CN109856517B - 一种特高压设备局部放电检测数据的判别方法 - Google Patents

一种特高压设备局部放电检测数据的判别方法 Download PDF

Info

Publication number
CN109856517B
CN109856517B CN201910247454.1A CN201910247454A CN109856517B CN 109856517 B CN109856517 B CN 109856517B CN 201910247454 A CN201910247454 A CN 201910247454A CN 109856517 B CN109856517 B CN 109856517B
Authority
CN
China
Prior art keywords
fault
neural network
convolutional neural
cnn convolutional
frequency signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910247454.1A
Other languages
English (en)
Other versions
CN109856517A (zh
Inventor
朱太云
赵常威
王刘芳
叶剑涛
钱宇骋
杨为
甄超
季坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910247454.1A priority Critical patent/CN109856517B/zh
Publication of CN109856517A publication Critical patent/CN109856517A/zh
Application granted granted Critical
Publication of CN109856517B publication Critical patent/CN109856517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种特高压设备局部放电检测数据的判别方法,包括:将连续的超声波频率信号经采样降至人耳可听到的连续声波频率信号;连续截取一个设定时间长度的帧声波频率信号;提取帧声波频率信号的梅尔频率倒谱系数作为待识别故障放电特征;将提取的待识别故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,识别待识别故障放电特征并输出待识别故障放电类型。本发明直接用卷积神经网络CNN对故障类型进行模式学习和识别,提高了识别的准确率,减少或者避免了人工干预。

