CN109910390B - 一种梯度密度树脂复合材料预制体制备方法 - Google Patents

一种梯度密度树脂复合材料预制体制备方法 Download PDF

Info

Publication number
CN109910390B
CN109910390B CN201910160162.4A CN201910160162A CN109910390B CN 109910390 B CN109910390 B CN 109910390B CN 201910160162 A CN201910160162 A CN 201910160162A CN 109910390 B CN109910390 B CN 109910390B
Authority
CN
China
Prior art keywords
prepreg
ceramic
woven fabric
micro
fiber woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910160162.4A
Other languages
English (en)
Other versions
CN109910390A (zh
Inventor
***
范开春
吴家炳
孙绯
陈兴峰
张素婉
张志斌
刘军
尹正帅
廖乐峰
谢丽君
王稳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI FEILIHUA QUARTZ GLASS CO Ltd
Original Assignee
HUBEI FEILIHUA QUARTZ GLASS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI FEILIHUA QUARTZ GLASS CO Ltd filed Critical HUBEI FEILIHUA QUARTZ GLASS CO Ltd
Priority to CN201910160162.4A priority Critical patent/CN109910390B/zh
Publication of CN109910390A publication Critical patent/CN109910390A/zh
Application granted granted Critical
Publication of CN109910390B publication Critical patent/CN109910390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种梯度密度树脂复合材料预制体制备方法,属高超声速飞行器烧蚀防热材料技术领域。本发明是将制备的非瓷化树脂溶液和微瓷化树脂溶浆分别摊铺在石英纤维机织布,经烘干后分别制成a型微瓷化预浸料、b型非瓷化预浸料、c型非瓷化预浸料和d型非瓷化预浸料,然后在铺层缝合工装的成型腔内摊铺各预浸料;采用抽真空压实的方法,制得梯度密度复合材料成品。本发明制备的梯度密度材料在平面组成上划分了若干层,各层材料之间均匀过渡,从而消除了界面问题,实现了高超声速飞行器热防护***表层抗烧蚀、抗剪切,内层低密度、高效隔热和中间层缓冲过渡的要求,满足了高超声速飞行器防热***的轻质、低烧蚀和高效隔热的要求。

Description

一种梯度密度树脂复合材料预制体制备方法
技术领域
本发明涉及一种梯度密度树脂复合材料预制体制备方法,属高超声速飞行器烧蚀防热材料技术领域。
背景技术
高超声速飞行器在稠密大气层内飞行时,承受高焓、中低热流和长航时的气动加热环境。传统的烧蚀防热材料因在该热环境条件下无法充分发挥烧蚀吸热的优势,且由于材料的热导率和密度偏大,导致不能满足高超声速飞行器防热***的轻质、低烧蚀和高效隔热的要求。
梯度密度复合材料是一种新型的烧蚀防热材料。它是一种功能与结构在空间成连续变化的材料,由表层防热材料、内层隔热材料和中间过渡层材料组成。其中,表层是由近零烧蚀、抗剪切的致密防热材料构成;内层是由低密度、低热导率的疏松隔热材料构成;中间过渡层是由热物性参数与表层和内层起较好连续过渡的缓冲材料构成。但是,梯度密度材料在平面组成上划分了若干层,若不能采取科学合理的方法使梯度密度材料功能和性能呈现合理梯度变化,会导致界面问题,严重时会使采用该种新型材料制造的防热***失效而带来灾难性的后果。
发明内容
本发明的目的在于:提供了一种能使梯度密度材料功能和性能呈现合理梯度变化,且能消除界面问题的梯度密度树脂复合材料预制体的制备方法。
本发明的技术方案是:
一种梯度密度树脂复合材料预制体的制备方法,其特征在于:它包括以下步骤:
1)、用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液(浆),其中酒精、硼酚醛和钡酚醛各组分的质量比为: 1.0:1.0~1.1:0.8~1.0溶解完成后在室温下搅拌均匀,直至溶液(浆)无沉淀颜色均匀;即,得到的非瓷化树脂溶液(浆)中不允许存在沉淀物或其他可见异物,备用。
2)、按非瓷化树脂溶液:氮化硼128.8:8.0~8.5的质量比,往非瓷化树脂溶液中加入氮化硼(市售),然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用;
3)、将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.30~1.50的质量比,将步骤2)得到的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为12h~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可;
4)、将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为12~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
5)、将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液(浆)1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液(浆)倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为12~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
6)、将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为12~2412h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
7)、用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模;
8)、在铺层缝合工装的成型腔内由下至上依次摊铺步骤7)所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
9)、各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.070~0.096MPA的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品。
本发明具有以下优点:
本发明的方法步骤简单,制备的梯度密度材料在平面组成上划分了若干层,各层材料之间均匀过渡,从而消除了界面问题,实现了高超声速飞行器热防护***表层抗烧蚀、抗剪切,内层低密度、高效隔热和中间层缓冲过渡的要求,同时满足了高超声速飞行器防热***的轻质、低烧蚀和高效隔热的要求。
具体实施方式
实施例1:
用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液(浆),其中酒精、硼酚醛和钡酚醛各组分的质量比为:1.0:1.0: 1.0溶解完成后在室温下搅拌均匀,直至溶液(浆)无沉淀颜色均匀;即,得到的非瓷化树脂溶液(浆)中不允许存在沉淀物或其他可见异物,备用。
按非瓷化树脂溶液:氮化硼128.8: 8.5的质量比,往非瓷化树脂溶液中加入氮化硼,然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用。
将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.30的质量比,将制得的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度85℃、时间5h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为12h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可。
将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1: 1.40的质量比,将制得的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度80℃、时间6h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为20 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可。
将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液(浆)1:1.35的质量比,将制得的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度78℃、时间6h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为18 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可。
将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1: 1.40的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃、时间4h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为12h;条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模;
在铺层缝合工装的成型腔内由下至上依次摊铺所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.096MPA(0.070MPA; 0.080MPA;0.085MPA;)的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品。
本实施例中,申请人对制备的a型微瓷化预浸料、b型非瓷化预浸料、c型非瓷化预浸料、d型非瓷化预浸料,以及最终制备的梯度密度复合材料成品;分别与现有的微瓷化预浸料、非瓷化预浸料和复合材料在同等条件下进行了性能对比试验;其具体结果如下:
a型微瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE001
b型非瓷化预浸料性能对比试验结果:
Figure 408718DEST_PATH_IMAGE002
c型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE003
d型非瓷化预浸料性能对比试验结果:
Figure 873329DEST_PATH_IMAGE004
梯度密度复合材料性能对比试验结果:
Figure DEST_PATH_IMAGE005
实施例2
用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液(浆),其中酒精、硼酚醛和钡酚醛各组分的质量比为:1.0:1.0: 0.8;溶解完成后在室温下搅拌均匀,直至溶液无沉淀颜色均匀;即,得到的非瓷化树脂溶液中不允许存在沉淀物或其他可见异物,备用。
按非瓷化树脂溶液:氮化硼128.8:8.0的质量比,往非瓷化树脂溶液中加入氮化硼;然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用。
将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.40的质量比,将备用的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃、时间4h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为18 h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可。
将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度85℃、时间5h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为18 h;条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃、时间4h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为12 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.38的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度85℃、时间5h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为18 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模。
在铺层缝合工装的成型腔内由下至上依次摊铺所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.080MPA的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品。
本实施例中,申请人对制备的a型微瓷化预浸料、b型非瓷化预浸料、c型非瓷化预浸料、d型非瓷化预浸料,以及最终制备的梯度密度复合材料成品;分别与现有的微瓷化预浸料、非瓷化预浸料和复合材料在同等条件下进行了性能对比试验;其具体结果如下:
a型微瓷化预浸料性能对比试验结果:
Figure 121908DEST_PATH_IMAGE006
b型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE007
c型非瓷化预浸料性能对比试验结果:
Figure 845013DEST_PATH_IMAGE008
d型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE009
梯度密度复合材料性能对比试验结果:
Figure 206855DEST_PATH_IMAGE010
实施例3
用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液(浆),其中酒精、硼酚醛和钡酚醛各组分的质量比为: 1.0:1.1: 0.9溶解完成后在室温下搅拌均匀,直至溶液无沉淀颜色均匀;即,得到的非瓷化树脂溶液中不允许存在沉淀物或其他可见异物,备用。
按非瓷化树脂溶液:氮化硼128.8:8.2的质量比,往非瓷化树脂溶液中加入氮化硼;然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用。
将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.50的质量比,将备用的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度80℃、时间6h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为20h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可。
将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.35的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃、时间4h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为12h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.40(的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度80℃、时间5h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为20h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度80℃、时间6h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为20h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模。
在铺层缝合工装的成型腔内由下至上依次摊铺所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.070MPA的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品。
本实施例中,申请人对制备的a型微瓷化预浸料、b型非瓷化预浸料、c型非瓷化预浸料、d型非瓷化预浸料,以及最终制备的梯度密度复合材料成品;分别与现有的微瓷化预浸料、非瓷化预浸料和复合材料在同等条件下进行了性能对比试验;其具体结果如下:
a型微瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE011
b型非瓷化预浸料性能对比试验结果:
Figure 622793DEST_PATH_IMAGE012
c型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE013
d型非瓷化预浸料性能对比试验结果:
Figure 624247DEST_PATH_IMAGE014
梯度密度复合材料性能对比试验结果:
Figure DEST_PATH_IMAGE015
实施例4
用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液(浆),其中酒精、硼酚醛和钡酚醛各组分的质量比为: 1.0:1.1: 0.8;溶解完成后在室温下搅拌均匀,直至溶液无沉淀颜色均匀;即,得到的非瓷化树脂溶液中不允许存在沉淀物或其他可见异物,备用。
按非瓷化树脂溶液:氮化硼128.8:8.3的质量比,往非瓷化树脂溶液中加入氮化硼;然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用。
将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.35的质量比,将备用的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度80℃、时间4.5h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可。
将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1: 1.38的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度78℃、时间4.5h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.38的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度85℃、时间4.5h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.35的质量比,将备用的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度78℃、时间4.5h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模。
在铺层缝合工装的成型腔内由下至上依次摊铺所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.085MPA的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品。
在本实施例中,申请人对制备的a型微瓷化预浸料、b型非瓷化预浸料、c型非瓷化预浸料、d型非瓷化预浸料,以及最终制备的梯度密度复合材料成品;分别与现有的微瓷化预浸料、非瓷化预浸料和复合材料在同等条件下进行了性能对比试验;其具体结果如下:
a型微瓷化预浸料性能对比试验结果:
Figure 370617DEST_PATH_IMAGE016
b型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE017
c型非瓷化预浸料性能对比试验结果:
Figure 632971DEST_PATH_IMAGE018
d型非瓷化预浸料性能对比试验结果:
Figure DEST_PATH_IMAGE019
梯度密度复合材料性能对比试验结果:
Figure 360756DEST_PATH_IMAGE020

Claims (1)

1.一种梯度密度树脂复合材料预制体的制备方法,其特征在于:它包括以下步骤:
1)、用酒精对硼酚醛和钡酚醛进行溶解,得到非瓷化树脂溶液,其中酒精、硼酚醛和钡酚醛各组分的质量比为: 1.0:1.0~1.1:0.8~1.0溶解完成后在室温下搅拌均匀,直至溶液无沉淀颜色均匀;即,得到的非瓷化树脂溶液中不允许存在沉淀物或其他可见异物,备用;
2)、按非瓷化树脂溶液:氮化硼128.8:8.0~8.5的质量比,往非瓷化树脂溶液中加入氮化硼,然后在室温下搅拌均匀,直至无大团积聚,得到微瓷化树脂溶浆,即,在得到的微瓷化树脂溶浆中不允许存在团聚颗粒或其他可见异物;备用;
3)、将a型高密度2.5D石英纤维机织布放到特制的预浸料平台上铺平,按石英纤维机织布:微瓷化树脂溶浆1:1.30~1.50的质量比,将步骤2)得到的微瓷化树脂溶浆倒在石英纤维机织布上后,用推辊把微瓷化树脂溶浆摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,制得a型微瓷化预浸料;然后将a型微瓷化预浸料在室温、时间为12h~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂的粘性,使其不沾手即可;
4)、将b型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得b型非瓷化预浸料;再将b型非瓷化预浸料在室温、时间为12~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
5)、将c型普通密度2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得c型非瓷化预浸料;再将c型非瓷化预浸料在室温、时间为12~24 h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
6)、将d型2.5D石英纤维机织布放到特制预浸料平台上铺平,按石英纤维机织布:非瓷化树脂溶液1:1.30~1.40的质量比,将步骤1)得到的非瓷化树脂溶液倒在石英纤维机织布上后,用推辊把微瓷化树脂溶液摊开使其在石英纤维机织布分散均匀,然后将预浸料平台加热,使其在温度75℃~85℃、时间4h~6h的条件下对石英纤维机织布进行加热烘干,得d型非瓷化预浸料;再将d型非瓷化预浸料在室温、时间为12~2412h条件下进行晾置处理,以降低预浸料的微瓷化树脂粘性,使其不沾手即可;
7)、用裁切设备按裁切图样把上述各预浸料和低密度低热导率的气凝胶裁切成所需形状,用酒精将铺层缝合工装清理干净,并在铺层缝合工装的成型腔内表面依次铺覆两层聚酯膜材料和一层聚四氟乙烯膜材料,以便于后期脱模;
8)、在铺层缝合工装的成型腔内由下至上依次摊铺步骤7)所裁切的各预浸料和气凝胶;具体顺序为一层气凝胶、一层d型非瓷化预浸料、一层c型非瓷化预浸料、四层b型非瓷化预浸料、一层a型微瓷化预浸料;
9)、各预浸料和气凝胶摊铺完成后,将其相互缝合,然后采用抽真空压实的方法,在压力值为0.070~0.096 Mpa的条件下,将各预浸料和气凝胶负压压实,得,梯度密度复合材料成品;步骤8)所述的缝合工装包括缝合模具和转移模具。
CN201910160162.4A 2019-03-04 2019-03-04 一种梯度密度树脂复合材料预制体制备方法 Active CN109910390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910160162.4A CN109910390B (zh) 2019-03-04 2019-03-04 一种梯度密度树脂复合材料预制体制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910160162.4A CN109910390B (zh) 2019-03-04 2019-03-04 一种梯度密度树脂复合材料预制体制备方法

Publications (2)

Publication Number Publication Date
CN109910390A CN109910390A (zh) 2019-06-21
CN109910390B true CN109910390B (zh) 2020-10-09

Family

ID=66963059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910160162.4A Active CN109910390B (zh) 2019-03-04 2019-03-04 一种梯度密度树脂复合材料预制体制备方法

Country Status (1)

Country Link
CN (1) CN109910390B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721246A (zh) * 2020-12-29 2021-04-30 宁波复升新材料科技有限公司 碳纤维复合材料排气管的制作方法
CN114425888A (zh) * 2021-12-30 2022-05-03 湖北三江航天红阳机电有限公司 耐高温防隔热复合材料及其制备方法、模具和检测方法
CN114311870B (zh) * 2021-12-31 2023-04-25 湖北三江航天红阳机电有限公司 一种防热隔热双梯度功能复合材料及其制备方法
CN114953507B (zh) * 2022-05-26 2024-05-03 咸阳华清设备科技有限公司 一种表层连续编织体抗烧蚀局部热防护材料的制备方法
CN114801252A (zh) * 2022-06-30 2022-07-29 天津爱思达新材料科技有限公司 一种多层防热结构零烧蚀空气舵及其制备方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754684C2 (de) * 1977-12-08 1980-02-14 Deutsche Spezialglas Ag, 3223 Delligsen Durchbruchhemmende Verbundscheibe unter Verwendung von flexibilisiertem Epoxidharz
US5310592A (en) * 1984-11-02 1994-05-10 The Boeing Company Fibrous ceramic aerobrake
US4732804A (en) * 1985-09-12 1988-03-22 Rca Corporation Ablative and flame resistant composition
JP3766694B2 (ja) * 1996-01-30 2006-04-12 テクストロン システムス コーポレーション 三次元強化アブレーティブ/断熱複合材
US6555211B2 (en) * 2001-01-10 2003-04-29 Albany International Techniweave, Inc. Carbon composites with silicon based resin to inhibit oxidation
CN101259766B (zh) * 2008-04-18 2010-06-09 哈尔滨工业大学 聚合物/多孔陶瓷结构功能一体化梯度复合材料及其制备方法
CN106496927B (zh) * 2016-11-03 2021-10-01 华东理工大学 一种低密度烧蚀隔热型复合材料及其制备方法
CN106947098A (zh) * 2017-03-13 2017-07-14 北京交通大学 一种变梯度酚醛浸渍碳纤维烧蚀复合材料的制备方法
CN107287882B (zh) * 2017-05-05 2019-03-26 航天材料及工艺研究所 轻质耐高温热防护材料及其制备方法
CN108794039A (zh) * 2018-06-12 2018-11-13 中南大学 一种炭/炭复合改性基体材料及其制备工艺
CN109267327B (zh) * 2018-08-08 2021-02-09 航天材料及工艺研究所 一种防热-隔热-吸热型热防护材料及其制备方法
CN109251340A (zh) * 2018-08-22 2019-01-22 武汉理工大学 一种防隔热一体化复合材料及其制备方法
CN109293385B (zh) * 2018-11-08 2021-09-07 航天材料及工艺研究所 一种纤维增强陶瓷基复合材料及其制备方法
CN109354823B (zh) * 2018-11-19 2021-07-27 武汉理工大学 防隔热可陶瓷化酚醛树脂基梯度复合材料的制备方法

Also Published As

Publication number Publication date
CN109910390A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109910390B (zh) 一种梯度密度树脂复合材料预制体制备方法
JP6859441B2 (ja) C/C−SiC複合材料部品の製造方法及びその製品
CN105272322A (zh) 一种轻质耐高温陶瓷纤维刚性隔热瓦及其制造方法
US11285638B2 (en) Method of fabricating a composite material part by injecting a filled slurry into a fiber texture
US10954169B2 (en) Process for manufacturing a ceramic composite material part by pressurized injection of a loaded slurry into a porous mould
CN105801146B (zh) 连续密度梯度化低密度多孔碳粘接复合材料及其制备方法
CN111331941B (zh) 一体式密度梯度热防护材料及其制备方法
US7413700B2 (en) Methods of manufacturing insulated ceramic matrix composite
CN108517102A (zh) 一种轻质防隔热复合材料及其制备方法
CN108178647A (zh) 一种轻质高强隔热莫来石纤维多孔陶瓷的制备方法
US20170334791A1 (en) Method for manufacturing part made of composite material
CN108046739A (zh) 一种纤维预制体增强气凝胶隔热复合材料及其制备方法
CN109437956A (zh) 适用于热压法快速制备的碳碳复合材料平板及其制备方法
CA3026978C (en) A method of making a composite structure
CN109251340A (zh) 一种防隔热一体化复合材料及其制备方法
CN108995254A (zh) 一种纳米孔防热复合材料与承载结构共固化成型方法
US11794383B2 (en) Material with directional thermal conduction and thermal insulation and preparation method thereof
CN103936451A (zh) 大厚度C/SiC复合材料的制备方法
CN106747267B (zh) 一种碳纤维刚性隔热瓦及其制备方法
CN106479112A (zh) 一种酚醛浸渍碳烧蚀体材料的制备方法
JP5096031B2 (ja) 炭素繊維強化炭素からの成形物体の製造
JP2021511278A (ja) セラミックマトリックス複合体を製造する方法
EP3162547B1 (en) Improved laminate resin transfer molding of fibrous preforms using particle filled resin systems
CN109910329B (zh) 一种基于弱浸渍预浸料的碳纳米管层间增强树脂基层合复合材料及其制备方法
CN114311870B (zh) 一种防热隔热双梯度功能复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Preparation Method for Prefabrication of Gradient Density Resin Composite Materials

Effective date of registration: 20230925

Granted publication date: 20201009

Pledgee: China Everbright Bank Co.,Ltd. Jingzhou Branch

Pledgor: HUBEI FEILIHUA QUARTZ GLASS Co.,Ltd.

Registration number: Y2023980058350