the grain growth of Fe-40Ni-Ti Austenitic Steel in Heating Process
Hutchinson et al. Origins of texture memory in steels
CN113621860B (zh) 一种Fe-Ni-Co-Al-Dy超弹性合金及其制备方法
CN110714141B (zh) 一种提高钴镍基合金形状记忆效应的方法
JP2014201812A (ja) 冷間鍛造用鋼の製造方法
KR101323041B1 (ko) 가스질화용 오스테나이트 스테인리스강 및 그 오스테나이트 스테인리스강의 가스질화 방법
RU2789958C1 (ru) Способ обработки жаропрочных низкоуглеродистых сталей мартенситного класса

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201201

Termination date: 20210410