Description

一种特高压设备局部放电检测数据的判别方法
技术领域
本发明涉及电气设备故障诊断判别方法,尤其涉及一种特高压设备局部放电检测数据的判别方法。
背景技术
作为电力***中的高压开关和变压器的正常运行直接关系到整个电力***的可靠运行,及时检测高压开关和变压器的局部放电可以有效地防止其失效。长时间的局部放电累积会造成高压设备的一系列物理化学反应,加剧绝缘损坏,从而引起设备故障。局部放电状态检测是保障高压设备可靠运行的重要手段,而局部放电故障识别是局放检测的核心环节。
公开号CN105203936A公开了“一种基于频谱分析的电力电缆局部放电缺陷类型判别方法”,该方法通过提取放电缺陷频谱特征与事先建立的一个缺陷类型频谱特征数据库进行比较分析确定局部放电缺陷类型,其过程是通过对比相似度来确定局部放电缺陷类型,由于对比相似度是通过预设阈值决定的,因此该方法的准确率不确定,并且当相似度不符合要求时需要人工干预确定局部放电缺陷类型,存在过多人员干预的问题。
发明内容
本发明的目的是提出一种特高压设备局部放电检测数据的判别方法,通过提取局放超声波信号的特征量,直接用卷积神经网络(CNN)对故障类型进行模式识别,而不是用对比相似度来确定局部放电缺陷类型,提高了识别的准确率,减少或者避免了人工干预。
为了实现上述目的,本发明的技术方案是:
一种特高压设备局部放电检测数据的判别方法,包括连续获取局部故障放电产生的超声波频率信号,所述判别方法包括:
第一步:将连续的超声波频率信号经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为待识别故障放电特征;
第四步:将提取的待识别故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第五步:CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,识别待识别故障放电特征并输出待识别故障放电类型;
其中:所述CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,是事先将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,按照上述第一步、第二步的顺序执行,并且在第三步中将提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征进行学习形成已知的故障分类器。
方案进一步是:所述连续截取一个设定时间长度的帧声波频率信号中,相邻帧声波频率信号部分重叠。
方案进一步是:所述时间长度是20毫秒到40毫秒。
方案进一步是:所述获取局部故障放电产生的超声波频率信号是由1MHz的采样频率采集获取的,然后,将每个超声波信号降采样至80kHz频率形成人耳可听到的连续声波频率信号。
方案进一步是:当时别失败时,调整相邻帧声波频率信号部分重叠的重叠百分比,并对一个预先设置的重复识别累加器加1,然后返回第三步重新识别直至重复识别累加器达到预设值,在重复识别累加器达到预设值后仍然识别失败,输出未识别故障声波频率信号并报警,人工干预确定故障放电类型,如果是新的故障放电类型则由CNN卷积神经网络学习形成新的故障类型通道,如果是已有的故障放电类型,则补充CNN卷积神经网络对应该故障放电类型通道的识别特征。
方案进一步是:所述CNN卷积神经网络分析采用L2正则化,以防止过拟合的情况出现。
方案进一步是:所述故障分类器采用Softmax分类器。
方案进一步是:在所述CNN卷积神经网络对已知故障放电特征的学习中,包括一种验证CNN卷积神经网络识别故障放电特征准确率的方法,其过程是:
第一步:将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征,并将每一种故障放电类型的多种超声波频率信号样本的已知故障放电特征信号集分为训练集和测试集;
第四步:将训练集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析形成CNN卷积神经网络输出分类层的已知的故障分类器;
第五步:将测试集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第六步:CNN卷积神经网络经第四步形成的已知的故障分类器,识别测试集故障放电特征并输出测试集故障放电类型;
第七步:根据已知的测试集故障类型与输出测试集故障放电类型的比较获得CNN卷积神经网络识别故障放电特征准确率。
本发明通过将超声波信号降为声波信号,使用梅尔频率倒谱系数作为特征量,直接用卷积神经网络(CNN)对故障类型进行模式学习和识别,而不是用对比相似度来确定局部放电缺陷类型,提高了识别的准确率,减少或者避免了人工干预。深度学习网络采用的卷积神经网络(CNN)能够反映原数据的本质特征,更有利于分类问题。深度学在特征提取、故障分类以及预测等方向都有突出的应用,有更好的识别争取率和高效性。
下面结合附图和实施例对本发明作一详细描述。
附图说明
图1为本发明MFCC特征提取流程图。
图2为本发明CNN结构示意图。
图3为本发明中验证所述方法准确率的流程图。
具体实施方式
超声波检测是局部放电最重要的非电检测技术之一。在电气设备内部发生局部放电时,会产生电荷和较陡的电流脉冲,使得局部放电发生的区域内气体瞬间受热进而膨胀,发生猛烈的撞击,近似***的效果。放电结束后,原来受热膨胀的气体冷却,区域缩小且恢复至原来的体积。这种由于局放产生的体积涨缩变化引起了介质的瞬间疏密变化,产生压力波,也是脉冲形式的,即超声波。超声波检测方法不接触电气设备,可避免电磁干扰,不影响设备的正常运行。
声音信号的特征提取是一个主要挑战,因为它不像文本和图像等其他类型的数据那么直接。本实施例根据几种不同的特征提取方法被应用于降采样超声波信号并且比较了性能。这些方法可以从每个数据中提取重要特征,例如梅尔频率倒谱系数(MFCC),频谱图,频谱对比度和音调质心特征。
近年来,深度学习网络在各个领域都有重要的应用。其中,卷积神经网络(CNN)由于其诸如局部感知场,参数共享和池化等特性而被广泛用于图像识别;递归神经网络(RNN)可以记忆样本的时间序列信息,在自然语言处理,语音识别,手写识别等领域具有非常重要的应用价值;为了克服神经网络层增加时梯度的消失,S形函数被ReLU,maxout和其他传递函数取代,形成了今天深度神经网络(DNN)的基本形式。本实施例应用CNN模型来识别局部放电模式,并与DNN和RNN两种深度学习模型比较识别准确率和性能。
为此,作为本实施例一种特高压设备局部放电检测数据的判别方法,包括连续获取局部故障放电产生的超声波频率信号,所述判别方法包括:
第一步:将连续的超声波频率信号经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为待识别故障放电特征;
第四步:将提取的待识别故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第五步:CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,识别待识别故障放电特征并输出待识别故障放电类型;
其中:所述CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,是事先将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,按照上述第一步、第二步的顺序执行,并且在第三步中将提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征进行学习形成已知的故障分类器。
已知多种故障放电类型可以通过数字局放仪、示波器以及便携式局部放电检测仪获取诸如尖端电晕缺陷、悬浮电位缺陷、接地电极沿面放电、高压沿面放电,内部放电和近地电极放电的绝缘故障类型的数据样本。当然,还也可以通过其他方式采集数据,并不限于通过局部放电模拟实验采集获得,并且绝缘故障类型也并不局限于尖端电晕缺陷、悬浮电位缺陷、接地电极沿面放电、高压沿面放电,内部放电和近地电极放电缺陷,本领域内技术人员可以根据实施方式的具体情况进行设置,因此,在此,不再赘述。
其中:所述连续截取一个设定时间长度的帧声波频率信号中,相邻帧声波频率信号部分重叠;其中的所述时间长度是20毫秒到40毫秒。
实施例中的一个优选方案这是:所述获取局部故障放电产生的超声波频率信号是由1MHz的采样频率采集获取的,然后,将每个超声波信号降采样至80kHz频率形成人耳可听到的连续声波频率信号,当然不局限于此。
实施例中:当时别失败时,调整相邻帧声波频率信号部分重叠的重叠百分比,并对一个预先设置的重复识别累加器加1,然后返回第三步重新识别直至重复识别累加器达到预设值,在重复识别累加器达到预设值后仍然识别失败,输出未识别故障声波频率信号并报警,人工干预确定故障放电类型,如果是新的故障放电类型则由CNN卷积神经网络学习形成新的故障类型通道,如果是已有的故障放电类型,则补充CNN卷积神经网络对应该故障放电类型通道的识别特征。
实施例中:在所述CNN卷积神经网络对已知故障放电特征的学习中,包括一种验证CNN卷积神经网络识别故障放电特征准确率的方法,其过程是:
第一步:将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征,并将每一种故障放电类型的多种超声波频率信号样本的已知故障放电特征信号集分为训练集和测试集;
第四步:将训练集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析形成CNN卷积神经网络输出分类层的已知的故障分类器;
第五步:将测试集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第六步:CNN卷积神经网络经第四步形成的已知的故障分类器,识别测试集故障放电特征并输出测试集故障放电类型;
第七步:根据已知的测试集故障类型与输出测试集故障放电类型的比较获得CNN卷积神经网络识别故障放电特征准确率。
上述实施例深度学习网络采用了卷积神经网络CNN。深度学习模型可以得到更具有代表性的特征数据,能够反映原数据的本质特征,更有利于分类问题。深度学在特征提取、故障分类以及预测等方向都有突出的应用,有更好的识别争取率和高效性。
卷积神经网络CNN是一种公知的技术,结构如图2所示,包含输入层、卷积层、池化层、全连接层和输出层;CNN通常有几个卷积和池化层交替应用,一个卷积层后面跟着一个池化层,而一个池化层后面跟着一个卷积层,依此类推。卷积层用于提取数据特征,池化层用于对卷积层的输出进行降采样——压缩降维。在CNN中,卷积池化通常由三个步骤组成。在第一步中,并行执行几个卷积,以产生一组线性活动。在第二步中,对每个线性激活执行非线性激活功能。在第三步中,应用池化函数来修改图层的输出。本实施例中作为输出分类层的所述故障分类器采用Softmax分类器。
在CNN卷积神经网络分析处理中采用随机梯度下降法对深度稀疏降噪自编码器进行训练,以对其参数进行迭代更新,得到最优化参数。
所述CNN卷积神经网络分析采用L2正则化,以防止出现过拟合的情况。
实施例中将梅尔频率倒谱系数(Mel Frequencies Cepstral Coefficient,MFCC)作为深度学习网络的输入,其中:MFCC特征量的计算如图1所示包括如下五个步骤:
步骤1:短帧化(Framing);
语音信号的处理是在称为帧的短时间间隔内完成的,其大小通常在20到40毫秒之间。此外,为了防止两个相邻帧之间的数据由于帧划分而变化太多,需要重叠相邻帧的一部分。在本实施例中,声音信号被帧化为20-40毫秒的短帧,而每帧与其相邻帧的50%重叠。
步骤2:FFT和计算每帧功率谱的周期图估计;
用公式(1)计算帧的快速傅里叶变换(FFT),用Si(k)表示,其中h(n)是样本n长汉明窗口,N是每帧中的样本数量,K是FFT的长度。基于周期图的帧的功率谱估计Pi(k)由式(2)给出:
Figure BDA0002011448500000071
Figure BDA0002011448500000072
步骤3:Mel滤波;
Mel滤波器组是一组20-40个三角滤波器,应用于来自步骤2的周期图功率谱估计,根据公式(3),使用Mel滤波器组将声音信号转换为Mel频谱:
Figure BDA0002011448500000073
步骤4:取对数(Logarithm);
根据公式(4)计算来自步骤3的所有滤波器组能量的对数S'(k)。该对数步骤的目的是压缩局部放电声音信号频谱的动态范围:
Figure BDA0002011448500000081
步骤5:进行离散余弦变换(DCT)。为了获取最终MFCC特征相关参数,对步骤4的对数能量采用离散余弦变换(DCT)进行处理。此处选用DCT的重要原因是因为,DCT在处理频谱分量时有独特的优势:不同频率的频谱成分差异更显著,成分之间的相关性和联系性均较弱。DCT表达式如下:
Figure BDA0002011448500000082
其中C(n)是最终的MFCC特征,n=1,2,...,L,L是MFCC的阶数。
图3是验证所述方法准确率的流程图,其中:
步骤100:获取表征特高压设备若干种绝缘故障类型的局部放电的超声波信号样本,对超声波信号进行降采样预处理,降到人耳能够听到的频率,以便人耳直接感受局部放电以及后期提取数据特征量;
步骤200:通过频谱分析技术提取降噪后的局放声音信号的MFCC特征量(提取方法如前述);
步骤300:将数据特征向量集分成训练集和测试集,利用特征向量训练集训练深度学习模型CNN,使模型能够学习不同放电类型的特征信息,得到网络最优参数。
步骤400:将每组测试集局部放电超声信号特征量分别输入经过训练的深度学习模型CNN,输出分类结果以得到特高压设备的缺陷类型。
本实施例使用1MHz的采样率来采集超声波信号并为每种局放类型保存大量数据样本,总共3960个数据样本。数据的组成如表1所示。每个原始数据样本持续0.5秒并包含500,000个值。将每个超声波信号降采样至80kHz频率,这也意味着超声波信号的时间延长12.5(1M/80k)倍——从0.5秒延长到6.25秒,这样人耳就可以直接听到局放声音。
表1
Figure BDA0002011448500000091
在步骤300中,将提取到的特征数据集分为训练集以及测试集,例如总共3960组相位分辨脉冲序列数据,随机将其中的3564组数据(90%的数据)分为训练集,剩余的396组数据则为测试集,训练时,利用训练集分别对深度学习网络RNN、DNN和CNN进行训练,计算样本数据的输出,计算输出与样本标签的误差,利用随机梯度下降法对深度学习网络的参数进行迭代更新,得到最优化参数。通过测试集最终验证三种深度学习网络是否训练完成。其中,CNN采用2层卷积层和池化层,作为比较的DNN模型采用3层隐含层。三种深度学习网络的输入层被配置为MFCC特征量,激活函数采用Sigmod函数,输出分类层采用Softmax分类器。在训练过程中,为了防止出现过拟合的情况,采用L2正则化。
在步骤400中,利用MFCC作为输入确定待识别的特高压设备的局部放电信号的特征向量,利用训练好的深度学习网络进行模式识别。
为了验证本案的特高压设备局部放电数据判别方法的识别效果,将采用本案的三种深度学习模型进行识别对比,对比结果列于表2。
表2
Figure BDA0002011448500000092
由表2可以看出,采用基于深度学习网络的特高压设备局部放电诊断数据的判别方法具有很好的识别率以及更优的识别性能,非常适用于实际应用过程中对高压设备绝缘故障进行识别。其中,本发明提出的CNN识别正确率明显高于作为比较算法的RNN和DNN的正确率。
综上所述,本实施例所述的特高压设备局部放电诊断数据的判别方法可以对局部放电超声波信号进行有效的故障识别,从而能够及时有效地获取特高压设备的绝缘故障情况,及时消除隐患,避免重大事故的发生,对于特高压设备的安全维护具有指导意义。本实施例的判别方法的识别率较高,识别性能较优。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
另外,还需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案所记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种特高压设备局部放电检测数据的判别方法,包括连续获取局部故障放电产生的超声波频率信号,其特征在于,所述判别方法包括:
第一步:将连续的超声波频率信号经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为待识别故障放电特征;
第四步:将提取的待识别故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第五步:CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,识别待识别故障放电特征并输出待识别故障放电类型;
其中:
所述CNN卷积神经网络根据事先对已知故障放电特征学习形成的故障分类器,是事先将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,按照上述第一步、第二步的顺序执行,并且在第三步中将提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征进行学习形成已知的故障分类器;
所述连续截取一个设定时间长度的帧声波频率信号中,相邻帧声波频率信号部分重叠,当时别失败时,调整相邻帧声波频率信号部分重叠的重叠百分比,并对一个预先设置的重复识别累加器加1,然后返回第三步重新识别直至重复识别累加器达到预设值,在重复识别累加器达到预设值后仍然识别失败,输出未识别故障声波频率信号并报警,人工干预确定故障放电类型,如果是新的故障放电类型则由CNN卷积神经网络学习形成新的故障类型通道,如果是已有的故障放电类型,则补充CNN卷积神经网络对应该故障放电类型通道的识别特征。
2.根据权利要求1所述的方法,其特征在于,所述时间长度是20毫秒到40毫秒。
3.根据权利要求1所述的方法,其特征在于, 所述获取局部故障放电产生的超声波频率信号是由1MHz的采样频率采集获取的,然后,将每个超声波信号降采样至80kHz频率形成人耳可听到的连续声波频率信号。
4.根据权利要求1所述的方法,其特征在于,所述CNN卷积神经网络分析采用L2正则化,以防止过拟合的情况出现。
5.根据权利要求1所述的方法,其特征在于,所述故障分类器采用Softmax分类器。
6.根据权利要求1所述的方法,其特征在于,在所述CNN卷积神经网络对已知故障放电特征的学习中,包括一种验证CNN卷积神经网络识别故障放电特征准确率的方法,其过程是:
第一步:将已知多种故障放电类型的每一种类型采样分出多种超声波频率信号样本,经采样降至人耳可听到的连续声波频率信号;
第二步:连续截取一个设定时间长度的帧声波频率信号;
第三步:提取帧声波频率信号的梅尔频率倒谱系数作为已知故障放电特征,并将每一种故障放电类型的多种超声波频率信号样本的已知故障放电特征信号集分为训练集和测试集;
第四步:将训练集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析形成CNN卷积神经网络输出分类层的已知的故障分类器;
第五步:将测试集故障放电特征送入CNN卷积神经网络,经CNN卷积神经网络分析进入CNN卷积神经网络输出分类层的故障分类器;
第六步:CNN卷积神经网络经第四步形成的已知的故障分类器,识别测试集故障放电特征并输出测试集故障放电类型;
第七步:根据已知的测试集故障类型与输出测试集故障放电类型的比较获得CNN卷积神经网络识别故障放电特征准确率。
CN201910247454.1A 2019-03-29 2019-03-29 一种特高压设备局部放电检测数据的判别方法 Active CN109856517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910247454.1A CN109856517B (zh) 2019-03-29 2019-03-29 一种特高压设备局部放电检测数据的判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910247454.1A CN109856517B (zh) 2019-03-29 2019-03-29 一种特高压设备局部放电检测数据的判别方法

Publications (2)

Publication Number Publication Date
CN109856517A CN109856517A (zh) 2019-06-07
CN109856517B true CN109856517B (zh) 2021-02-23

Family

ID=66902373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910247454.1A Active CN109856517B (zh) 2019-03-29 2019-03-29 一种特高压设备局部放电检测数据的判别方法

Country Status (1)

Country Link
CN (1) CN109856517B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161388B (zh) * 2019-06-10 2021-04-06 上海交通大学 一种高压设备的故障类型识别方法及其***
CN110161389A (zh) * 2019-06-12 2019-08-23 国网河北省电力有限公司电力科学研究院 一种电力设备绝缘缺陷识别方法及aevb自编码器
CN110334948B (zh) * 2019-07-05 2023-04-07 上海交通大学 基于特征量预测的电力设备局部放电严重程度评估方法及***
CN110244205A (zh) * 2019-07-12 2019-09-17 西南石油大学 一种小数据量下基于卷积神经网络的电缆附件局部放电识别方法
CN111524523A (zh) * 2020-04-26 2020-08-11 中南民族大学 基于声纹识别技术的仪器设备状态检测***及其方法
CN111932493B (zh) * 2020-06-28 2024-06-07 北京国网富达科技发展有限责任公司 一种配电网局部放电超声波检测方法及***
CN111929542B (zh) * 2020-07-03 2023-05-26 北京国网富达科技发展有限责任公司 一种电力设备诊断方法及***
CN112034312A (zh) * 2020-08-07 2020-12-04 中国南方电网有限责任公司超高压输电公司检修试验中心 一种电力设备绝缘缺陷模式识别方法
CN112051493A (zh) * 2020-09-17 2020-12-08 海南电网有限责任公司琼海供电局 一种配电网设备的隐患类型识别方法及装置
CN112581940A (zh) * 2020-09-17 2021-03-30 国网江苏省电力有限公司信息通信分公司 基于边缘计算与神经网络的放电声音检测方法
CN112784983A (zh) * 2021-01-28 2021-05-11 邱戴飞 基于深度神经网络的身份信息预测模型训练方法及装置
CN114019310B (zh) * 2021-11-08 2024-02-20 国网湖南省电力有限公司 一种储能变流器的开路故障预判方法、设备及介质
CN114113943A (zh) * 2021-11-25 2022-03-01 广东电网有限责任公司广州供电局 基于电流和超声信号的变压器局放检测***、方法及设备
CN118130984B (zh) * 2024-05-10 2024-07-12 山东博通节能科技有限公司 基于数据驱动的电缆局放故障实时监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546892A (zh) * 2016-11-10 2017-03-29 华乘电气科技(上海)股份有限公司 基于深度学习的局部放电超声音频识别方法及***
KR101822829B1 (ko) * 2017-08-11 2018-01-29 문경훈 머신러닝을 이용한 차단기 부분방전 유형진단 및 노이즈 판별 방법
CN108231067A (zh) * 2018-01-13 2018-06-29 福州大学 基于卷积神经网络与随机森林分类的声音场景识别方法
CN108573225A (zh) * 2018-03-30 2018-09-25 国网天津市电力公司电力科学研究院 一种局部放电信号模式识别方法及***
CN108896878A (zh) * 2018-05-10 2018-11-27 国家电网公司 一种基于超声波的局部放电检测方法
CN109324270A (zh) * 2018-08-07 2019-02-12 国网山东省电力公司淄博供电公司 一种高压开关柜智能在线监测***
CN109444682A (zh) * 2018-11-02 2019-03-08 国网四川省电力公司广安供电公司 基于多信息融合的开关柜局部放电诊断***的构建方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546892A (zh) * 2016-11-10 2017-03-29 华乘电气科技(上海)股份有限公司 基于深度学习的局部放电超声音频识别方法及***
KR101822829B1 (ko) * 2017-08-11 2018-01-29 문경훈 머신러닝을 이용한 차단기 부분방전 유형진단 및 노이즈 판별 방법
CN108231067A (zh) * 2018-01-13 2018-06-29 福州大学 基于卷积神经网络与随机森林分类的声音场景识别方法
CN108573225A (zh) * 2018-03-30 2018-09-25 国网天津市电力公司电力科学研究院 一种局部放电信号模式识别方法及***
CN108896878A (zh) * 2018-05-10 2018-11-27 国家电网公司 一种基于超声波的局部放电检测方法
CN109324270A (zh) * 2018-08-07 2019-02-12 国网山东省电力公司淄博供电公司 一种高压开关柜智能在线监测***
CN109444682A (zh) * 2018-11-02 2019-03-08 国网四川省电力公司广安供电公司 基于多信息融合的开关柜局部放电诊断***的构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Application of extension neural network algorithm and chaos synchronization detection method to partial discharge diagnosis of power capacitor》;Meng-HuiWang等;《Measurement》;20181231;全文 *
《基于卷积神经网络的变压器局部放电模式识别》;刘兵等;《高压电器》;20170516;全文 *

Also Published As

Publication number Publication date
CN109856517A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109856517B (zh) 一种特高压设备局部放电检测数据的判别方法
CN109036382B (zh) 一种基于kl散度的音频特征提取方法
EP2695160B1 (en) Speech syllable/vowel/phone boundary detection using auditory attention cues
US8160877B1 (en) Hierarchical real-time speaker recognition for biometric VoIP verification and targeting
CN109044396B (zh) 一种基于双向长短时记忆神经网络的智能心音识别方法
CN111798874A (zh) 一种语音情绪识别方法及***
CN108305639B (zh) 语音情感识别方法、计算机可读存储介质、终端
CN108682432B (zh) 语音情感识别装置
Beckmann et al. Speech-vgg: A deep feature extractor for speech processing
WO2019232848A1 (zh) 语音区分方法、装置、计算机设备及存储介质
CN114325256A (zh) 一种电力设备局部放电识别方法、***、设备及存储介质
CN112599134A (zh) 一种基于声纹识别的变压器声音事件检测方法
CN114373452A (zh) 基于深度学习的嗓音异常识别和评价的方法及***
CN116778956A (zh) 一种变压器声学特征提取及故障识别方法
Yang et al. Detection of Glottal Closure Instants from Speech Signals: A Convolutional Neural Network Based Method.
CN113571095B (zh) 基于嵌套深度神经网络的语音情感识别方法和***
CN115910097A (zh) 一种高压断路器潜伏性故障可听声信号识别方法及***
CN111785262B (zh) 一种基于残差网络及融合特征的说话人年龄性别分类方法
CN113555038A (zh) 基于无监督领域对抗学习的说话人无关语音情感识别方法及***
CN112767951A (zh) 一种基于深度稠密网络的语音转换可视化检测方法
CN112581940A (zh) 基于边缘计算与神经网络的放电声音检测方法
CN115116475B (zh) 一种基于时延神经网络的语音抑郁症自动检测方法和装置
Wang et al. F0 estimation in noisy speech based on long-term harmonic feature analysis combined with neural network classification
Cai et al. The best input feature when using convolutional neural network for cough recognition
CN104102834A (zh) 录音地点的识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant