CN109897789B - 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池 - Google Patents

克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池 Download PDF

Info

Publication number
CN109897789B
CN109897789B CN201910329033.3A CN201910329033A CN109897789B CN 109897789 B CN109897789 B CN 109897789B CN 201910329033 A CN201910329033 A CN 201910329033A CN 109897789 B CN109897789 B CN 109897789B
Authority
CN
China
Prior art keywords
strain
candida
microbial fuel
fuel cell
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910329033.3A
Other languages
English (en)
Other versions
CN109897789A (zh
Inventor
赵敬淑
金泰冠
李润英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Collaboration Foundation of Ewha University
Original Assignee
Industry Collaboration Foundation of Ewha University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140049397A external-priority patent/KR101686706B1/ko
Priority claimed from KR1020140049399A external-priority patent/KR101726479B1/ko
Application filed by Industry Collaboration Foundation of Ewha University filed Critical Industry Collaboration Foundation of Ewha University
Publication of CN109897789A publication Critical patent/CN109897789A/zh
Application granted granted Critical
Publication of CN109897789B publication Critical patent/CN109897789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/22Klebsiella
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种新型克雷伯氏菌属IR21(Klebsiella sp.IR21)或念珠菌属(Candida sp.IR11)菌株、包含所述菌株的用于废水处理或废水净化的组合物、利用所述组合物进行废水处理或净化的方法、包含所述菌株的微生物燃料电池、利用所述微生物燃料电池产电的方法、具备所述微生物燃料电池的废水处理装置、及利用所述废水处理装置进行废水处理或净化的方法。利用本发明的新型克雷伯氏菌属IR21菌株或念珠菌属IR11,不仅可同时实现对高化学需氧量(COD,Chemical Oxygen Demand)值的废水的净化及产电,而且还可研制出一种无需外部电源即可运行废水处理装置的具备微生物燃料电池的废水处理装置,因此可广泛应用于更高效的废水处理领域。

Description

克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池
本申请是分案申请,原申请的申请日为2015年4月23日,申请号为201580000154.3,发明名称为“新型克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池”。
技术领域
本发明涉及一种新型克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池,更具体而言,本发明涉及一种新型克雷伯氏菌属IR21(Klebsiella sp.IR21)或念珠菌属IR11(Candida sp.IR11)菌株、包含所述菌株的用于废水处理或废水净化的组合物、利用所述组合物进行废水处理或净化的方法、包含所述菌株的微生物燃料电池、利用所述微生物燃料电池产电的方法、具备所述微生物燃料电池的废水处理装置、及利用所述废水处理装置进行废水处理或净化的方法。
背景技术
微生物燃料电池(microbial fuel cell:MFC)是一种将微生物用作催化剂而将作为电子供体的基质具有的化学能转换为电能的装置。具体是指如下装置:包含将基质因微生物的代谢而分解的过程中产生的化学能转换为电能的设备、及回收所述转换出的电能的设备,最终利用微生物从基质产电。通常,微生物燃料电池由接种有微生物的阳极(Anode)电极、阴极(cathode)电极、反应池、及阳离子交换膜构成,在所述反应池中,以阳离子交换膜为中心而阳极电极和阴极电极彼此设置在相反侧。如果在所述反应池填充包含基质的培养液,那么接种在阳极电极的微生物对所述基质进行分解,作为分解产物生成氢离子和电子,所述生成的氢离子穿透阳离子交换膜传递到阴极电极,所述生成的电子从阳极电极向阴极电极移动,最终产生电流。因为只要基质在微生物的作用下生成氢离子和电子,所述微生物燃料电池即可产生电流,所以只要持续地向所述反应池供给基质,即可持续地产生电流。这种微生物燃料电池的核心在于接种在阳极电极的微生物,所述微生物对基质进行分解而产生氢离子和电子的效率越高,微生物燃料电池的产电量越多。
另一方面,污水或废水处理装置大致包括:沉淀池,其用以静置所流入的污水或废水,使悬浮的固形物成分沉淀后将其去除;好氧池,其与所述沉淀池连接,具备纯氧曝气装置;及厌氧池,其与所述好氧池连接,在厌氧状态下,通过微生物分解有机物。在使用所述污水或废水处理装置对污染水进行处理的费用中,纯氧曝气和剩余污泥处理所占费用最高。纯氧曝气装置的耗电量随处理对象的大小而增加,而且,如果通过所述纯氧曝气处理污染水,那么将会产生大量的好氧性微生物即剩余污泥,因此导致剩余污泥处理费用增加。因此,可认为所述装置的污水或废水处理效率随着向污水或废水处理装置供给的电量而提高。
因此,正在积极进行如下研究:通过将所述污水或废水处理装置所具备的厌氧池与微生物燃料电池结合,减少所述装置用电量。例如,在韩国专利第2013-0029530号中公开了一种融合微生物燃料电池和微生物电解池的能源自给型废水深度处理装置、及利用所述装置的废水处理方法。但是,即便是这种结合污水或废水处理装置和微生物燃料电池的装置,其性能仍由所使用的微生物效率所左右,所以迫切需要开发出一种将有机物转换为氢离子的效率优秀的微生物,但截止目前,尚无报告公开此种微生物。
发明内容
[发明要解决的问题]
在这种背景下,本发明人不遗余力地研究一种将有机物转换为氢离子的效率优秀而对微生物燃料电池的适用性优秀的菌株,最终确认到新型克雷伯氏菌属或念珠菌属菌株对微生物燃料电池具有优秀的适用性,进而完成本发明。
[解决问题的手段]
本发明的目的之一在于提供一种新型克雷伯氏菌属IR21(Klebsiella sp.IR21)或念珠菌属IR11(Candida sp.IR11)菌株。
本发明的另一目的在于提供一种用于废水处理或废水净化的组合物,其包含所述克雷伯氏菌属IR21或念珠菌属IR11菌株。
本发明的又一目的在于提供一种利用所述用于废水处理或废水净化的组合物,进行废水处理或净化的方法。
本发明的又一目的在于提供一种微生物燃料电池,其包含所述克雷伯氏菌属IR21或念珠菌属IR11菌株。
本发明的又一目的在于提供一种利用所述微生物燃料电池产电的方法。
本发明的又一目的在于提供一种废水处理装置,其具备所述微生物燃料电池。
本发明的又一目的在于提供一种利用所述废水处理装置进行废水处理或净化的方法。
[发明的效果]
利用本发明的新型克雷伯氏菌属IR21菌株或念珠菌属IR11,不仅可同时实现对高COD值的废水的净化及产电,而且还可研制出一种无需外部电源即可运行废水处理装置的具备微生物燃料电池的废水处理装置,因此可广泛应用于更高效的废水处理领域。
附图说明
图1a是表示COD及pH值随包含使用厌氧污泥的克雷伯氏菌属IR21菌株的微生物燃料电池的运行时间变化的图表。
图1b是表示电压随包含使用厌氧污泥的克雷伯氏菌属IR21菌株的微生物燃料电池的运行时间变化的图表。
图2a是表示COD及pH值随包含使用厌氧污泥的念珠菌属IR11菌株的微生物燃料电池的运行时间变化的图表。
图2b是表示电压随包含使用厌氧污泥的念珠菌属IR11菌株的微生物燃料电池的运行时间变化的图表。
图3a是表示COD及pH值随包含克雷伯氏菌属IR21菌株和人工基质的微生物燃料电池的运行时间变化的图表。
图3b是表示电压随包含克雷伯氏菌属IR21菌株和人工基质的微生物燃料电池的运行时间变化的图表。
图4a是表示COD及pH值随包含克雷伯氏菌属IR21菌株和制氢过程中的废水的微生物燃料电池的运行时间变化的图表。
图4b是表示电压随包含克雷伯氏菌属IR21菌株和制氢过程中的废水的微生物燃料电池的运行时间变化的图表。
图5a是表示COD及pH值随包含念珠菌属IR11菌株和人工基质的微生物燃料电池的运行时间变化的图表。
图5b是表示电压随包含念珠菌属IR11菌株和人工基质的微生物燃料电池的运行时间变化的图表。
图6a是表示COD及pH值随包含念珠菌属IR11菌株和沼气生产过程中的废水的微生物燃料电池的运行时间变化的图表。
图6b是表示电压随包含念珠菌属IR11菌株和沼气生产过程中的废水的微生物燃料电池的运行时间变化的图表。
图7是对接种有克雷伯氏菌属菌株的MFC反应池和未接种克雷伯氏菌属菌株的MFC反应池的生物膜中的克雷伯氏菌属菌株量进行比较的图表。
图8是对接种有念珠菌属菌株的MFC反应池和未接种念珠菌属菌株的MFC反应池的生物膜中的念珠菌属菌株量进行比较的图表。
具体实施方式
为了发现适于微生物燃料电池的菌株,本发明人制作运行接种有厌氧污泥的微生物燃料电池,之后从形成在阳极电极的生物膜分离并鉴定新型克雷伯氏菌属(Klebsiellasp.)菌株即克雷伯氏菌属IR21菌株、或念珠菌属(Candida sp.)菌株即念珠菌属IR11。另外,对包含所述克雷伯氏菌属IR21的微生物燃料电池的性能进行评估,结果确认到在将具有高等级的COD值的制氢过程中的废水用作基质的情况下,也可产生电流,对包含所述念珠菌属IR11的微生物燃料电池的性能进行评估,结果确认到至微生物燃料电池的电压生成趋于稳定为止所需的时间缩短,可产生相对较高等级的电压,因此所述克雷伯氏菌属IR21或念珠菌属IR11菌株不仅可用作微生物燃料电池的核心组成要素,而且还可在结合废水处理装置和微生物燃料电池的方面起到核心作用。
作为用以达成所述目的的一实施方式,本发明提供一种新型克雷伯氏菌属(Klebsiella sp.)菌株即克雷伯氏菌属IR21(Klebsiella sp.IR21)菌株(KCTC 12571BP)、或新型念珠菌属(Candida sp.)菌株即念珠菌属IR11(Candida sp.IR11)菌株(KCTC12570BP)。
本发明中的术语“克雷伯氏菌属IR21(Klebsiella sp.IR21)菌株”是指源自厌氧污泥,以往从未报告公开过的克雷伯氏菌属(Klebsiella sp.)菌株,且是指于2014年4月3日保存进作为布达佩斯条约中的国际保存机构之一的韩国生命工学研究院生物资源中心(韩国典型菌种保藏中心,Korean Collection for Type Culture)并被赋予保存编号KCTC12571BP的菌株。
本发明中的术语“念珠菌属IR11(Candida sp.IR11)菌株”是指源自厌氧污泥,以往从未报告公开过的念珠菌属(Candida sp.)菌株,且是指于2014年4月3日保存进作为布达佩斯条约中的国际保存机构之一的韩国生命工学研究院生物资源中心(韩国典型菌种保藏中心,Korean Collection for Type Culture)并被赋予保存编号KCTC 12570BP的菌株。
在本发明中,在微生物燃料电池包含所述克雷伯氏菌属IR21菌株的情况下,即便使用高等级的COD值的废水作为微生物燃料电池所使用的基质,也可达到产生电流的效果,在微生物燃料电池包含所述念珠菌属IR11菌株的情况下,可缩短微生物燃料电池产生的电压趋于稳定所需的时间,并可增大电压等级,因此可将其用作在本发明中提供的微生物燃料电池的组成部分。
根据本发明的一个实施例,为了筛选存在于厌氧污泥的用于微生物燃料电池的菌株,使用所述厌氧污泥运行微生物燃料电池,从形成在所述微生物燃料电池的阳极电极的生物膜筛选用于微生物燃料电池的菌株并进行鉴定,其结果,分离出新型克雷伯氏菌属(Klebsiella sp.)菌株或念珠菌属(Candida sp.)菌株,将所述菌株分别命名为“克雷伯氏菌属IR21(Klebsiella sp.IR21)”或“念珠菌属IR11(Candida sp.IR11)”,并于2014年4月3日将所述菌株保存进作为布达佩斯条约中的国际保存机构之一的韩国生命工学研究院生物资源中心(韩国典型菌种保藏中心,Korean Collection for Type Culture)并分别被赋予保存编号KCTC 12571BP及KCTC 12570BP。另一方面,对所述经鉴定的克雷伯氏菌属IR21或念珠菌属IR11对微生物燃料电池所发挥的效果进行确认,结果确认到所述菌株对人工基质中所包含的葡萄糖、制氢过程中的废水或沼气生产过程中的废水中所包含的有机物进行分解,产生氢离子和电子并移送所述产生的氢离子和电子,由此可驱动微生物燃料电池。除此之外,还确认到包含所述克雷伯氏菌属IR21的微生物燃料电池与不包含所述菌株的微生物燃料电池相比,在使用人工基质或高等级的COD值的制氢过程中的废水作为基质的情况下,仍能产生电流(图3a、3b、4a及4b),包含所述念珠菌属IR11的微生物燃料电池与不包含所述菌株的微生物燃料电池相比,在使用人工基质或沼气生产过程中的废水作为基质的情况下,也能缩短至电压生成趋于稳定为止所需的时间,产生相对较高等级的电压(图5a、5b、6a及6b)。
因此,可知本发明中提供的克雷伯氏菌属IR21菌株或念珠菌属IR11菌株不仅可用作微生物燃料电池的核心组成要素,而且还可在结合用以废水处理的装置和微生物燃料电池的方面起到核心作用。
作为用以达成所述目的的另一实施方式,本发明提供一种包含所述克雷伯氏菌属IR21菌株或念珠菌属IR11菌株的用于废水处理或废水净化的组合物、及利用所述组合物进行废水处理或净化的方法。
所述克雷伯氏菌属IR21菌株源自厌氧污泥,对制氢过程中的废水中所包含的有机物进行分解,产生氢离子和电子并移送所述产生的氢离子和电子,由此可驱动微生物燃料电池,因此所述菌株可用于厌氧分解废水中所包含的有机物。
所述念珠菌属IR11菌株源自厌氧污泥,对沼气生产过程中的废水中所包含的有机物进行分解而产生氢离子和电子,由此可驱动微生物燃料电池,因此所述菌株可用于厌氧分解废水中所包含的有机物。
除了所述克雷伯氏菌属IR21或念珠菌属IR11菌株以外,本发明中提供的用于废水处理或废水净化的组合物还可包含可促进废水处理或净化的其他菌株。所述还可包含的其他菌株并无特别限制,但优选为可分解废水中所包含的有机物的菌株、营造抑制腐败菌生长条件的菌株等;更优选为可分解废水中所包含的有机物的酵母属(Saccharomyces sp.)菌株、芽孢杆菌属(Bacillus sp.)菌株、或使pH值降低而营造抑制腐败菌生长条件的肠球菌属(Enterococcus sp.)菌株等;最优选为可单独或组合包含酿酒酵母(Saccharomycescerevisiae)、枯草杆菌(Bacillus subtilis)、屎肠球菌(Enterococcus faecium)、粪肠球菌(Enterococcus faecalis)等。
另外,利用本发明的所述组合物进行废水处理或净化的方法包含将所述组合物对废水进行处理,使其在厌氧条件下进行反应的步骤。
此时,因所述反应而本发明的组合物可对废水中所包含的碳水化合物成分进行分解,本发明中提供的组合物相对于所述废水的处理量并无特别限制,只要可达到废水处理或净化的效果即可,但优选为按照1,000吨废水使用所述组合物50至200kg/day的量进行处理;更优选为按照1,000吨废水使用所述组合物100至150kg/day的量进行处理;最优选为按照1,000吨废水使用所述组合物120kg/day的量进行处理。
作为用以达成所述目的的又一实施方式,本发明提供一种包含所述克雷伯氏菌属IR21或念珠菌属IR11菌株的微生物燃料电池及利用所述微生物燃料电池产电的方法。
本发明中的术语“微生物燃料电池”是指如下装置:包含将基质因微生物的代谢而分解的过程中产生的化学能转换为电能的设备、及回收所述转换出的电能的设备,最终利用微生物从基质产电。通常,微生物燃料电池包含:阳极电极,其接种有微生物;阴极电极;培养液,其包含可被所述微生物分解的基质,提供微生物的培养环境;电线,其连接所述电极;反应池,其具备所述两个电极、所述培养液的流入口和流出口;及阳离子交换膜,其设置在所述反应池,位于两个电极之间;在所述反应池中,以阳离子交换膜为中心而阳极电极和阴极电极彼此设置在相反侧,所述反应池所具备的培养液流入口和流出口位于设置有阳极电极的位置。当通过所述反应池的流入口将包含基质的培养液填充至反应池时,接种在阳极电极的微生物对所述培养液中所包含的基质进行分解,作为分解产物,生成氢离子和电子,所述生成的氢离子穿透阳离子交换膜传递到阴极电极,同时电子从阳极电极向阴极电极移动,最终产生电流。因为只要基质在微生物的作用下生成氢离子和电子,所述微生物燃料电池即可产生电流,所以只要通过所述反应池所具备的流入口及流出口持续地供给基质,即可持续地产生电流。
在本发明中,所述微生物燃料电池包含:(a)阳极电极,其接种有本发明中提供的克雷伯氏菌属IR21或念珠菌属IR11菌株;(b)阴极电极;(c)培养液,其包含可被所述微生物分解的基质,提供微生物的培养环境;(d)电线,其连接所述电极;(e)反应池,其具备所述两个电极、所述培养液的流入口和流出口;及(f)阳离子交换膜,其设置在所述反应池,位于两个电极之间。此时,所述阳极电极并无特别限制,只要可接种克雷伯氏菌属IR21或念珠菌属IR11菌株即可,但优选为可使用由铂、不锈钢网、碳毡、碳纸等材质制造的阳极电极;所述阴极电极并无特别限制,但优选为可使用由碳毡、碳纸、碳布等材质制造的阴极电极或使用空气阴极(air-cathode);所述基质并无特别限制,只要可被克雷伯氏菌属IR21或念珠菌属IR11菌株分解而产生氢离子和电子即可,但优选为可使用葡萄糖和乙酸盐的混合物、经预处理的废水等,更优选为可使用葡萄糖和乙酸盐的混合物(1∶1,w/w)、或制氢过程中的废水或沼气生产过程中的废水;所述培养液并无特别限制,只要可提供克雷伯氏菌属IR21或念珠菌属IR11菌株的培养环境并传递生成的氢离子和电子即可,但优选为可使用包含碳源及电子受体,并可保持中性pH值的缓冲溶液,更优选为可使用包含作为碳源的葡萄糖及作为电子受体的Fe4O21P6或C6H5FeO7,并且pH值为7.0的磷酸盐缓冲液,最优选为可使用包含作为碳源的20mM的葡萄糖及作为电子受体的50mM的Fe4O21P6或C6H5FeO7,并且pH值为7.0的100mM磷酸盐缓冲液。
另外,利用所述微生物燃料电池产电的方法包含如下步骤:(a)通过微生物燃料电池的反应池所具备的流入口及流出口,向接种有克雷伯氏菌属IR21或念珠菌属IR11菌株的阳极电极连续地供给包含基质的培养液的步骤;及(b)接种在所述阳极电极的克雷伯氏菌属IR21或念珠菌属IR11菌株对所述基质进行分解,产生氢离子和电子,通过所述氢离子和电子产生电流。此时,所使用的基质、培养液等条件与如上所述的条件相同。
作为用以达成所述目的的又一实施方式,本发明提供一种具备包含所述克雷伯氏菌属IR21或念珠菌属IR11菌株的微生物燃料电池的废水处理装置、及利用所述废水处理装置同时进行废水净化及产电的方法。
如上所述,本发明中提供的克雷伯氏菌属IR21或念珠菌属IR11菌株可通过微生物燃料电池对经废水处理装置预处理的废水中所包含的有机物进行分解而产电,因此如果在废水处理装置上设置所述微生物燃料电池,以此供给废水处理装置所需的电,那么所述废水处理装置即便无外部电源,也可自主进行废水处理或净化。
在具备所述微生物燃料电池的废水处理装置中,应最大限度地去除供给到微生物燃料电池的经预处理的废水中的会抑制微生物燃料电池活性的成分,因此可使用通过普通的废水处理装置所具备的沉淀池、好氧池等以包含有机物但去除有机物以外的大部分成分的方式进行预处理所得的废水。在所述微生物燃料电池的阳极电极上接种有可对有机物进行厌氧分解的克雷伯氏菌属IR21或念珠菌属IR11菌株,因此可将所述微生物燃料电池活用作厌氧池,当为了提高所述微生物燃料电池的产电效率而设置多个小型微生物燃料电池时,这些小型微生物燃料电池的总合与厌氧池的容量相近,无需格外设置厌氧池,因此还具有可简化所述废水处理装置结构的优点。
在本发明中,具备所述微生物燃料电池的废水处理装置并无特别限制,但优选为可包含沉淀池、好氧池、及微生物燃料电池,在此基础上,还可包含废水流入口、废水排出口、蓄电装置等。
另一方面,本发明中的同时进行废水净化及产电的方法包含如下步骤:(a)使废水流入到具备所述微生物燃料电池的废水处理装置后进行净化,获得含有有机物的预处理废水的步骤;及(b)向微生物燃料电池供给通过上述步骤获得的预处理废水进行产电的步骤。
实施形态
以下,通过实施例,更详细地对本发明进行说明。但是,这些实施例仅用以示意性地说明本发明,本发明的范围并不限定于此。
实施例1:用于微生物燃料电池的菌株的筛选及鉴定
为了筛选存在于厌氧污泥中的用于微生物燃料电池的菌株,使用所述厌氧污泥运行微生物燃料电池后,从形成在阳极(Anode)上的生物膜筛选用于微生物燃料电池的菌株并进行鉴定。
具体而言,所述微生物燃料电池利用Single chamber systems(Anode:作为在450℃下进行30分钟预处理所得的阳极电极的carbon felt(9×14cm);作为阴极电极的空气阴极(air-cathode,ODE75,MEET,Korea);Proton exchange membrane:Nafion 117(Dupont,USA);Reactor:7×15×10cm(L×H×W)per single chamber(1-L volume);Voltagemonitoring system:digital multimeter(GL220,Japan);Line:titanium wire(Sigma,USA)),其中,所述微生物燃料电池所包含的阳极电极和阴极电极连接铂电极和100Ω外部电阻。另外,作为用于微生物燃料电池的培养液,使用包含100mM磷酸盐缓冲液(NH4Cl0.31g/l;KCl0.13 g/l;Na2HPO4-12H2O21.838 g/l;及NaH2PO4-2H2O6.084 g/l)、与作为基质的COD约为1,500mg/L的葡萄糖和乙酸盐混合物(1∶1,w∶w)的培养液。
向所述微生物燃料电池填充1l所述培养液,并作为初始接种体接种厌氧污泥后,利用multi meter(GL220_820-APS,GRAPHTEC,Japan)每隔10分钟观察一次电压,运行约80天(图1a、1b、2a及2b)。
图1a是表示COD及pH值随包含使用厌氧污泥的克雷伯氏菌属IR21菌株的微生物燃料电池的运行时间变化的图表,图2a是表示COD及pH值随包含使用厌氧污泥的念珠菌属IR11菌株的微生物燃料电池的运行时间变化的图表。图1b是表示电压随包含使用厌氧污泥的克雷伯氏菌属IR21菌株的微生物燃料电池的运行时间变化的图表,图2b是表示电压随包含使用厌氧污泥的念珠菌属IR11菌株的微生物燃料电池的运行时间变化的图表。
如所述图1a及图1b所示,确认到在包含克雷伯氏菌属IR21菌株或念珠菌属IR11菌株的微生物燃料电池中,电压生成不稳定,产生200mV以下电压。
如所述图2a及图2b所示,确认到在包含克雷伯氏菌属IR21菌株或念珠菌属IR11菌株的微生物燃料电池中,至电压生成趋于稳定为止所需的时间约为40天以上,在稳定后产生200mV以下的电压。
结束所述微生物燃料电池的运行以后,回收形成有生物膜(biofilm)的阳极(Anode),从中分离及鉴定目标菌株。
具体而言,在100mM磷酸盐缓冲液(NH4Cl0.31 g/l;KCl0.13 g/l;Na2HPO4-12H2O21.838 g/l;及NaH2PO4-2H2O6.084 g/l,pH值为7.0)中包含20mM葡萄糖及50mM的Fe4O21P6或C6H5FeO7的20ml接种培养液中,对形成有所述生物膜的阳极(Anode)进行接种,在由氮气饱和的状态下,以35℃搅拌培养。如果接种培养液的颜色变成深黄色且浊度增加,那么执行4次向此添加10倍体积的新接种培养液进行稀释的步骤而稀释成104倍的体积,将所述稀释的培养物涂抹到在所述接种培养液中包含琼脂糖的固体培养基上,在35℃的厌氧反应条件(氮气饱和条件)下进行培养,从而形成菌落。从所述形成的菌落获取各个菌体,并将所述获取的菌体应用到NucleoSpin Soil Kit(Macherey-Nagel,Germany)而获得各个菌体的脱氧核糖核酸(DNA,Deoxyribonucleic Acid),以所述获得的DNA为模板,进行使用下列引物的PCR,从而获得扩增产物。此时,使用2720Thermal cycler(Applied Biosystems,USA)作为PCR仪,PCR条件如下:95℃,4分钟;30cycle(95℃,30秒;55℃,30秒;及72℃,30秒);及72℃,5分钟。
正向引物:341f 5'-CCT ACG GGA GGC AGC AG-3'(序列号1)
反向引物:907r 5'-CCC CGT CAA TTC ATT TGA GTT T-3'(序列号2)
正向引物ITS1:5'-TCC GTA GGT GAA CCT GCG G-3'(序列号3)
反向引物ITS4:5'-TCC TCC GCT TAT TGA TAT GC-3'(序列号4)
确定所述获得的扩增产物的碱基序列(MACROGEN,Korea),对确定的碱基序列进行分析(NCBI Blast,www.ncbi.nim.nih.gov/),并对生成所述扩增产物的各个菌落的菌体进行鉴定,从中筛选新型菌株。其结果,确认到所述经鉴定的菌体中的一个为属于真菌(Fungi)(界)、子囊菌(Ascomycota)(门)、酵母菌(Saccharomycotina)(亚门)、酵母菌(Saccharomycetales)(目)、酵母菌(Saccharomycetaceae)(科)的新型克雷伯氏菌属(Klebsiella sp.)或念珠菌属(Candida sp.)菌株,并将所述菌株命名为“克雷伯氏菌属IR21(Klebsiella sp.IR21)”或“念珠菌属IR11(Candida sp.IR11)”,于2014年4月3日将所述菌株保存进作为布达佩斯条约中的国际保存机构之一的韩国生命工学研究院生物资源中心(韩国典型菌种保藏中心,Korean Collection for Type Culture)并被赋予保存编号KCTC 12571BP及KCTC 12570BP。
可知在厌氧状态下,所述克雷伯氏菌属IR21或念珠菌属IR11菌株也可将葡萄糖用作碳源。
实施例2:利用克雷伯氏菌属IR21菌株或念珠菌属IR11的微生物燃料电池的评估
运行包含在所述实施例1中经鉴定的克雷伯氏菌属IR21或念珠菌属IR11菌株的微生物燃料电池,对其结果进行评估。
实施例2-1:微生物培养环境及电压变化
具体而言,在通过所述实施例1获得的菌落中,从相当于克雷伯氏菌属IR21或念珠菌属IR11菌株的菌落获取菌体,将其接种到接种培养液后,进行培养而获得培养物。
混合所述培养物和厌氧污泥后,将所述混合物用作初始接种源,作为基质使用作为人工基质的COD约为1,500mg/L的葡萄糖和乙酸盐混合物(1∶1,w/w)、或COD约为15,000mg/L的制氢过程中的废水,除此之外,通过与所述实施例1相同的方法,运行微生物燃料电池(图3a、3b、4a及4b)。
另外,混合所述培养物和厌氧污泥,将所述混合物用作初始接种源,作为基质使用作为人工基质的COD约为500mg/L的葡萄糖和乙酸盐混合物(1∶1,w/w)、或COD约为500mg/L的沼气生产过程中的废水,除此之外,通过与所述实施例1相同方法,运行微生物燃料电池(图5a、5b、6a及6b)。
首先,图3a及图5a是表示COD及pH值随包含克雷伯氏菌属IR21菌株或念珠菌属IR11菌株及人工基质的微生物燃料电池的运行时间变化的图表,图3b及图5b是表示电压随包含克雷伯氏菌属IR21菌株或念珠菌属IR11菌株及人工基质的微生物燃料电池的运行时间变化的图表。
如所述图3a、3b、5a及5b所示,确认到所述微生物燃料电池中生成的电压从一开始就稳定,并且产生200mV以上电压。
其次,图4a是表示COD及pH值随包含克雷伯氏菌属IR21菌株和制氢过程中的废水的微生物燃料电池的运行时间变化的图表,图4b是表示电压随包含克雷伯氏菌属IR21菌株和制氢过程中的废水的微生物燃料电池的运行时间变化的图表。
如所述图4a及4b所示,确认到虽然微生物燃料电池的电压生成不稳定,但在使用具有高等级的COD的制氢过程中的废水作为基质的情况下,仍能产生电流。
再次,图6a是表示COD及pH值随包含念珠菌属IR11菌株和沼气生产过程中的废水的微生物燃料电池的运行时间变化的图表,图6b是表示电压随包含念珠菌属IR11菌株和沼气生产过程中的废水的微生物燃料电池的运行时间变化的图表。
如所述图6a及6b所示,确认到至微生物燃料电池的电压生成趋于稳定为止所需的时间约为20天,在稳定以后产生200mV以上电压。
另外,通过比较所述图3a及3b和图4a及图4b,确认到与使用人工基质相比,将制氢过程中的废水用作基质时,电压生成很难稳定。但是,确认到具有可将具有远远高于人工基质的COD值的制氢过程中的废水用作基质而产生电流的能力,认为其原因在于所述供给的克雷伯氏菌属IR21菌株。
同样地,通过比较所述图5a及图5b和图6a及图6b,确认到与使用人工基质相比,将沼气生产过程中的废水用作基质时,至电压生成趋于稳定为止需要一定时间,生成的电压的等级低。但是,通过比较所述图6a及图6b的结果和图2a及图2b的结果,确认到与使用人工基质(图2a及图2b)相比,使用沼气生产过程中的废水(图2a及图2b)时,不仅电压生成趋于稳定的时间缩短,而且所生成的电压的等级相对较高,认为其原因在于所提供的所述念珠菌属IR11菌株。
实施例2-2:库仑效率(coulombic efficiency)评估
库仑效率是指将微生物燃料电池中的微生物对有机物进行氧化而生成的电子转换为电能的效率,对库仑效率是否随着接种本发明的念珠菌属菌株而变化进行评估。
即,除了接种或不接种本发明的念珠菌属菌株以外,按照与所述实施例2-1相同的条件运行微生物燃料电池,算出库仑效率,对其进行比较(表1)。
[表1]
Figure GDA0003958862130000111
如所述表1所示,确认到如果不接种本发明的念珠菌属菌株,那么所流入的基质中约14%转换为电能,而如果接种本发明的念珠菌属菌株,那么所流入的基质中约22%转换为电能。即,即便在相同的微生物燃料电池中使用相同的基质,库仑效率也因接种微生物而明显增加。
因此,确认到本发明中提供的克雷伯氏菌属IR21菌株或念珠菌属IR11菌株可源自用以进行废水处理的厌氧池并应用在废水处理制程中,还可用作提高微生物燃料电池产电效率的菌株,所述菌株不仅可用作微生物燃料电池的核心组成要素,而且还可在结合废水处理装置和微生物燃料电池的方面起到核心作用。
实施例3:在MFC反应池中对克雷伯氏菌属或念珠菌属菌株进行定量分析
在两种MFC反应池(接种或未接种克雷伯氏菌属或念珠菌属菌株的MFC)中,对克雷伯氏菌属或念珠菌属菌株浓度进行定量分析,由此证实接种的克雷伯氏菌属或念珠菌属菌株存活在MFC反应池中,并参与废水处理和产电。
实施例3-1:生物膜取样
从接种克雷伯氏菌属或念珠菌属菌株的MFC反应池和未接种的MFC反应池中采集形成在阳极(anode)上的生物膜。除菌株接种以外,与接种的反应池相同地制作及运行未接种克雷伯氏菌属菌株的MFC反应池。
实施例3-2:定量PCR(quantitative real time PCR)
从采集的生物膜提取RNA以后,通过Omniscript RT Kit(Qiagen Inc.,USA)合成cDNA。以所合成的cDNA为模板,以分离鉴定的克雷白氏杆菌的碱基序列信息为基础,设计两种特定引物组,进行定量PCR。特定引物使用Kleb_F1(5'-GGCAGGCTGGAGTCTTGTAG-3')(序列号5)和Kleb_R1(5'-GCCACTCCTCAAGGGAACAA-3')(序列号6)、Kleb_F2(5'-GGCAGGCTGGAGTCTTGTAG-3')(序列号7)和Kleb_R2(5'-AAGCCACTCCTCAAGGGAAC-3')(序列号8)。PCR进行如下步骤:在95℃下进行4分钟初始变性;在95℃下进行30秒变性;在57℃下进行30秒退火(annealing);在72℃下进行30秒延伸;在82℃下进行30秒最终延伸;最后在82℃下进行30秒最终延伸,利用7300Real-time PCR system(Applied Biosystems,USA)共进行35次循环。
同样地,从采集的生物膜提取RNA以后,通过Omniscript RT Kit(Qiagen Inc.,USA)合成cDNA。以所合成的cDNA为模板,使用以念珠菌属的基因(SAPT及ERG基因)为目标的两种特定引物组,进行定量PCR。特定引物使用SAPT3-F(5'-ACTTGGATTTCCAGCGAAGA-3')(序列号9)和SAPT3-R(5'-AGCCCTTCCAATGCCTAAAT-3')(序列号10),ERG11-F(5'-ATGGCTATTGTTGTACTGC-3')(序列号11)和ERG11-R(5'-GCATTGTAAATGAATTCGTG-3')(序列号12)。PCR进行如下步骤:在95℃下进行3分钟初始变性;在95℃下进行45秒变性;在55℃下进行15秒退火(annealing);在72℃下进行30秒延伸;最后在82℃下进行30秒最终延伸,利用7300Real-time PCR system(Applied Biosystems,USA)共进行35次循环。
如图7所示,在利用Kleb_F1和Kleb_F2两种引物进行定量时,从接种克雷伯氏菌属菌株的MFC反应池采集的生物膜中的克雷伯氏菌属的菌株量比从未接种的反应池中采集的生物膜多出2倍以上(图7)。这表明克雷伯氏菌属菌株在MFC反应池中稳定存活,有助于废水处理(去除COD),同时有助于提高产电效率。
另外,如图8所示,在利用SAPT3和ERG11两种引物进行定量时,从接种念珠菌属菌株的MFC反应池采集的生物膜中的念珠菌属的菌株量比从未接种的反应池中采集的生物膜高出3倍以上(图8)。这表明念珠菌属菌株在MFC反应池中稳定存活,有助于提高产电效率。
在说明书中,省略了对于在本发明所属技术领域内具有常识的人员能够充分理解推断的内容的详细记载,除了本说明书中所记载的具体例以外,可在不脱离本发明的技术思想或变更必要构成的范围内实现各种变形。因此,本发明可通过与说明书中具体说明例示的方式不同的方式实施,在本发明所属技术领域内具有常识的人员应可充分理解该事项。
Figure GDA0003958862130000141
Figure GDA0003958862130000151
序列表
<110> 梨花女子大学校产学协力团
<120> 新型克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池
<130> OPA15048-CN
<150> KR 0-2014-0049397
<151> 2014-04-24
<150> KR 0-2014-0049399
<151> 2014-04-24
<160> 12
<170> KopatentIn 2.0
<210> 1
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 引物341f
<400> 1
cctacgggag gcagcag 17
<210> 2
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物907r
<400> 2
ccccgtcaat tcatttgagt tt 22
<210> 3
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引物ITS1
<400> 3
tccgtaggtg aacctgcgg 19
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物ITS4
<400> 4
tcctccgctt attgatatgc 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物kleb_F1
<400> 5
ggcaggctgg agtcttgtag 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物Kleb_R1
<400> 6
gccactcctc aagggaacaa 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物Kleb_F2
<400> 7
ggcaggctgg agtcttgtag 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物Kleb_R2
<400> 8
aagccactcc tcaagggaac 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物SAPT3-F
<400> 9
acttggattt ccagcgaaga 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物 SAPT3-R
<400> 10
agcccttcca atgcctaaat 20
<210> 11
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引物 SERG11-F
<400> 11
atggctattg ttgtactgc 19
<210> 12
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物ERG11-R
<400> 12
gcattgtaaa tgaattcgtg 20

Claims (13)

1.一种念珠菌属(Candida sp.)IR11菌株,其保藏登录号为KCTC 12570BP,其能够同时进行废水处理和产电。
2.一种用于废水处理或净化的组合物,其包含根据权利要求1所述的念珠菌属IR11菌株。
3.根据权利要求2所述的组合物,还包含选自酵母属(Saccharomyces sp.)菌株、芽孢杆菌属(Bacillus sp.)菌株、肠球菌属(Enterococcus sp.)菌株、及其组合。
4.一种废水处理或净化方法,包括将权利要求3所述的用于废水处理或净化的组合物在废水中进行处理,然后使所得物在厌氧条件下进行反应。
5.一种微生物燃料电池,其包含:
(a)阳极电极,其接种有根据权利要求1所述的念珠菌属IR11菌株;
(b)阴极电极;
(c)培养基,其包含被所述念珠菌属IR11菌株分解的基质并且提供所述念珠菌属IR11菌株的培养环境;
(d)电线,其连接所述两个电极;
(e)反应池,其中提供所述两个电极、所述培养基的流入口及所述培养基的流出口;及
(f)阳离子交换膜,其设置在所述反应池中并且位于所述两个电极之间。
6.根据权利要求5所述的微生物燃料电池,其中所述阳极电极用选自铂、不锈钢网、碳毡、碳纸、及其组合的材质制造。
7.根据权利要求5所述的微生物燃料电池,其中所述阴极电极用选自碳毡、碳纸、碳布、及其组合的材质制造。
8.根据权利要求5所述的微生物燃料电池,其中所述基质是被念珠菌属IR11菌株分解而产生氢离子和电子的物质。
9.根据权利要求5所述的微生物燃料电池,其中所述培养基是包含碳源及电子受体并能保持中性pH的缓冲溶液。
10.一种产电方法,包括:
(a)通过根据权利要求5所述的微生物燃料电池的反应池所具备的流入口及流出口,向接种有念珠菌属IR11菌株的阳极电极连续地供给包含基质的培养基;及
(b)通过接种到阳极电极中的念珠菌属IR11菌株对所述供给的基质进行分解而产生氢离子和电子,然后由所述氢离子和电子产生电流。
11.一种废水处理装置,其包含根据权利要求5所述的微生物燃料电池、沉淀池、及好氧池。
12.根据权利要求11所述的废水处理装置,其能够同时进行废水处理及产电。
13.根据权利要求11所述的废水处理装置,其还包含选自下列的一种:废水流入口、废水流出口、蓄电装置、及其组合。
CN201910329033.3A 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池 Active CN109897789B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140049397A KR101686706B1 (ko) 2014-04-24 2014-04-24 신규한 캔디다 속 균주 및 이를 포함하는 미생물 연료전지
KR10-2014-0049399 2014-04-24
KR10-2014-0049397 2014-04-24
KR1020140049399A KR101726479B1 (ko) 2014-04-24 2014-04-24 신규한 클렙시엘라 속 균주 및 이를 포함하는 미생물 연료전지
CN201580000154.3A CN105765056B (zh) 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池
PCT/KR2015/004055 WO2015163708A1 (ko) 2014-04-24 2015-04-23 신규한 클렙시엘라 속 또는 캔디다 속 균주 및 이를 포함하는 미생물 연료전지

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580000154.3A Division CN105765056B (zh) 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池

Publications (2)

Publication Number Publication Date
CN109897789A CN109897789A (zh) 2019-06-18
CN109897789B true CN109897789B (zh) 2023-02-17

Family

ID=54332797

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580000154.3A Active CN105765056B (zh) 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池
CN201910329033.3A Active CN109897789B (zh) 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201580000154.3A Active CN105765056B (zh) 2014-04-24 2015-04-23 克雷伯氏菌属或念珠菌属菌株及包含其的微生物燃料电池

Country Status (2)

Country Link
CN (2) CN105765056B (zh)
WO (1) WO2015163708A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733112B (zh) * 2020-07-22 2020-11-10 广东省微生物研究所(广东省微生物分析检测中心) 一株剑菌及其在生物产电中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083856A (ko) * 1999-08-20 1999-12-06 이성기 난분해 독성화학물질을 분해하는 세균 공동체 이비씨1000 및이를 이용하여 산업폐수, 폐기물, 토양 등을 오염시키는 난분해독성화학물질을 생물학적으로 교정하는 방법
KR20040069395A (ko) * 2003-01-29 2004-08-06 주식회사 환경소생 이엠비씨 발효법을 이용한 축산오폐수 정화 사료제조방법
WO2009070022A1 (en) * 2007-11-29 2009-06-04 Stichting Dienst Landbouwkundig Onderzoek Production of a product in a microbial fuel cell
JP2009247277A (ja) * 2008-04-07 2009-10-29 Nikkiso Co Ltd バイオ製剤およびバイオ製剤を用いた廃水処理方法
KR20100048352A (ko) * 2008-10-31 2010-05-11 주식회사 아이지에스 탈질 활성이 우수한 크렙시엘라 뉴모니애 kc-101
JP2011182782A (ja) * 2010-02-09 2011-09-22 Sekisui Aqua System Kk 油脂分解微生物、微生物固定化担体、廃水の処理方法、並びに、廃水処理システム
CN102815795A (zh) * 2012-09-12 2012-12-12 广西民族大学 一种淀粉废水的处理方法及其产物和应用
KR20130050577A (ko) * 2011-11-08 2013-05-16 광주과학기술원 수처리 분리막을 포함하는 미생물 연료전지 장치 및 이를 이용한 폐수처리방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147744B1 (ko) * 1995-12-12 1998-08-01 김종진 시안화물 분해균주 및 티오시안화물분해균주, 그리고 이 분해균주를 이용한 시안화물과 티오시안화물을 함유하는 폐수의 처리방법
KR101077825B1 (ko) * 2008-09-01 2011-10-28 부산대학교 산학협력단 전기 생산 및 폐수처리를 위한 전기활성박테리아 융합장치
KR20120045276A (ko) * 2010-10-29 2012-05-09 이화여자대학교 산학협력단 열?저항성 효모 균주 및 이의 유전자
WO2013191502A1 (ko) * 2012-06-22 2013-12-27 한국과학기술원 산화환원 연료전지 및 그를 이용하여 일산화질소를 분리하는 방법
CN103215201B (zh) * 2013-03-19 2014-09-10 华南理工大学 一株产酸克雷伯氏菌及其在产生物电中的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083856A (ko) * 1999-08-20 1999-12-06 이성기 난분해 독성화학물질을 분해하는 세균 공동체 이비씨1000 및이를 이용하여 산업폐수, 폐기물, 토양 등을 오염시키는 난분해독성화학물질을 생물학적으로 교정하는 방법
KR20040069395A (ko) * 2003-01-29 2004-08-06 주식회사 환경소생 이엠비씨 발효법을 이용한 축산오폐수 정화 사료제조방법
WO2009070022A1 (en) * 2007-11-29 2009-06-04 Stichting Dienst Landbouwkundig Onderzoek Production of a product in a microbial fuel cell
JP2009247277A (ja) * 2008-04-07 2009-10-29 Nikkiso Co Ltd バイオ製剤およびバイオ製剤を用いた廃水処理方法
KR20100048352A (ko) * 2008-10-31 2010-05-11 주식회사 아이지에스 탈질 활성이 우수한 크렙시엘라 뉴모니애 kc-101
JP2011182782A (ja) * 2010-02-09 2011-09-22 Sekisui Aqua System Kk 油脂分解微生物、微生物固定化担体、廃水の処理方法、並びに、廃水処理システム
KR20130050577A (ko) * 2011-11-08 2013-05-16 광주과학기술원 수처리 분리막을 포함하는 미생물 연료전지 장치 및 이를 이용한 폐수처리방법
CN102815795A (zh) * 2012-09-12 2012-12-12 广西民族大学 一种淀粉废水的处理方法及其产物和应用

Also Published As

Publication number Publication date
WO2015163708A1 (ko) 2015-10-29
CN105765056B (zh) 2020-11-24
CN109897789A (zh) 2019-06-18
CN105765056A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
Dopson et al. Possibilities for extremophilic microorganisms in microbial electrochemical systems
Xiao et al. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene
Zhen et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode
Freguia et al. Microbial fuel cells operating on mixed fatty acids
Chen et al. Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents
Huang et al. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells
Gao et al. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells
Baek et al. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane
Zhou et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation
Hao et al. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community
Croese et al. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells
Yoshizawa et al. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation
Du et al. Coupling interaction of cathodic reduction and microbial metabolism in aerobic biocathode of microbial fuel cell
Kokabian et al. Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations
Luo et al. Sulfate reduction and microbial community of autotrophic biocathode in response to acidity
Rago et al. Bioelectrochemical nitrogen fixation (e-BNF): electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation
Sharma et al. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell
Ying et al. The impact of electron donors and anode potentials on the anode-respiring bacteria community
Tejedor-Sanz et al. Integrating a microbial electrochemical system into a classical wastewater treatment configuration for removing nitrogen from low COD effluents
García-Muñoz et al. Electricity generation by microorganisms in the sediment-water interface of an extreme acidic microcosm
Mathuriya Enhanced tannery wastewater treatment and electricity generation in microbial fuel cell by bacterial strains isolated from tannery waste.
Li et al. The plant-enhanced bio-cathode: Root exudates and microbial community for nitrogen removal
Qiao et al. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor
Mukherjee et al. Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation
Baby et al. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems–A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant